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ABSTRACT 
 
Leaf detection and segmentation is a complex image segmentation problem as leaves are most 

often found in groups with natural background. Edges of leaves cannot be clearly defined from 

image because of their color similarities.Also,separating every single as well as overlapping leaf 

individually is even more challenging as leaves share almost same color, texture and shape. In 

this paper, we propose a new automatic approach for leaf segmentation from image. Our leaf 

segmentation process uses efficient techniques for processing an image to obtain contours of 

every individual objects. Then, it selects the best appropriate connected contours that represent 

region of every leaves appearing in an image. Our model archives an overall 90.46% 

segmentation rate where segmentation rates for single and overlapping leaves are 95.34% and 

86.73%, respectively. 
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1. INTRODUCTION 
 

Plants are one of the most essential parts of nature and human lives. As almost every plant is 
identified by its leaf, proper plant-leaf identification is essential for agricultural productivity as 

well as industries such as drug, chemical, cosmetics, etc. Leaf identification is also used in crop 

disease identification and identification of rear as well as endangered plants. With the help of 
image processing and object detection based automatic models now a days we do not need 

experienced botanists and hedge effort for leaf identification task. Before identifying a leaf from 

image, using an automatic model, finding its location and segmenting the leaf region from image 
are the initial tasks. Leaf segmentation includes two major procedure: (1) segmenting foreground 

leaf region from natural background and (2) segmenting each single leaf and each occluded or 

overlapping (i.e., object on object) leaf individually from image. Figure 1 shows these two 

procedure of leaf segmentation process on an example image. Detecting leaves from complex 

natural background and separating every occluded leaves of same color and texture make leaf 

segmentation problem challenging. So, now a days, leaf segmentation from image is an area of 
growing research interest with significant applications. 
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Figure 1.  Major procedures of leaf segmentation. 

 

Considering the significant importance and applications, numerous effective methods for leaf 
segmentation have been proposed [1] since the 1980s. The frequently used image object 

segmentation methods include edge-based, cluster-based, region-based and deep learning based 

methods. Niu et al. [2] proposed a model for cotton leaf segmentation using improved watershed 
algorithm. Dornbusch and Andrieu [3] developed a thresholding algorithm for estimating winter 

wheat’s lamina boundaries. Combining global information with local statistical information Peng 

et al. [4] introduced a Chan Vese model for boundary detection of given leaf images. Although 

these models give good performance in case of segmenting a single leaf, accurate and non-
destructive leaf segmentation is still a difficult task. These difficulties are caused by the 

uncertainties of overlapping condition and complex natural background of leaf surroundings. 

Considering the still existing complexities of leaf segmentation, number of segmentation 
techniques needed to be combined.  Z. Wang et al. [5] presented an overlapping leaves image 

segmentation technique based on the Chan Vese model and Sobel operator. In [6], Cerutti et al. 

retrieved the leaf contour of image from a complex natural background by applying a two-step 
active contour algorithm using polygonal leaf model. Kenta Itakura and Fumiki Hosoi [7] 

proposed retrieval of plant structural parameters and methods for automatic and accurate leaf 

segmentation using 3D information point-cloud images. They combine distance transform and 

watershed algorithm. Chunlei, Wand et al. [8] used mean shift segmentation for segmenting 
foreground leaf region. Then they have implemented automatic initialization of active contour 

model (ACM) by calculating the center of divergence (CoD) and finally segmented occluded 

leaves individually using ACM. Daniel D. Morris [9] proposed a pyramid convolutional neural 
network with multi-scale predictions that finds and discriminates leaf boundaries from interior 

textures. Then using a watershed-based algorithm they estimate closed contour boundaries around 

individual leaves using previously detected boundaries. A comparative study of 14 unsupervised 

and 6 supervised segmentation models using Pl@ntLeaves dataset [10] was shown in [11]. 
 

Existing models combined with various segmentation techniques performs well in case of 

segmenting both single and overlapping leaf. But, there exists some still unsolved issues. Some 
models like [5], work with only one species of leaf which does not ensure the performance of 

model for leaves of different species found in different circumstance. Also, in real-life, randomly 

captured image can compromise the performance of some models [7, 8] that usually works with 
high resolution image captured with powerful camera. On the other hand, deep learning based 

models like, [9] do not work better while detecting leaves with internal texture and weak 

boundary clues. Total 20 models compared in [11], work for single leaf segmentation where all 

test images are captured focusing a target leaf at image center.  But, in general leaves are most 
often found in groups where image foreground might contain multiple leaves overlapping one 

another.  

