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Abstract. We use composite likelihood for structure learning and pa-
rameter estimation in relational dependency networks (RDNs). RDNs
currently use pseudolikelihood, to learn parameters, which is a special
case of composite likelihood function. Composite likelihood learning is
used to give trade-off between computational complexity and perfor-
mance of the model. Variance of the model is minimum in case of full
likelihood and maximum in pseudolikelihood.

In particular we focus on modified second order pseudolikelihood function
and extend relational Bayesian classifier (RBC) to this setting. Second
order RDNs explore pairwise attribute correlation. We evaluate second
order learning on synthetic and real world data sets. We observe experi-
mentally second order model has an edge over the pseudolikelihood based
model particularly when correlation is high.

1 Introduction

In real world, data set entities are related to each other either directly or indi-
rectly. As noted in [18], labels of linked pages are highly correlated in web page
documents. In case of patent cross-citations, scientific papers share relationship
based on common author, editor, publisher. In social networks connected peo-
ple share similar behaviors. In traditional machine learning domain objects are
homogeneous, data is stored in single table with each row representing a new
instance. In real world data sets there are multiple tables to represent different
objects and relationship between the objects. Traditional machine learning algo-
rithms are employed by flattening the data. Flattened data loses rich relational
information. Consider the case of citation database!, if we use only attributes
of paper to predict the topic, then we lose the relation information given by its
referenced and cited papers.

In relational learning one challenge is how to model the data. Many graph-
ical models are often used to represent the relational data. Graphical models
may be directed like relational Bayesian networks [9] [10] or undirected like re-
lational Markov networks [19], each having some advantages and disadvantages.
Directed relational Bayesian networks does not allow cyclic dependencies among

! Collection of previous year papers, data base represent a network of cited papers.
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the attributes but has a simple parameter estimation technique [9]. Undirected
relational Markov network is able to represent cyclic dependencies but requires
known network structure and parameter estimation requires repeated inference
over large values [6].

Another crucial property of relational data is autocorrelation (Jensen and
Neville, 2002), which refers to correlation between values of the same variable
on related objects. It is a common characteristic of many datasets. Autocorre-
lation creates instance dependencies which violate the principle of traditional
machine learning algorithms [14]. Autocorrelation provides an opportunity to
apply collective inference to increase the performance [14].

2 Related Work

RDNs are the first model to represent autocorrelation [14]. RDN is an undi-
rected model which uses simple parameter estimation technique similar to re-
lational Bayesian networks. When compared with relational Bayesian networks
and relational Markov networks, RDN is an approximate model. RDN calcu-
lates all conditional probability tables independently. The authors assure that
collective inference can increase the performance compare to individual inference
models [12]. RDN uses pseudolikelihood learning which is an approximation of
maximum likelihood. RDN is not guaranteed to be consistent 2, because of the
approximate nature. Gibbs sampling is used to apply inference to enhance the
model performance and guarantees the consistency of the model by recovering
full joint distribution [7]. Next, we will discuss different approximation methods
of full likelihood.

Maximum likelihood is the most useful parameter estimation technique in
machine learning but it follows the independent assumption of instances. Assume
data contains n samples of m dimensional vectors following i.i.d, sampled from a
distribution pg, with 6§y € © C R, D = (X!,....X"), X' € R™. Maximum
likelihood estimator (MLE) é\,Tl is a maximization of log-likelihood function [4].

ln(0; D) = logps(X") (1)
i=1

5:;” = argmax !, (6; D)
6o € ©

Properties of MLE estimate :

— Consistent: lim,_ . é\,’f‘l = 6y, as the number of samples grows, estimator
will converge to true parameter 6y [4].

— Smallest possible variance (nl(6y)~!) (Ferguson 1996).

— Computationally intensive due to normalization factor.

2 consistency is used in the context of local CPDs ( [13], [8])
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In some situations like in high dimensionality of data and cyclic dependencies,
use of MLE is intractable. In those situations approximation methods come into
picture. Approximation methods treat the joint likelihood function as product
of likelihood objects [1], these are called product pseudolikelihoods. Likelihood
objects are formed by considering subset of variables. Assuming subscript rep-
resents dimension of that item and Xij = {X! :k # j} , pseudolikelihood
(PL) [2] is defined as :

n m

Pla(0;D) = > "logpg (X XL)). (2)

i=1 j=1

Properties of PL estimate:

T gml _
— Consistent : lim,_,, 0" =

— Higher asymptotic variance.
— Low computational complexity because it does not require computation of
normalization factor.

