

Natarajan Meghanathan et al. (Eds) : CSITEC, CMCA, SP, NECOM, ADCO - 2019

pp. 15-27, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91102

MATBASE – A TOOL FOR TRANSPARENT

PROGRAMMING WHILE MODELLING DATA AT

CONCEPTUAL LEVELS

Christian Mancas

Department of Mathematics and Computer Science, Ovidius University, Constan-

ta, Romania

ABSTRACT

MatBase is a prototype intelligent data and knowledge base management system based on the Re-

lational, Entity-Relationship, and (Elementary) Mathematical Data Models, having two current

versions (MS SQL Server and C#, MS Access and VBA). Users may work with it only at one or

any combination of these conceptual levels, without any programming knowledge (be it SQL, C#,

VBA, etc.), to create, populate, update, and delete databases and corresponding management

software applications. The paper introduces the MatBase architecture and the principles used to

transparently program while modelling data at these three conceptual levels with this tool. A re-

al-life example illustrates them.

KEYWORDS

Conceptual Data Modelling, Automatic Code Generation, Relational Constraints, Non-relational

Constraints, DBMS Engine Architectures, The (Elementary) Mathematic Data Model, MatBase

1. INTRODUCTION

MatBase [8, 9, 10, 11, 12, 13, 14] is a prototype intelligent Knowledge and Database Management
System (KDBMS) built on top of an existing relational DBMS (RDBMS) and based on both the
Relational Data Model (RDM) [1, 4, 8], the Entity-Relationship one (E-RDM) [3, 8, 19], and the

(Elementary) Mathematical one ((E)MDM) [8, 9, 10, 11, 12], which also embeds Datalog [1, 9]:
its users may define, update, and delete database (db) schemas in any of these three formalisms,
which MatBase is automatically translating into the other two ones. Moreover, MatBase also au-
tomatically builds db software applications for managing their data instances plausibility not only
for the six RDM constraint types provided by any RDBMS, but also for the 61 ones of the

(E)MDM, as well as for querying the managed db instances, mathematically too. Why was it ar-
chitectured, designed, and developed like that? The answer is two-folded.

First of all, because dbs should be architectured and designed not at the RDM level, which is al-
most purely syntactic, but at higher level ones and, not only in our opinion, the best first one in
such a data modeling hierarchy is the E-RDM – probably the only data model that can be also un-
derstood by our customers. Then, although there are algorithms to translate E-R diagrams (E-RDs)
to relational db schemes, and even directly to some RDBMS versions ones [8], as E-RDM is still
too poor as provided constraint types, it is highly advisable to first refine E-RDs, by adding all

existing constraints in the modeled sub-universe, for which we are advocating the use of the
(E)MDM.
Secondly, in general, humanity was and will always be designing and using more and more ad-

16 Computer Science & Information Technology (CS & IT)

vanced tools for coping with complexity, in order to hide as many tedious aspects of life as possi-
ble, and to focus on problem understanding and solving at the highest possible conceptual level in
its corresponding eras.

For example, even the biggest fans of the Linux operating system are turning, even if slowly, to
graphical user interfaces (GUIs, e.g. [17]). For example, even the biggest fans of SQL program-
ming are first using RDBMS GUIs when specifying and/or modifying db schemes and/or queries
to be run against them and only then, when needed, they manually improve the automatically gen-

erated SQL scripts. For example, space crafts, airplanes, vehicles, robots, buildings, human tis-
sues, organs, bones, etc., as well as so many other things are architectured and designed using Au-
toCAD [2] and alike software tools (and some of them even directly manufactured with 3D print-
ers [16]).

Current versions of MatBase are implemented in MS Access (for students and small dbs) and in
MS C#.Net and SQL Server (for professionals and/or large dbs). This paper focuses on how Mat-

Base automatically turns E-RDM, (E)MDM, and RDM data models into programs, thus making
possible for non-programmers to design, query, and obtain db management software applications
only working at conceptual data modeling levels.

1.1. Related Work

Probably the erwin Data Modeler [5] is the most used and well-known RDBMS based on the E-
RDM, among dozens of others. Advanced RDBMSes like MS SQL Server, Oracle, and IBM DB2
also provide both data modelers (MS Entity Data Model Designer (based on the MS Entity
Framework) [18], Oracle SQL Developer Data Modeler [6], IBM InfoSphere Data Architect [7])
and GUI-type querying interfaces (MS Design View, Oracle Query Builder, IBM QBE). MatBase

adds to their corresponding facilities mainly its (E)MDM and Datalog interfaces, which are the

most powerful of all of them.