 
Analyzing all these still existing complexities, in this paper, we propose a contour selection based 

leaf segmentation approach using various image processing techniques. In this model, our main 
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aim is to find the region of every individual leaves form image by detecting their appropriate 
contour. By contour, we indicate the outline that is marking the whole boundary of an object. 

Also, in this paper our considerable object is leaf. Most of the traditional contour detection 

algorithms of image either detect contour of leaf region from both foreground and background or 
detect contour without separating individuals. So, in our proposed model we apply some image 

processing techniques as pre-processing tasks before contour detection. These image processing 

techniques not only separate the foreground region from the background but also makes every 

individual leaf boundaries much easier to detect. So, from the processed image we can detect the 
contours that best represent all leaf regions individually. Finally, we segment those detected leaf 

regions (i.e., contours) as individual leaf images. 

 

2. PROPOSED METHODOLOGY 
 

Our proposed model works for segmenting every single as well as overlapping leaves separately. 

So, our goal is to find every contour (i.e., closed boundary) that precisely represents the outline of 

all visible regions of leaves in an image. Figure 2 shows the workflow diagram of our proposed 
model with an example image which visually shows the effect of every step on the input image. 

On the input image, at first we perform some preprocessing (i.e., section A in Figure 2). Leaf 

images can be of different types such as image with really complex background with multiple 
leaves or image with simple background with single leaf etc. Different types of image need 

different processing for better segmentation. So, we perform two different types of processing 

(i.e., section B and section C in Figure 2) on the result from A and generate two processed 
images. Next, we detect two sets of contours from both of those processed images and select one 

best contour set. Finally, we segment those best contours as individual leaf region from original 

input image (i.e., section D in Figure 2). 

 

2.1. Preprocessing (Section A) 
 
The preprocessing steps of our proposed model mainly works for preparing an image for leaf 

boundary detection. This is done by highlighting boundary edges and eliminating unnecessary 

internal and external edges of leaves. 

 

2.1.1. Input Image 
 

At first the input image is read in BGR (Blue, Green, Red) color format. As we use Python 
language and OpenCV library for the model implementation, the input image is read in BGR 

color format instead of RGB. The original version of the input image is stored as Main image and 

a copy of that image is used for further processing. Here, we store Main image because, after all 
processing finally our model segments or detects the actual contour of leaves appearing in input 

image from the original version of it. By this the system ensures noise free output images.  

 

2.1.2. Resize  
 

Processing big sized input image requires unnecessary power and computation time. It also 
sometimes hampers the segmentation accuracy.  So, we select an optimal image size, 800 × 700 

pixels, for input image. As the size ensures better performance for all our test experiments, after 

several number of test cases we have selected this size. When input image exceeds this optimal 
size, our model resizes it to the optimal size and then the resized image is stored as Main image. 

Otherwise, this step is ignored. 
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2.1.3. Preserve Edges  
 

Every leaf has some internal textures and some species have even complex ones (e.g., African 

Blue). These textures create so many unnecessary edges which can manipulate target leaf area 
segmentation. In our model, for segmenting each leaf separately we wish to eliminate all 

unnecessary edges from image and preserve only the boundary edges. 
 

 
Figure 2.  Workflow diagram of our proposed model with example image. 

 

In this paper by unnecessary edges we refer all internal and external edges except the outline 

edges of every leaf object. Because, our aim is to find the contours or outlines of every leaf and 



Computer Science & Information Technology (CS & IT)                                     291 

 

segment the connected regions within those. At this stage for smoothing internal texture and 
preserving boundary edges we apply Edge Preserving Filter [12] on image. As the required 

parameters we use 3rd edge preserving filter flag, value 40 for sigma_s (i.e., Sigma Spatial which 

controls the amount of neighborhood for smoothing), and value 0.3 for sigma_r (i.e., Sigma 
Range within the neighborhood which controls how dissimilar colors will be averaged). 

 

2.1.4. Stylize Leaf Boundary 
 

Our model draws thick boundary on the resulting image after smoothing internal texture and 

preserving boundary. We apply Stylization Filter to produce a watercolor effect on image which 
makes every object edge or outline or contour smooth and at the same time sharp [13]. It uses 

Normalized Convolution (NC) filter for providing better accuracy and works faster than other 

outline sharping filters [14]. Eventually it thickens every outline edges and does not get affected 

by internal texture. For this procedure, the value of sigma spatial is set to 60 and the value of 
sigma range is set to 0.07.  

