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ABSTRACT 
 

Formulation of the Rate-distortion association is an information-theoretic study in the field of 

signal encoding systems. Since a more general approach to model the nonstationarity exhibited 

by real-world signals is to use appropriately fitted time varying autoregressive (TVAR) models, 

we have investigated the rate-distortion function R(D) for the class of time varying 

nonstationary signals. In this study, we present formulations of the rate-distortion function for 

the Gaussian TVAR processes. The R(D) function can serve as an information-theoretic bound 

on the performance achievable by source encoding techniques when the processing signal is 

represented exclusively by a Gaussian TVAR model. 
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1. INTRODUCTION 
 

Rate-distortion analysis was first suggested in Shannon's original development of information 
theory [1] and it was exclusively developed for memoryless and Markov sources in conjunction 

with the squared-error distortion measure [2]. It was later generalized to stationary ergodic 
processes with discrete alphabets and to Gaussian processes by Gallager [3], as well as to 
stationary and abstract alphabets by Berger [4]. Many contributions have been made to rate-
distortion theory for varied stationary sources [5]–[6], [17]–[23]. The theory is comprehensively 
discussed in books by Berger [4] and Gallager [3]. Extensive bibliographies for this subject 
appear in [7]–[9]. Recently, Jesús Gutiérrez-Gutiérrez, et. al. present an integral formula for the 
rate-distortion function of asymptotically wide sense stationary (AWSS) Gaussian vector process 

as well as the R(D) function of moving average (MA) Gaussian vector processes and of 
autoregressive MA (ARMA) AWSS Gaussian vector processes [24]–[25]. Due to the 
nonstationary characteristics of real-world signal sources, recent research interest has focused on 
extending the R(D) function for the nonstationary process. Berger [10] proved a source coding 
theorem with respect to a squared-error distortion measure for the Wiener process, a special case 
of the nonstationary Gaussian AR process. Gray [11] showed that the source coding theorem 
generally holds for the Gaussian AR process even if the process is neither stationary nor 

asymptotically stationary. Hashimoto and Arimoto [12] then developed a general form for the 
R(D) function for the class of a nonstationary Gaussian AR process wherein the variance of the 
process grows exponentially. However, the nonstationary Gaussian AR process indicated in these 
papers [10]–[12] becomes unstable asymptotically, since the variance of the AR process grows 
either exponentially or algebraically. Since the nonstationary characteristics exhibited by real-
world signals can be modelled using appropriately fitted time varying autoregressive (TVAR) 
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forms [13]–[14], we have investigated the R(D) formulation for the class of time varying 
nonstationary signals in this study. 
 
In this paper we present the R(D) function study for Gaussian TVAR processes. First of all, we 
briefly review the R(D) function for time-discrete sources that are input to a general 

communication system. We then present the methodology to form the R(D) function for Gaussian 
TVAR processes. The R(D) function is an ultimate bound in assessing both the absolute and 
relative performance achievable by time varying signal source coding system. 
 

2. PRELIMINARY REVIEW FOR R(D) FUNCTION 
 
The rate-distortion function, R(D), is mathematically defined in terms of the average mutual 
information between the source outputs and the reproduced source outputs at the destination. 
Consider a time-discrete, continuous-amplitude, stationary source {xt, t = …, –1, 0, 1, …} having 
a joint probability density P(x) = P(x1, x2, …, xN) governing the generation of N successive source 
letters. Also, specify a single-letter fidelity criterion F, which is the distortion between a source 

word x and a reproducing word y present at the destination, to be defined as the arithmetic 
average of the distortions between the corresponding letters of x and y as assigned by a fixed 

single-letter nonnegative distortion measure, (xt, yt). Consider all possible conditional 
probability densities Q(y|x) associated with reproducing alphabet y = {y1, y2, …, yN} and the 
given source alphabet x = {x1, x2, …, xN}. 

 

The R(D) function for the particular source {xt} with respect to Fis defined as 
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where I(Q) is the average mutual information, defined as a function of the conditional probability 
density function. The limit in Eq. (1) always exists for a stationary source [4] so that R(D) is well-

defined. In the particular case of a one-dimensional time-discrete stationary Gaussian source with 
power spectral density (PSD) 
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where ck is the autocorrelation function, and using the asymptotic form of R(D) in Eq. (1), it can 

be shown that the mean-squared error (MSE) rate-distortion function has the parametric 
representation [4], 
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with the non-zero portion of the R(D) curve being generated by the parameterin the interval 

0 ess sup S(), where the arithmetic average squared error is defined as (yt – xt)2. The R(D) 
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function for a Gaussian source with memory is completely specified in terms of the source 
properties, namely the source power spectral density. 
 