6o under regularity condition®.

Composite likelihood is a generalization of pseudolikelihood function. Assume
we have different order pseudolikelihood objects then we can combine them in a
composite function called composite likelihood given by Lindsay in 1988. Like-
lihood object can be viewed as Sy = logpg(Xa|Xp5), where A and B represents
the dimension set of the instance X. According to definition of pseudolikelihood
objects , A # ¢ = AN B. Composite likelihood function is defined as:

n k

clp, = ZZlogpg(quAX%j). (3)

i=1 j=1

Based on the cardinality of set A; in (3), we get PL(1), PL(2),...(FL) (full like-
lihood). Dillon extended composite likelihood by introducing component weight
and selection probabilities to make it stochastic composite likelihood [4].
Properties of SCL:

— Strongly consistent?.

— Variance is between PL and FL.

— Computation cost varies based on the selection of object, minimum in special
case of PL and maximum in case FL.

As mentioned in [1], different order of likelihood object lead us to estimator of
different efficiencies.

We introduce higher order pseudolikelihood objective function in RDN learn-
ing. Our motivation is to reach close to the maximum likelihood in approxima-
tion. Attribute correlation can be easily modeled by using this technique. We

3 Jennifer Neville proved the consistency of pseudolikelihood in regularity conditions.
Details of standard regularity conditions are discussed in [13].
* Dillon proves the consistency of the estimator [3].
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observe that in highly correlated data higher order learning would be a better
idea. It can increase the performance as well as likelihood estimate.

In this paper we introduce second order pseudolikelihood learning in RDN.
We explore the attribute pairs which are highly correlated. To our knowledge
there is no individual learner which follows the second order PL technique,
which motivates us to extend Bayesian classifier to this setting [5]. Second or-
der Bayesian classifier uses same estimation technique used in case of relational
Bayesian classifier [16]. We demonstrated gains in performance in highly corre-
lated environment.

We discuss our approach in more detail below. Fist we discuss second order
PL function in the context of RDN’s in section 3. Next , we described the second
order relational Bayesian classifier in section 4. Then we evaluate our approach
on synthetic and real data sets in section 6. We conclude the work in section 7.

3 Second Order Pseudolikelihood

RDN uses three graphs to represent the whole model. Object and relations are
represented by data graph (Figure 1), Gp = (Vp, Ep). Vp represents objects
in the data graph like paper, author etc. Ep represents relationship between
these objects such as cites, author_of in case of citation network. RDN learns
attribute relations by relational learners and represent them in model graph
(Figure 2). In this figure, the paper object has identified relations among the
attributes namely topic, year, type and month. RDN assigns soft class label by
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Fig. 1. data graph [14] Fig. 2. model graph [14]

model graph and uses Gibbs sampling to apply collective inference on inference
graph (Figure 3) to improve model performance. Each node and link is associated
with a type T'(v;) = t,, and T'(e;) = tc,. Objects are heterogeneous and have
number of associated attributes X' = {X},.....X! } based on its type t € T.
RDN represents a joint distribution over the values of the attributes in the data
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Currently approximation of p(z) is done by pseudolikelihood. RDN defines the
pseudo-likelihood over item type, and is computed for data graph Gp as:

LGoi0)=1] II I p@llpaw ;00 T] plallpas ;6)  (4)

teT XfeX?t v:T(v)=t e:T(e)=t

Where T represents set of item types, X! denotes the set of attributes of type t.
Take a closer look of formula when considering the variable zf , it is conditioned

on the values of its parents pa,: . Equation (4) assumes that calculation of any

variable in its parents does not depend on z,

PRMs).

We observe that RDN can use composite likelihood function for structure
learning and parameter estimation. Equation (5) computes composite likelihood
of data graph Gp.