 

2.1.5. Multi-Channel to Single Channel 
 

The next step is to convert the BGR format (3 channel) image into grayscale image (1 channel) 

using equation (1). In grayscale image we need to process only one-third of the image data 
compared to BGR image which significantly reduces the amount of computation and memory 

consumption. 

 

𝐺𝑔(𝑖,𝑗) = 0.114𝐼𝐵(𝑖,𝑗) + 0.587𝐼𝐺(𝑖,𝑗) + 0.299𝐼𝑅(𝑖,𝑗)                (1) 

 

In equation (1), G represents the gray image and B, G, R represent the Blue, Green and Red 
channel respectively of image I, and i, j represents the coordinate value in x and y direction 

respectively.  

 

2.1.6. Blur Background Area 
 

On the stylized grayscale image, the next step is to eliminate the background. But, leaves are 
most often found in groups and our model works for segmenting multiple leaves individually. 

Our model does not use any direct background elimination algorithms as most of those target the 

center of image as foreground which might eliminate some of the foreground leaves which are 
not within the center of image. In our model we apply Gaussian filter for blurring image 

background. The Gaussian kernel is defined in 2D using equation (2). This non-linear filter 

enhances the effect of the foreground pixels and gradually reduces the effects of pixels which are 

farther from the center [14]. Thus, we get an image with much blurry background area and 
smoother foreground area. 

𝐺𝑎𝑢−2𝐷(𝑖, 𝑗; 𝜎) =
1

2𝜋𝜎2
𝑒

(−
𝑖2+𝑗2

2𝜎2 )
(2) 

 

Here Gau-2D(i, j) represents the Gaussian Kernel function where i, j represents the coordinate value 

in x and y direction respectively and σ satisfies the width of the Gaussian kernel. In our model we 
apply a 9×9 kernel with σ value 1.5 in both x and y direction. 

 

2.1.7. Expand Boundary Edges 
 

In our work, we have performed morphological dilation once using a 3×3 integer valued kernel. 

Basically, image dilation enlarges the boundaries of regions of foreground pixels which also fills 
the holes within those regions [15] and joins broken parts. In our model, this procedure grows or 
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expands the areas of bright regions which eventually enlarges the outline edges of leaves. This 
step of processing also contributes in separating overlapping edges. Also, a bigger or thicker edge 

separates two connected objects better than a thin one. The formula used in this dilation process is 

shown in equation (3). 
 

𝐷𝑎(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ⊕ 𝑘𝑒𝑟𝑛𝑒𝑙 (3 × 3)                                        (3) 

 
Here Da (i, j) represents the output image and I (i, j) represents source image where i and j 

represents the coordinate value in x and y direction respectively.  

 

2.2. Processing of Type One Image (Section B) 
 

In real-life, randomly captured image do not have object at the center of image with blurred 
background. These kinds of image contains scattered foreground objects with complex 

background and more unnecessary edges. These edges make images complex to process and 

hamper contour detection. So, for these kinds of images we need to do some extra processing 

before detecting the contour of leaves and running segmentation.  
 

2.2.1. Smooth Edges 
 

In case of type one image, when dilation process enlarges the brighter edges it might enlarge 

some still existing unnecessary internal texture edges of leaf. To handle that situation after 

dilation we perform a smoothing operation. For this, we apply a 2D Convolution [16] filter where 
we use a 5×5 averaging filter kernel to convolve through the image and rapidly smoothen all 

existing intensity variations within image pixels.  

 

2.2.2. Separate Background and Foreground 
 

In our proposed model, we wish for preparing an input image perfectly ready for individual as 
well as accurate leaf contour detection. Through all the previous steps we eliminate internal 

texture edges, thicken outline edges and also smoothen image. At this step, we separate the 

foreground region’s pixels with a single intensity from the pixels on background. For this reason 
instead of using just a threshold value we use Adaptive Thresholding [17]. It calculates a different 

threshold for different regions of the same image. Here we use Adaptive Thresh Gaussian as 

adaptive method which uses threshold value as the weighted sum of neighbourhood values where 

weights are Gaussian window [18]. Value 1 is set as the subtracting constant from the weighted 
mean in case of weighted sum calculation. To calculate a threshold value, 11 is used as the size of 

a pixel’s neighbourhood. We also use inverse threshold as thresholding style and this thresholding 

helps our system to separate background and foreground and make the foreground objects much 
visible [13]. At the end of this step, we get a background eliminated binary threshold image 

which is ready for contour detection. 