3. R(D) FUNCTION FOR GAUSSIAN TVAR PROCESS 
 
The Gaussian time-varying AR process is of primary interest because of its wide applicability to 
the modeling of real-world sources, e.g., speech signals and rasterized image signals. In this 
section, we consider the one-dimensional Gaussian TVAR process. Let {xt} be a Gaussian TVAR 
process satisfying the difference equation  
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where xt = 0 for t = 0, –1, –2, …, and zt are independent and identically distributed (i.i.d.) zero-

mean Gaussian random variables possessing variance
2

z . The terms  
N

t
ma  are the AR parameters 

varying with time t = 1, 2, ..., N. The time index  
N

t of the time-varying AR parameters  
N

t
ma  is 

defined such that 0 <  
N

t   1. 

 
Upon iterating Eq. (6) to obtain x = {x1, x2, …, xN}, it is observed that x is specified uniquely by z 
={z1, z2, …, zN} and the known initial state x0 = {x0, x-1, …, x-m+1} = (0, 0, ..., 0). Therefore, zt can 
be specified uniquely by x and x0 via the relation 
 

 



M

m

mtN

t
mt xaz

0

,  for t = 1, 2, ..., N,   (7) 

 
with a0(.) = 1. Equation (7) can be represented in matrix form, z = Ax, for t = 1, 2, ..., N, where A 

is the N x N lower triangular matrix, 
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For the Gaussian AR process {xt}, let RN(D) be the per letter rate-distortion function of the n-
dimensional vector (x1, x2, …, xN). The rate-distortion function of the process{xt} is defined as 
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and from Berger [4] (6.3.34) and (6.3.35), RN(D) has the following parametric form when xt is an 
N-dimensional zero-mean Gaussian distributed random vector 
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where, m are the eigenvalues of the inverse autocorrelation matrix 1

NΦ  of the random variables 

x1, x2, …, xN, and  is a parameter taking on values in the interval 0  <max. From the 

relationship z = Ax, we then have 
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and A-1 exists because 
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Hence, the inverse autocorrelation matrix is found to be 
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The entries in the inverse matrix 
1

NΦ  are given as ),(1  

N
, and  
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Since am(.) = 0 for m > M, it follows that all entries more than M diagonals away from the main 

diagonal of 1
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Hence 1

NΦ  is a Hermitian matrix. Due to the Hermitian structure of 1

NΦ , it is possible to consider 

the limiting case of infinite N in Eq. (10). By invoking a theorem defined by Grenander and 
Szegö [15] regarding the asymptotic distribution of the eigenvalues of certain Hermitian 

structures, we first consider the class of real-valued functions f(r, ), 0  r  1, periodic in  with 

period 2, satisfying the following condition, 
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where the maximum values are taken in the interval 0  r  1. 
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The Fourier series of f(r, ) is absolutely convergent and the function f(r, ) of the two variables 

r and is continuous. We then have the following theorem, 

 
Theorem I. Asymptotic distribution theorem of the eigenvalues of the specified Hermitian 

form (ref. Grenander and Szegö [15], Theorem 6.5) 
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In the special case when f(r, ) is independent of r, this is an assertion on Toeplitz forms. The 

limit relation Eq. (17) is equivalent to the following special case [15], 
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Theorem I can be attested directly from the procedures described both in Grenander and Szegö 
[15] Theorem 1.18(b) and Theorem 6.5. 
 

Since we have defined r = N
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Now, let GN = 
1

NΦ  and {GN} be sequences of Hermitian matrices with eigenvalues }.{ )(N

m  The 

entries of the symmetric Hermitian matrix GN are 
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on the kth diagonal. In most real-world signal processing cases, the autoregressive order M is 

much less than N, therefore, we have that m/N 0 when N . Equation (21) is simplified as 
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Since the GN possess the Hermitian form specified by Eq. (17), Theorem I implies that their 

eigenvalues }{ )(N

m  are distributed asymptotically according to 
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with  uniform on [–, ], and that 
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where |GN| represents the weak norm of GN, 
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The integral in Eq. (24) is finite due to the fact that 
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Now, by applying Theorem I, we have that 
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for any continuous function F on [,], where  and are the essential infimum and supremum 

of g(r, ), respectively. Applying Eq. (27) so as to pass to the limit in Eq. (10), we obtain the 

following theorem as a consequence. 
 
Theorem II. Rate-distortion function for time-varying autoregressive Gaussian process 

 

Let xt be an Mth-order Gaussian TVAR source generated by an i.i.d. N(0, z
2) sequence zt and the 

TVAR coefficients am(r), m = 1, 2, ..., M, where r = 
N
t . Then the mean-squared error (MSE) rate-

distortion function of xt is given parametrically by 
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4. SUMMARY AND CONCLUSIONS 
 
The rate-distortion function R(D) for time-varying autoregressive (TVAR) nonstationary signals, 
based upon the theorem from Grenander and Szegö [15] regarding the asymptotic distribution of 
the eigenvalues of certain Hermitian forms, is investigated and formulated in this study. The R(D) 
function is served as an information-theoretic bound on the performance achievable by source 
encoding techniques when the processing signal is represented exclusively by a Gaussian TVAR 
model. The rate-distortion function can be used as an ultimate performance bound in assessing 
both the absolute and relative performance achievable by any specific time-varying signal 

processing system. 
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