(acyclicity condition similar to

GDv H H H 'UAi ‘paa: B, H p (’A |paz L) (5)

teT XY eXtv:T(v)=t e:T(e)=

Subject to the constraint:
A; 75 0= A;NB;

We get different estimators of varying efficiencies by choosing cardinality of
set A;. We deal with the case when cardinality of set A is 2, and we call this as sec-
ond order pseudolikelihood. We employ second order PL instead of PL. Intuition
for employing second order model stems from the arguments given in [1], [4].
More specifically, we observe two attributes together to explore the correlation
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between them. In equation (5) considering the variable z, | , we conditioned on
the value pa,t . where pagt is parent of x! a, POzt contains other attributes

of same or related item by maintaining the constraint of equation (5). We are not
strict by the type. It will also explore the attributes of different types together.
We are denoting second order pseudolikelihood as pla(Gp;6).

k
pa(Gpi0) =D > Y pla, lpoay, ) D plal, pas, ) (6)

teT X%i,j}eX'ﬁ v:T(v)=t e:T(e)=t
We are considering two dimensions A; = {4, j}, which may belong to same or
different type of objects. In case when 4, j belong to same object , parents will in-
clude other dimensions of the same object or same or other dimensions of related
objects. When dimension i, j is of different types then parents will include the
parent of both objects. Consider the case of citation database, observing paper
topic and year will be dependent on other attributes of paper and attributes of
author object( related object).

We need to solve the following second order log-pseudolikelihood equation:
%plg(G p;0) = 0. The parameter formed by solving this equation will lead us
close to the true estimate. RDN uses non-selective, relational Bayesian classi-
fier or selective, relation probability trees [15]. Relational learners are used to
compute the local CPD’s necessary to build the model graph. We focus on non-
selective model and extend RBC to second order setting.

4 Second Order RBC

Second order RBC employees second order PL function. We assumes selected set
of attribute pairs to be independent given the class instead of attribute indepen-
dent assumption. Second order RBC considers selected pair of attributes and
deals with the multi-set® formed by cross product of individual multi-set of two
attributes. Consider in citation network, observing paper month and year, we
deal with multi-set of paper month and year respectively. Assume for a given pa-
per, month set contains {Jan, Feb} and year contains {2002, 2004 }. Second order
RBC makes a multi-set corresponding to this pair of attributes by taking cross
product of individual sets ( ex. {(Jan, 2002), (Jan, 2004), (Feb, 2002), (Feb,2004)}).
Since in RBCs, the independent assumption on values of set is experimentally
observed to yields best results compared to other methods, we employee the
same in second order RBC. Now, we describe the selection of attribute pairs.
Initially we have set of attributes denoted as A = {X;, X5, -+, X,,}. Each
attribute from set 4 is associated with a type information, Vi X; = X!. These
attribute are heterogeneous but second order RBC treats them as homogeneous
by ignoring the type information. Second order RBC first makes all possible pair
of attributes and denoted as P = {{X1, Xo},{X1, X3}, , {Xm—1, Xm}}. Now,

5 Multi-set is a set whose members can have more than one membership {a, a, a, c}
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the second order RBC select elements from P which lead to the full likelihood
denoted as set S. Second order RBC does it on the basis of score to reach close
to the full likelihood. Equation (7a) show the basic properties of set S. These
constraints are in line with that of the composite likelihood dimension sets.

S C P, Such that
Vs, s; €8, s;nNs; =0 (7a)
ulfl s =4 (7b)

5 Construction of set S

Second order RBC constructs S from P. We explore two approaches to make set
S, which will lead us closer to full likelihood. Full likelihood function is defined
as P(Cl{a1,az,...,an,}) where C is the class label.

5.1 Exhaustive Search

Choose the subset, S = argmaxz P(C|p), from P which maximize the likeli-
pCP
hood of the class. We have to search for all possible subsets which follows the

constraints of Equation (7a) and maximizes the likelihood of the class. Due to
computational costs, we look for greedy strategies to arrive at the set S.

5.2 Greedy Approach

Second order RBC uses greedy strategy to make S and assigns a score to each
element of P, which is the likelihood of the class given the attribute set (Re-
fer 5.2). score(p;) = logP(C|p;) = logP(C|{X;, X;}). We add maximum score
elements of P to S by maintaining the constraints of equation (7a). Second order
RBC approximates the full likelihood function using second order PL. According
to modified second order PL,

5]
P(CH{X1, X, .. Xm}) o P(A|C) % P(C) = P(S|C) + P(C) = [ P(silC) % P(C)

i=1
(7)

Algorithm 1 Assignment of score to set P
fori=1— |P| do
for all |Subgraphs| do
score(p;) = logP(C|p;)
end for
end for
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Algorithm 2 Selection of S
while |P| do
T = max_score(P)
{max_score function selects the maximum score element from set P}
S=5SuT
remove elements from P where p; NT # ()
end while

Second order RBC predicts the class label assuming subgraphs to be inde-
pendent. Second order RBC is used to assign the soft labels to the unknown
classes of test subgraphs, it is used to give seed to the inference process. We
evaluate second order RBC in next section.