 

2.3. Processing of Type Two Image (Section C) 
 

An image focusing objects at center with less complex background and less amount of leaves, is 
another type of image. Removing background and making it ready for contour detection is less 

complex than type one image. Within our experiments, we find that running these two kinds of 

images through a same procedure does not result in better segmentation performance. So, we 
perform both these two types of processing for every image, detect set of contours from each 

processed image and then select the best set of contour.   
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2.3.1. Binarize 
 

In type two processing, at first we binarize the resultant dilated image found after pre-processing 

for foreground and background separation. For this binarization, we apply binary thresholding 
with Otsu’s thresholding. As Otsu’s thresholding automatically determines the threshold value 

that best describes the image, we apply it directly for background removing. But, it do not 

perform better in case of non-bimodal image. To handle that we use binary thresholding and 
Otsu’s thresholding together where Otsu’s method automatically determines the threshold value, 

pixels below the threshold is turned off and pixels above the threshold value is turned on.   

 

2.3.2. Detect Region Boundary 
 

For detecting the leaves as connected contours from image after background separation we look 
for region boundary or border extraction. Our model performs border extraction by subtracting 

dilation result from erosion result. Dilation and erosion mostly affect the pixels that exists 

between the foreground and background as well as the pixels that exists close to the boundary. 
The difference between the dilation and erosion generally yields all object’s boundary which 

significantly helps the segmentation task and prepares the image for a perfect individual contour 

detection. This boundary detection is performed using equation (4), (5) and (6) sequentially. 

 

𝐷𝑎(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) ⊕ 𝑘𝑒𝑟𝑛𝑒𝑙                                             (4) 

𝐸𝑟(𝑖, 𝑗) = 𝐷𝑎(𝑖, 𝑗) ⊖ 𝑘𝑒𝑟𝑛𝑒𝑙                                          (5) 

𝐵𝑜 (𝑖, 𝑗) =  𝐷𝑎(𝑖, 𝑗)\𝐸𝑟(𝑖, 𝑗)                                            (6) 

 

Here Da (i,j), Er(i,j) and Bo (i,j) represents the image after dilation, erosion and border detection 

respectively, and i, j represents the coordinate value in x and y direction respectively. 
 

2.4. Contour Detection and Segmentation (Section D) 
 

At this step we perform contour detection. We have mentioned earlier that two types of images 

need different processing for better contour detection. Hence, this contour detection is performed 

on both the output images found after type one processing and type two processing. From the 
input image sown in Figure 2, we can see that contour detected from image with separated 

background foreground (i.e., the processed image of type two processing) is much better than 

image with region boundary (i.e., the processed image of type one processing).  
 

2.4.1. Detect Contour 
 
Both the processing of image type one and image type two results a background removed, 

unnecessary edge removed and boundary extracted image. This is the target image of our model 

for which we perform all the previously mentioned processing. From this image, we detect the 
connected regions by detecting their contours. We perform this contour detection using OpenCV 

Library’s findContours() [20] method. The method detects contours from a binary image using 

the Topological Structural Analysis [21] algorithm. Method findContours() finds connected 
regions and stores them as individual contours by following object’s border or outline of an 

image. Broken or closely connected outlines inhibits findContours() from detecting multiple 

object region separately. Also, if overlapping object’s edges are not previously separated as 

individual object edges findContours() will detect one single contour containing all overlapped 
objects within it. Because of these regions our model passes an input image through all those 

above mentioned procedures. Which eventually makes the input image a noise free, smooth 

image with background removed and sharp outline of every individual objects.  
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2.4.2. Compare and Draw Best Contour 
 

The previous step gives us two sets of contours detected from processed image of type one and 

processed image of type two. So, it is time to select the best set of contours from these two.  
Figure 3 shows the comparison process for an example image. For this we simply calculate the 

area of each contour and store these two sets of contour areas into two individual array, say A and 

B, in descending order (i.e., from one set of contours the contour with largest area is stored at the 
first index of corresponding array). Next, we filter these two sets by removing contour areas less 

than a threshold value. Analysing all our collected test images, we found that the contour area of 

a leaf object is more likely to be greater than area value 150. So, we found this threshold value 
150 optimal for all our experiments. Without filtering, sometimes the model might consider a 

non-leaf region (e.g., region within two leaves, example shown at the right most contour of set B 

in Figure 3) as leaf region. After filtering, we compare these two arrays. For comparison at first 

we check whether the number of contour areas of both A and B is greater than five or not. If both 
sets has more than five contours, we calculate the total amount of area of first five contours for 

both set A and B and compare the amount. The set with largest amount is selected as the best 

contour set. 
 