1.2. Paper Outline

The following two sections introduce the MatBase architecture and the principles used to transpar-

ently program while modeling data at conceptual levels. Section four illustrates them with a real-
life example. The paper ends with conclusion and references.

2. MATBASE ARCHITECTURE

Figure 1 shows the overall MatBase simplified architecture, which is a standard 4-tier one, whose
tiers are (in the top-down order) the following: GUI, business logic (BL), ActiveX Data Objects
(ADO), and db (DB).

The MS Access version DB is composed of two shared dbs, namely MatBaseDB.accdb and Geog-

raphyDB.accdb (stored on a file server folder, identified through network mapping as virtual logic
drive V:), and each workstation storing eight other dbs, namely MatBaseTmp.accdb, Geogra-
phyTmp.accdb, StocksDB.accdb, StocksTmp.accdb, BookstoreDB.accdb, BookstreTmp.accdb,
UserDB.accdb, and UserTmp.accdb (stored in a folder declared, through subst, as being virtual
logic drive U:).

Computer Science & Information Technology (CS & IT) 17

Figure 1. MatBase overall architecture

MatBaseDB contains the Matbase’s metacatalog (storing metadata on the managed dbs, tables,

constraints, etc.) and knowledge base (storing data on coherence and minimality of constraint sets,

Datalog inference rules, object constraint types ones, etc.). As MatBase also provides four db
application examples (Geography, shareable, Stocks, Bookstore, and User) there are also db files
storing their data. All needed temporary tables are stored in corresponding Tmp dbs.
In its MS SQL Server versions, all these 5 fundamental dbs are stored on a server instance, where-
as all temporary ones are stored in the corresponding system tempDB.

ADO is the (de facto industry standard) middleware between BL and DB, completely transparent
to programmers in the .net and SQL Server MatBase version, carrying SQL statements as strings
from BL to DB and returning error codes and selected data. In the Access version, ADO is also
explicitly used, as, for example, there is no CHECK constraint in its SQL, and no triggers or stored
procedures either.

For its both versions, BL is made of object-oriented classes (most of them also event-driven, asso-
ciated to forms and reports) and libraries grouping methods commonly used by at least two clas-
ses. Every db application has its own library (e.g. Geography, Stocks, Bookstore, etc.). MatBase’s
core has several specialized ones: Constraints, Datalog, ERD, General, Mappings, Sets, and Tools,
with General including methods, variables, and constants commonly used by at least two other
libraries.

For example, the Constraints one includes parameterized Boolean functions for enforcing object
constraints (enforceObjConstraint), dyadic relation reflexivity (enforceDRReflex), irreflexivity
(enforceDRIrreflex), asymmetry (enforceDRAsymm) etc. Whenever the current data passed as pa-
rameters satisfies the corresponding constraint, these functions return False, otherwise they return
True (following the MS event-driven methods’ Cancel parameter conventions).

GUI includes a tree-like menu, forms, and reports, all of them carefully designed, as user-friendly
as possible. Each fundamental db table has at least one standard associated form, automatically

generated, which manages corresponding data management (i.e. inserts / updates / deletes).

18 Computer Science & Information Technology (CS & IT)

3. TRANSPARENT PROGRAMMING WHILE MODELLING DATA AT

CONCEPTUAL LEVELS

Object, system, and dynamically enumerated value sets are implemented in MatBase, just like in
any RDBMS, as tables, the rest of the value ones as data types, whereas computed ones as views.
Mappings are implemented as table/view columns. The six relational ones (not null, default value,

domain/range, unique and foreign keys, as well as tuple/check) are automatically enforced in rdbs
whenever they are asserted by users; MatBase implements them using its underlying RDBMS cor-
responding mechanisms [13]. Any other (non-relational) constraint type needs programming, with
either extended SQL triggers or high-level programming languages embedding SQL event-driven

methods, which are automatically generated by MatBase. Datalog programs are stored by Mat-
Base into its meta-catalogue together with their corresponding relational algebra (RA) equation

systems (obtained through syntax-directed translation) and their instances are computed by using
the least fixpoint computational semantics [1, 9].

Note that advanced commercial RDBMS (e.g. MS SQL Server, Oracle, IBM DB2), according to
the ANSI 1999 object-oriented SQL standard [15] and all later ones, are only providing a subset of
Datalog, namely recursive SELECT queries.

Whenever enforcing of a non-relational constraint is possible (i.e. it would not violate coherence
or minimality of the corresponding constraint set and the current db instance satisfies it), MatBase
injects in the corresponding BeforeUpdate / Validating event-driven method associated to the cor-
responding set or mapping (in the object-oriented class(es) of the form(s) associated with the table
corresponding to the domain set) an assignment of type Cancel = call to the corresponding Boole-
an function from Constraints; therefore, if the returned value is False, then the corresponding data
update is accepted and saved in the db; otherwise, it is rejected with a corresponding context-

dependent error message and users are invited to modify it or cancel the current request.

3.1. E-RD Modelling

E-RDs can be drawn, saved, modified, and deleted, just like in the erwin Data Modeler. The only
main difference is that MatBase is also creating, updating, and deleting not only corresponding

relational dbs, but also corresponding (E)MDM schemas of them, as well as forms for managing
data built on every fundamental db table. Minor, but important differences are consequences of its
variant of E-RDs [8], which represents functional relationships as arrows instead of diamonds,
allows for n-ary relationships, n > 1, as well as for relationship hierarchies.

3.2. (E)MDM Modelling

Both object, value, and computed sets, mappings defined on and taking values from them, con-

straints, and Datalog programs may be added, modified, and dropped. Corresponding E-RDs
may be generated and saved. For complex db schemes, users may choose a central object set and
specify a natural radius to generate only the corresponding sub-diagram. For each fundamental

table, a standard form (that can be then modified) for managing corresponding instances is auto-
matically generated (other forms may be also added any time after). Set elements (including map-
ping images’ ones) may be inserted, updated, queried, and deleted through these forms. Code is
automatically injected in these forms’ associated classes for enforcing non-relational constraints.

Moreover, db instances can be mathematically queried too (using the semi-naïve algebra of sets,
relations, and functions operators, as well as the first order predicate calculus ones), as MatBase
translates them into corresponding SQL queries (e.g. replacing function compositions with joins,

Computer Science & Information Technology (CS & IT) 19

function Cartesian products with column concatenation, etc.) and then passes them for execution
to the corresponding host RDBMS.

3.3. RDM Modelling

Dbs, tables, relational constraints, views, and indexes, as well as triggers, procedures, functions,

sequences, etc. can be added, populated, queried, updated, and dropped. This can be done either
from scratch, or upon dbs created through the other two interfaces. Corresponding (E)MDM
schemes are automatically created, updated, and dropped. For each fundamental table, a standard
form (that can be then modified) for managing corresponding instances is generated (other forms
may be also added then by users).

Moreover, queries can be graphically designed, updated, and saved: MatBase is automatically gen-
erating the corresponding SQL code for its host RDBMS.

4. A REAL-LIFE EXAMPLE

Let us consider the sub-universe of countries and continents, for which, for simplicity, only names
and neighbouring relations are of interest. The corresponding business rules are the following:

 Countries have unique names that are compulsory.

 Continents have unique names that are compulsory.

 Countries belong to the continent where their capital is located.

 Some countries may span over several continents (e.g. Russia and Turkey).

 No country or continent may be neighbor to itself.

 Whenever countries or continents x and y are neighbor to each other, then y and x are neighbors
too.

 Any neighbor countries may belong to either same continent or neighbor continents.

Figure 2 shows the corresponding E-RD and Figure 3 its associated restriction set [8]. Note that
both NEIGHBOR_CONTINENTS and NEIGHBOR_COUNTRIES are, both mathematically and in
reality, symmetric, but, from the conceptual data modelling point of view are (apparently paradox-
ically) asymmetric: we only have three choices (not enforcing these constraints, enforcing sym-
metry, and enforcing asymmetry); not enforcing them is the worst, as implausible instances are
possible (e.g. storing both <U.S.A., Canada> and <Canada, U.S.A.>, but only <U.S.A., Mexico>,
without its dual <Mexico, U.S.A.> as well); as no user would be happy to be forced to always in-

sert symmetrical pairs, enforcing symmetry would require writing code to immediately insert, up-
date, and delete corresponding symmetric pairs; enforcing asymmetry is the best solution from
many points of view: code needs to be written only for inserts and updates (to prevent storing
symmetric pairs); no information is lost, as symmetric pairs can be simply computed whenever
needed with a very simple SELECT SQL query; corresponding table instances are half the size as
compared to enforcing symmetry.