 
 

Figure 3.  Comparison process between two sets of contours. 

 

If any of set A or B has number of contour areas less than five, we check for the set which has 
less contour and store the quantity number, say x, of contour areas of that set. Then comparison 

and best set selection procedure are done as previously using x number of contour areas instead of 

five. After a large number of test cases we select five as the threshold value for this comparison 
and it performs well with our experimental dataset. But, we believe this comparison process can 

be improved with new processes and we are currently working on it. After contour selection, we 

draw the selected contours on a mask image which has the same size as Main. 

 

2.4.3. Segment Detected Contour (Leaves) 
 
Our model processes an input image following the above mentioned procedures and selects the 

best set of contours from the image. These contours actually represent the regions of leaves in 
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main input image. So, the final step is to segment these found contours as regions of image which 
are actually the regions of individual leaves in Main image.   

 

From our selected set of contour on mask image, for each contour, we consider left-to-right as x 
direction and top-to-bottom as y direction. Thus we find a point say (a, b) as top left corner of that 

particular contour. Following that we get a point (say (a, b)) as the top-left vertex and another 

point (say (c, d)) as the bottom-right vertex for each and every contour region. Using these points 

we make a rectangular area surrounding each contour within it. Then using these vertex 
coordinates we crop corresponding region of mask image from the Main image. This cropping is 

just like array slicing. So, for cropping each contour area from image, we supply the b and d 

coordinates, followed by a and c coordinates to slice a rectangular portion from Main image that 
exists within the (a, b) and (c, d) coordinates’ surrounding area. Then these rectangular portions 

are stored as individual images which represent the final leaves segmented from the Main input 

image. 
 

3. PERFORMANCE AND COMPARATIVE ANALYSIS  
 

In this section we discuss about the performance of our proposed leaf segmentation model along 

with some comparative analysis. There exists so many datasets for dense object detection or 
segmentation. But, most of the well-known leaf datasets contain only single leaf image having 

white or black background. To analyses the performance of our proposed model we need images 

with single as well as overlapping leaves in complex natural background. Hence, the experiments 
of our proposed leaf segmentation model are carried out on leaf images collected from the 

Internet and Pl@ntLeaves dataset [10]. Dataset [10] includes 233 images but most of them are 

center focused single leaf images in natural background. To ensure our model’s performance we 

build a dataset containing 190 images of leaves where 153 images are collected from [10] and 37 
images are randomly collected from the Internet. These images contain 150 single leaves i.e., 

leaves without occlusion and 196 occluded leaves i.e., leaves involved in occlusion or 

overlapping one another.    
 

The performance of our proposed model is presented in Table 1. For explaining this comparison 

we follow the way explained in [8]. From all our collected 190 images we calculate the 

percentage of correctly segmented single leaves as well as overlapping leaves. Our model’s leaf 
segmentation performance of every individual leaf is evaluated by segmentation rate and failure 

rate. In Table 1 the portion of leaves indicates overall 346 individual leaves are found within our 

collected 190 images, where 150 leaves are found single and 196 are found with occlusion. 
Segmentation rate refers to the proportion of correctly segmented individual laves from the total 

number of individual leaves. Failure rate refers to the proportion of incorrectly segmented 

individual laves from the total number of individual leaves.   
 

Table 1.  Segmentation performance for occluded and single leaves individually. 
 

 Portion of Leaves Segmentation Rate Failure Rate 

Single 
Leaves 

43.35% (150) 95.34% (143) 4.66% (7) 

Occluded 

Leaves 
56.65% (196) 86.73% (170) 13.27% (26) 

Overall 100% (346) 90.46% (313) 9.53% (33) 

 

Our model successfully segments 313 leaves from 346 leaves of 190 images which ensures 

90.46% overall segmentation rate. Within the 346 leaves 196 leaves were found with occlusion 
and our model correctly segments 86.73% of them (i.e., 170 out of 190). Table 1 also shows that 
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the rate of single leaf segmentation of our model is 95.34% and it only fails to segment 7 single 
leaves out of 150.  