20 Computer Science & Information Technology (CS & IT)

Figure 2. E-RD for the simplified countries and continents sub-universe

Also note that, although not explicitly stated as a business rule, the (function diagram anti-
commutativity type) constraint “No country may belong twice to a same continent.” (stemming
from the first db axiom “In any db, any data should be stored only once.”) is needed as well: not
enforcing it would allow implausible instances like storing Europe for Russia in COUNTRIES as

its continent and also storing Europe for Russia in COUNTRIES_CONTINENTS, alongside with
Asia.

Applying the Algorithms A1 and A2 from [8], this E-R data model can be translated into the
(E)MDM schema shown in Figure 4.

Applying then the Algorithm A7 from [8], this (E)MDM schema can be translated into the rdb

schema shown in Figure 5 (together with a plausible valid instance of it) and the associated non-
relational constraint set shown in Figure 6.

CONTINENTS

1.Max. cardinality: 8

2.Ranges ContinentName: ASCII(16)

3.Mandatory: ContinentName

4.Uniquenesses: ContinentName

NEIGHBOR_CONTINENTS

1.Max. cardinality: 8

2.Ranges:

3.Mandatory: Continent,
NeighborContinent

4.Uniquenesses:

 Continent NeighborContinent

5.Other restrictions: NEIGHBOR_

CONTINENTS irreflexive,

asymmetric

COUNTRIES

1.Max. cardinality: 256

2.Ranges CountryName: ASCII(128)

3.Mandatory: CountryName,

Continent

4.Uniquenesses: CountryName

NEIGHBOR_COUNTRIES

1.Max. cardinality: 2048

2.Ranges:
3.Mandatory: Country,

NeighborCountry

4.Uniquenesses:

Country NeighborCountry

5.Other restrictions: NEIGHBOR_

COUNTRIES irreflexive,

asymmetric

COUNTRIES_CONTINENTS

1.Max. cardinality: 8

2.Ranges:

3.Mandatory: Country, 2ndContinent

4.Uniquenesses: Country 2ndContinent

5.Other constraints: No country may belong twice to a same continent.

 Any neighbor countries may belong to either same continent or neighbor continents.

Figure 3. Restriction set associated to the E-RD in Figure 2

Computer Science & Information Technology (CS & IT) 21

4.1. Using the E-RDM MatBase Interface to Implement the E-RD from Figure 2

First, users should open a blank E-RD, then draw in it the E-RD from Figure 2, and finally save
it in a new db (say CountriesDB). MatBase is then immediately creating the corresponding db
with a relational scheme similar to the one in Figure 5, except that both ContinentName and
CountryName will be declared as VARCHAR(255) (i.e. maximum short text), without not nulls
and without unique keys, except for the surrogate primary ones x (all declared as long integers),

in CONTINENTS and COUNTRIES. This is done by generating and then executing correspond-
ing SQL scripts against its host RDBMS. Moreover, it will store in its meta-catalogue not only
the new db and its E-RD data, but also the corresponding (E)MDM one, and will create standard
management forms for all five tables.

 x : CONTINENTS autonumbering(1)

 ContinentName : CONTINENTS ASCII(16), total

 x : COUNTRIES autonumbering(3)

 CountryName : COUNTRIES ASCII(128), total

 Continent : COUNTRIES CONTINENTS, total

 NEIGHBOR_CONTINENTS = (Continent CONTINENTS,

 NeighborContinent CONTINENTS) irreflexive, asymmetric

 x : NEIGHBOR_CONTINENTS autonumbering(1)

 NEIGHBOR_COUNTRIES = (Country COUNTRIES,

 NeighborCountry COUNTRIES) irreflexive, asymmetric

 x : NEIGHBOR_COUNTRIES autonumbering(4)

 COUNTRIES_CONTINENTS = (Country COUNTRIES,

 2ndContinent CONTINENTS)

 x : COUNTRIES_CONTINENTS autonumbering(1)

 C5 (No country may belong twice to a same continent.): (xCOUNTRIES)

(yCOUNTRIES_CONTINENTS)(x = Country(y) Continent(x) ≠ 2ndContinent(y))

 C6 (Any neighbour countries may belong to either same continent or neighbour continents.):

(xNEIGHBOR_COUNTRIES) (Continent(Country(x)) = Continent (NeighborCountry(x))

(zCOUNTRIES_CONTINENTS) (Continent(Country(x)) = 2ndContinent(z) NeighborCountry(x) =

Country(z) Continent(NeighborCountry(x)) = 2ndContinent(z) Country(x) = Country(z)

(yNEIGHBOR_CONTINENTS) (Continent(Country(x)) = Continent(y) Conti-

nent(NeighborCountry(x)) = NeighborContinent(y) Continent(Country(x)) = NeighborContinent(y)

Continent(NeighborCountry(x)) = Continent(y) Continent(Country(x)) = Continent(y) 2ndConti-

nent(z) = NeighborContinent(y) Country(z) = NeighborCountry(x) Continent(NeighborCountry(x)) =

Continent(y) 2ndContinent(z) = NeighborContinent(y) Country(z) = Country(x))))

 Figure 4. The (E)MDM scheme corresponding to the E-R data model from Figures 2 and 3

22 Computer Science & Information Technology (CS & IT)

 CONTINENTS(x, ContinentName)

x ContinentName

auton(1) ASCII(16)

NOT NULL NOT NULL

1 Europe

2 Asia

3 North America

4 South America

5 Africa

6 Australia

7 Oceania

8 Antarctica

 COUNTRIES(x, CountryName)

x Country-

Name

Continent

au-

ton(3)

ASCII(128) CONTI-

NENTS.x

NOT

NULL

NOT NULL NOT

NULL

1 Romania 1

2 Slovenia 1

3 Ukraine 1

4 Hungary 1

5 Russia 1

NEIGHBOR_CONTINENTS(x, Continent NeighborContinent)

x Continent NeighborContinent

auton(1) CONTINENTS.x CONTINENTS.x

NOT NULL NOT NULL NOT NULL

1 1 2

2 2 5

3 3 4

NEIGHBOR_COUNTRIES(x, Country NeighborCountry)

x Country NeighborCountry

auton(4) COUNTRIES.x COUNTRIES.x

NOT NULL NOT NULL NOT NULL

1 1 3

2 1 4

3 2 4

4 3 4

5 3 5

COUNTRIES_CONTINENTS(x, Country 2ndContinent)

x Country 2ndContinent

auton(1) COUNTRIES.x CONTINENTS.x

NOT NULL NOT NULL NOT NULL

1 5 2

Figure 5. Relational db schema corresponding to the (E)MDM scheme in Figure 4 and a plausible valid

instance of it

Computer Science & Information Technology (CS & IT) 23

 C1: NEIGHBOR_CONTINENTS irreflexive

 C2: NEIGHBOR_CONTINENTS asymmetric

 C3: NEIGHBOR_COUNTRIES irreflexive

 C4: NEIGHBOR_COUNTRIES asymmetric

 C5 (No country may belong twice to a same continent.): (xCOUNTRIES)

(yCOUNTRIES_CONTINENTS)(x = Country(y) Continent(x) ≠ 2ndContinent(y))

 C6 (Any neighbour countries may belong to either same continent or neighbour continents.):

(xNEIGHBOR_COUNTRIES) (Continent(Country(x)) = Continent (NeighborCountry(x))

(zCOUNTRIES_CONTINENTS) (Continent(Country(x)) = 2ndContinent(z) NeighborCountry(x) =

Country(z) Continent(NeighborCountry(x)) = 2ndContinent(z) Country(x) = Country(z)

(yNEIGHBOR_CONTINENTS) (Continent(Country(x)) = Continent(y) Conti-

nent(NeighborCountry(x)) = NeighborContinent(y) Continent(Country(x)) = NeighborContinent(y)

Continent(NeighborCountry(x)) = Continent(y) Continent(Country(x)) = Continent(y) 2ndConti-

nent(z) = NeighborContinent(y) Country(z) = NeighborCountry(x) Continent(NeighborCountry(x)) =

Continent(y) 2ndContinent(z) = NeighborContinent(y) Country(z) = Country(x))))

Figure 6. Non-relational constraint set associated to the rdb scheme in Figure 5

4.2. Using the E-RDM MatBase Interface to Implement the E-RD from Figure 2

First, users should open a blank E-RD, then draw in it the E-RD from Figure 2, and finally save
it in a new db (say CountriesDB). MatBase is then immediately creating the corresponding db

with a relational scheme similar to the one in Figure 5, except that both ContinentName and
CountryName will be declared as VARCHAR(255) (i.e. maximum short text), without not nulls
and without unique keys, except for the surrogate primary ones x (all declared as long integers),
in CONTINENTS and COUNTRIES. This is done by generating and then executing correspond-
ing SQL scripts against its host RDBMS. Moreover, it will store in its meta-catalogue not only
the new db and its E-RD data, but also the corresponding (E)MDM one, and will create standard
management forms for all five tables.