 

Analysis the failure rate of our model we found that in most of the cases our model fails to detect 
leaves whenever the input image if of very low resolution. Also, image being too much blurry 

hinders the segmentation process.  

 

Within the 26 leaves with occlusion that our model fails to segment, some were over segmented 
and some were under segmented. The rate of over segmentation (e.g., one leaf segmented into 

several parts) and under segmentation (e.g., two or multiple leaves segmented as one) is 42.31% 

(11out of 26) and 57.69% (15 out of 26) respectively. Figure 4 shows some example of 
segmented leaf regions with Over-segmentation (OS) and Under-Segmentation (US).  

 

 
 

Figure 4.  Model output with over segmentation and under segmentation. 

 

The performance of our proposed model is quite satisfactory for some reasons such as: (1) our 

model can segment both single and occluded leaf individually at a high segmentation rate, (2) it 

can both separate the closely connected leaves (i.e., leaves touching each other closely) and the 
overlapping leaves (i.e., leaves overlapping one another), (3) it works better on different types of 

images as all 190 test images are collected from different resource, (4) it provides good accuracy 

in segmenting leaves of different species having different shape and texture.  
 

Figure 5 shows how accurately our proposed model performs leaf segmentation procedure. Figure 

5(a) shows an image with its final leaf segmentation result which is collected from our 37 Internet 

images and Figure 5(b) shows an image with its final leaf segmentation result which is collected 
from dataset [10] 153 images. 
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Figure 5.  Leaf segmentation example of two images with input and output. 

 

The combination of image processing and best contour selection approach of our model ensures 

better leaf boundary detection compared to some well-known edge detection algorithms that are 

usually used for object segmentation. Figure 6 shows a source image along with the output results 
found after applying watershed, canny, laplacian, sobel and our model’s processing on it. Figure 6 

also shows the contours detected from watershed, canny, laplacian, sobel and our model’s 

processing applied resultant images which ensures that our model detects better contours, of the 
two overlapping leaves of Figure 6, individually compared to others. 

 

 
 

Figure 6.  Comparing our model’s image processing and contour detection with some other algorithms. 
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Within our study, most of the existing leaf segmentation models work with different datasets and 
use different performance measures for evaluating their model. So, instead of comparing accuracy 

rate, we compare our model on some complex scenario where leaf segmentation becomes tough. 

Enlisting these scenarios we check whether our model can segment individual leaves, compared 
to other existing models, covering each scenario.  

 
Table 2.  Performance comparison of accurate segmentation on different scenario. 

  

Some complex scenario of 

segmentation that existing 

models covers or not covers 

 

Models 

Our 
model 

Ref. 
[5] 

Ref. 
[7] 

Ref. 
[8] 

Ref. 
[9] 

Models of 

Ref. [11] 

Leaves without having much 

boundary clue 
√ ~ ~ ~ × √ 

Image not focusing target leaf 

object 
√ × × √ √ × 

Image having overlapping leaves 
at any corner but not always at 

center of image 

√ √ × √ √ × 

Every individual overlapping 

leaf from image 
√ × √ √ √ √ 

Image of leaves with different 

and internal texture  
√ √ √ × × √ 

√=Leaf Segmentation Possible, ×= Leaf Segmentation Not Possible, ~ = Criteria not applicable for this model as authors do not clarify.   

 
Table 2 shows a comparative analysis of leaf segmentation from image, of our model with some 

existing ones, on different complex scenario. It also explains that our proposed model ensures a 

proper and compelling leaf segmentation from image by covering various complex scenario.  
 

4. CONCLUSIONS 
 

This paper proposes a leaf segmentation system where we aim for segmenting single as well as 

occluded leaves individually from image. At first we apply some image processing techniques so 
that the outline or contour edges of every leaf becomes much visible, smooth and sharp which 

helps in individual object’s contour detection. Then our model performs proper filtering and 

comparison to select the best contour set that matches with the shape of leaves. Finally, our model 
segments those selected contour areas as leaf regions from main image. From the experimental 

results, we see that our model archives an overall segmentation rate 90.46% while segmentation 

rates for single and overlapping leaves are 95.34% and 86.73% respectively, on our created 

dataset.  
 

The working processes described in this paper is applied for detecting contour edges of 

overlapping leaves from complex background. In future we look forward to improve and apply 
these techniques on different sectors such as medical cell images where overlapping objects are 

found within low variance complex background. Our future works will also focus on improving 

the performance of this model even with less processing. 
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