4.3. Using the (E)MDM MatBase Interface to Refine the DB as per Figure 4

To refine the newly created db according to Figure 4, users should then open it in the (E)MDM
interface and do the following:

6. Modify 256 from the codomains of ContinentName to 16 and of CountryName to 128 in the
form FUNCTIONS.
7. Click on Total? for ContinentName, CountryName, and Continent from COUNTRIES in the
form FUNCTIONS.
8. Click on Key? for ContinentName and CountryName in the form FUNCTIONS.
9. Click on Irreflexive? and Asymmetric? for NEIGHBOR_COUNTRIES and
NEIGHBOR_CONTINENTS in the form RELATIONS.

Add the following two lines in the form OBJ_CONSTRAINTS, by selecting for both of them the
db CountriesDB from the combo-box DB, typing C5 and C6, respectively, in the text box Con-
straintName, and, optionally, copying from this paper and pasting in the Semantics text box the
corresponding descriptions, and typing in the Constraint text box (or, much simpler, copying

them from this paper, pasting them in a temporary .doc file, replacing everywhere with “for

any”, with “there is”, with “ in “, with “=>”, ≠ with “!=”, with “OR”, and with

24 Computer Science & Information Technology (CS & IT)

“AND”, and then copying the resulted temporary texts and pasting them into the corresponding
text box Constraint), respectively:

 (for any x in COUNTRIES) (for any y in COUNTRIES_CONTINENTS)(x = Country(y) => Con-

tinent(x) != 2ndContinent(y))

 (for any x in NEIGHBOR_COUNTRIES) (Continent(Country(x)) = Continent (NeighborCoun-

try(x)) OR (there is z in COUNTRIES_CONTINENTS) (Continent(Country(x)) = 2ndContinent(z)

AND NeighborCountry(x) = Country(z) OR Continent(NeighborCountry(x)) = 2ndContinent(z)

AND Country(x) = Country(z) OR (there is y in NEIGHBOR_CONTINENTS) (Conti-

nent(Country(x)) = Continent (y) AND Continent(NeighborCountry(x)) = NeighborContinent(y) OR

Continent (Country(x)) = NeighborContinent(y) AND Continent(NeighborCountry(x)) = Conti-

nent(y)) OR Continent(Country(x)) = Continent(y) AND 2ndContinent(z) = NeighborContinent(y)

AND Country(z) = NeighborCountry(x) OR Continent (NeighborCountry(x)) = Continent(y) AND

2ndContinent(z) = NeighborContinent(y) AND Country(z) = Country(x))))

For 1 to 3 above, MatBase will automatically generate and execute corresponding SQL scripts

to alter the db scheme accordingly. For 4, it will inject needed VBA / C# code in the event-
driven methods attached to the events Form_BeforeUpdate / Validating in the classes attached
to the forms built upon NEIGHBOR_COUNTRIES and NEIGHBOR_CONTINENTS for call-
ing the methods enforceDRIrreflex and enforceDRAsymm of the Constraints library with the
corresponding parameters. Similarly, for 5 it will inject code into the methods attached to the
events Form_BeforeUpdate / Validating and Form_Delete in the classes attached to the forms
built upon COUNTRIES_CONTINENTS and NEIGHBOR_CONTINENTS, as well as into the
ones attached to the events Form_BeforeUpdate / Validating in the classes attached to the forms

built upon NEIGHBOR_COUNTRIES for calling the method enforceObjConstraint of the Con-
straints library with the corresponding parameters.

The whole CountriesDB may be defined from the scratch in this interface (but this is more tedi-
ous) and then obtain the E-RD from Figure 2 by exporting it to the E-RDM.

Moreover, after populating it with data, users might use the MatBase (E)MDM interface for

querying this db as well. For example, in order to get the “deciphered” instance of the
NEIGHBOR_CONTINENTS, they might type in the Query text box of the Queries form “Con-
tinentName(Continent), ContinentName(NeighborContinent)” (the MatBase syntax for the math

compound functions Cartesian product ContinentName Continent ContinentName Neigh-
borContinent), which will be automatically translated by MatBase into the SQL statement:

 SELECT CONTINENTS.ContinentName, CONTINENTS1.ContinentName

 FROM (NEIGHBOR_CONTINENTS INNER JOIN CONTINENTS
 ON NEIGHBOR_CONTINENTS.Continent = CONTINENTS.x)

 INNER JOIN CONTINENTS AS CONTINENTS1

 ON NEIGHBOR_CONTINENTS.NeighborContinent = CONTINENTS1.x

that will then be passed to the host RDBMS for execution.

4.4. Using the RDM MatBase Interface to Manage, Finetune, and Query the DB

Advanced users might finally use the RDM MatBase interface for finetuning and/or querying

the db CountriesDB in SQL. For example, in order to speedup both enforcement of constraint
C6 and queries joining, filtering, and/or grouping on these columns, they may add indexes on
Country and NeighborCountry from NEIGHBOR_COUNTRIES, as well as on Continent from
COUNTRIES.

Computer Science & Information Technology (CS & IT) 25

Moreover, except for the non-relational constraints, CountriesDB, like any other rdb, can be
created, populated, modified, queried, and dropped from this interface as well. Any modifica-
tion is automatically propagated by MatBase to the corresponding E-RD and (E)MDM schemes.
Dropping a relational db scheme, if confirmed by users, is also dropping the E-RD and
(E)MDM corresponding ones.

5. CONCLUSIONS AND FURTHER WORK

We have presented the simplified overall architecture and principles of design and implementa-
tion of the current two versions (for MS Access / VBA and SQL Server / C#) of MatBase, a
prototype intelligent KDBMS providing data conceptual modeling in both E-RDM, (E)MDM,
and RDM. We have illustrated with a real-life example how MatBase automatically generates
code for creating, maintaining, querying, and dropping dbs, as well as software applications for

their instances’ management.

Compared to the other existing E-RDM tools, MatBase, first of all, using its knowledge base, is
more useful to users as, for example, when implementing tables corresponding to relationships,
is also automatically adding not null constraints for all of their roles (as they correspond to the
math canonical Cartesian projections); moreover, for binary ones, it also adds the semantic
(candidate) key made of the columns corresponding to the two roles (e.g. the three relationships
from Section 4).

Secondly, which is much more important, MatBase also provides an (E)MDM interface that,

besides offering Datalog’s full power, lets users model data at the math level as well, using the

full power of the semi-naïve algebra of sets, relations, and functions and of the first order predi-
cate calculus. Thirdly, MatBase also automatically generates software application forms for all
db fundamental tables, in which it injects needed code for enforcing non-relational constraints
as well.

Moreover, MatBase also provides wizards for assisting detection of all keys of any set [12], of
all cycles in E-RDs [14], of all non-relational constraints associated to these cycles [11], as well

as for guaranteeing constraint sets coherence [10].

Consequently, MatBase makes programming (be it in SQL or C# / VBA / ADO) completely

transparent to its users, letting them create, populate, maintain, query, and drop dbs only at
higher conceptual levels, while guaranteeing the plausibility of their instances. For them, con-
ceptual data modeling is (transparent) db programming too.

MatBase is successfully used both in our lectures and labs on Databases (for undergraduate stu-
dents), as well as for Advanced Databases (for M.Sc. postgraduate students) of the Mathematics
and Computer Science Departments and by two Romanian IT companies developing db soft-
ware applications for many U.S. and European customers in the Fortune 100 ones.

Using MatBase is especially beneficial to undergraduate students, as during their logic courses
and labs they are generally not exposed to complex first order predicate formulas, at least like
C6 from Section 3. Maximum benefits are, however, obtained by IT company users whose
productivity is significantly boosted.

Further work is planned for designing and implementing a web MatBase version from the C#
and SQL Server one, by using ASP.NET as well.

26 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Abiteboul, S., Hull, R., Vianu, V. (1995) Foundations of Databases. Addison-Wesley, Reading, MA.

[2] Ascent Center for Technical Knowledge (2019) AutoCAD 2020 Fundamentals. Ascent, Char-

lottesville, VA.

[3] Chen, P. P. (1976) The entity-relationship model: Toward a unified view of data. ACM Transactions

on Database Systems 1(1), 9–36.

[4] Codd, E. F. (1970) A relational model for large shared data banks. CACM 13(6), 377–387.

[5] DeAngelis, M. C. (2000) Data Modeling with ERwin. Sams Publishing, Indianapolis, IN.

[6] Helskyaho, H. (2015) Oracle SQL Developer Data Modeler for Database Design Mastery. Oracle

Press – Mc Grow-Hill Education, New York, NY.

[7] IBM Corp. (2012) Smarter Modeling of IBM Master Data Management Solutions. IBM Redbooks,

New York, NY.

[8] Mancas, C. (2015) Conceptual Data Modeling and Database Design: A Completely Algorithmic

Approach. Volume I: The Shortest Advisable Path. Apple Academic Press / CRC Press (Taylor &

Francis Group), Waretown, NJ.

[9] Mancas, C. (2019, in press) Conceptual Data Modeling and Database Design: A Completely Algo-

rithmic Approach. Volume II: Refinements for an Expert Path. Apple Academic Press / CRC Press

(Taylor & Francis Group), Waretown, NJ.

[10] Mancas, C. (2018) MatBase constraint sets coherence and minimality enforcement algorithms. In:

Benczur, A., Thalheim, B., Horvat, T. (eds.) ADBIS 2018, LNCS, vol. 11019, pp. 263-277, Spring-

er, Cham.

[11] Mancas, C. (2019) MatBase E-RD Cycles Associated Non-Relational Constraints Discovery Assis-

tance Algorithm. In: Arai, K. et al. (eds.) Intelligent Computing. AISC 997, pp. 1-20, Springer Na-

ture, Switzerland.

[12] Mancas, C. (2016) Algorithms for key discovery assistance. In: Repa, V., Bruckner, T. (eds). BIR

2016, LNBIP vol. 261, pp. 322-338, Springer, Cham.

[13] Mancas, C., Dorobantu, V. (2017) On enforcing relational constraints in MatBase. London Journal

of Research in Comp. Sci. and Technology 17, 1 (Jan. 2017), 39-45.

[14] Mancas, C., Mocanu, A. (2017) MatBase DFS detecting and classifying E-RD cycles algorithm.

Journal of Computer Science Applications and Information Technology 2 (4), 1–14.

[15] Melton, J., Simon, A.R. (2001) SQL 1999 Understanding Relational Language Components. Mor-

gan Kaufmann, Burlington, MA.

[16] Murphy, S.V., Atala, A. (2014) 3D bioprinting of tissues and organs. Nature biotechnology 32, 773-
785.

[17] Negus, C. (2015) Linux Bible. Wiley, Hoboken, NJ.

[18] Smith, J. (2018) Entity Framework Core in Action. Manning Publications Co., Shelter Island, NY.

[19] Thalheim, B. (2000) Entity-Relationship Modeling: Foundations of Database Technology. Springer-
Verlag, Berlin.

Computer Science & Information Technology (CS & IT) 27

AUTHORS

Christian Mancas has graduated in 1977 the Computers Department of the

Politehnica University of Bucharest, Romania. He obtained his PhD degree in

1997 from the same as above Department. He first worked as a software engi-

neer and, since 1980, R&D manager of a Computer Centre in Bucharest. Since

1990, he worked for several IT start-ups, including his owns, as data architect,

software infrastructure manager, etc. Since 1998, he is an Associate Professor

with both the Mathematics and Computer Science Department of the Ovidius
University, Constanta and Engineering Taught in Foreign Languages Depart-

ment (Computer Science and Telecommunications in English stream) of the

Politehnica University, Bucharest, Romania (as an invited Professor). Christian Mancas published dozens

of scientific papers, four books in Romanian, and one in English. He was a Program Committee member

and session chairman for several software conferences in USA, Europe, Australia, and India. He is a

member of several associations (including ACM, the Romanian Mathematics Sciences Society, and the

International Who’s Who of Professionals), and an editor of four U.S. soft-ware Journals. Since 2006, his

biography is included in the Marquis’ Who’s Who in the World and Who’s Who in Science and Technol-

ogy, as well as in the Hubners’ Who’s Who in Romania. His main research areas are the conceptual data

and knowledge modelling and querying, the db design, implementation, and optimization, as well as the

architecture, design, development, fine-tuning, and maintenance of data and knowledge base management

systems.

	Abstract
	Keywords
	Conceptual Data Modelling, Automatic Code Generation, Relational Constraints, Non-relational Constraints, DBMS Engine Architectures, The (Elementary) Mathematic Data Model, MatBase