Complezity- Second order RBC learning has three major components.

— Assignment of score to all elements of set P, it takes O(|P|.N), where N is
number of subgraphs.

— Sorting of the scores, it takes O(|P| % log(|P|).

— Construction of set S takes O(|P|?)

Overall asymptotic complexity of second order RBC is O(|P|.N).

6 Experiments and Results

We performed experiments on synthetic and real world data set to demonstrate
the situation where second order learning is better idea.

6.1 Synthetic Data Experiments

Experiments in this section demonstrates the comparison of second order PL
and PL learning in context of relational dependency networks. First, we use syn-
thetic data to report the improvements due to second order learning in different
scenarios. We report effect of attribute correlation in addition to autocorrelation
on different data sets.

We generated heterogeneous data subgraphs. Data set contains object of
type X, having four binary attributes x1, x2, x3, class. We generated the class
label given degree distribution of S object, in particular used normal distribution
with supplied mean and variance 6. Degree of a vertex represents the number
of other vertices it is connected. Once the class label of all X type vertices are
generated, we generate all other attributes based on probabilistic relationship
with the class, submitted attribute correlations and autocorrelation. We start
with autocorrelation 0.5 for this particular set of experiments. V* represent an

5 A detailed discussion on data generation can be found at:
http://kdl.cs.umass.edu/proximity /documentation/tutorial /ch06s09.html
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vertex of data graph, Gp and V" represents all related” vertices.
Data Characteristics

P(Viclass:+|vrclass:+) = 057 P(Vix1:1|viclass:+) =0.5 (8)
P(Vim2:1|viclass:+) = 057 P(Vix3:1|vicla552+) =0.5
PV, = Vi |Vidass=s) =095, P(V,,_1|V',—1) = 0.95

We create different size sample with a little modification in probabilities to
compare second order RBC to RBC in terms of likelihood and accuracy. We run
Qgraph® queries to generate all subgraphs having at least one linked object. We
sample the subgraphs in to train and test using random sampling.

1.

Effect of training size Second order RBC performance increases as train-
ing size increase; Gains both in likelihood estimation and accuracy are ob-
served (refer Figure 4, 5). Second order RBC takes larger training data for
stabilization.

Accuracy vs Training set size

Likelihood vs Training set size 0.72
3300
0.7
32004 . ORBC
........ 0.68 B Proposed
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- -3000 . 0.64
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o o
% -2000 —Proposed < 0.62
é 28004 Model 0.6
7004 0.58
0.56
26004
0.54
2500 L . L !
oo 1000 500 2000 2500 500 1000 1500 2000 2500

Training set size Training set size

Fig. 4. Effect of training size on Likelihood Fig. 5. Effect of training size on ACC

2.

Effect of correlation We perform experiments to draw the effect of at-
tribute correlation on the performance of model. We can change the correla-
tion among the attributes by modifying the probabilistic relationship given
in equation (8). Figure 6 and 7 shows that, our model performs better than
existing RBC in highly correlated environment in both likelihood estimation
as well as accuracy. Next, we explain the effect of autocorrelation on the
model performance.

Effect of autocorrelation Figure 8 and 9 shows the performance of model
in different autocorrelation scenarios. Second order model performs better

" Related vertices may contains all nearest neighbours connected in Gp

8 Qgraph, used by Proximity to make graph queries visual and efficient [11]
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in low to moderate autocorrelation and comparable in high autocorrelation
environment. In high autocorrelation scenarios prediction is biased because
same variable of related objects give enough information to predict the at-
tribute.

6.2 Real World Data Experiments

We perform experiments on three real world data sets namely HEP 2, MSN!Y
and ProxWebKB!!. We describe the prediction task in the context of these data
sets. All experiments are performed over binary class label. We construct binary
class label by discretization of the class label.

9 The data contains abstract and citation files provided for the 2003 KDD Cup com-
petition, see http://kdl.cs.umass.edu/data/hepth/hepth-info.html

19 We uses data set available on http://kdl.cs.umass.edu/data/msn/msn-info.html

' Data set is taken from CMU Web-KB project from http://www.cs.cmu.edu/ webkb/,
modified by Knowledge Discovery Laboratory
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ProxWebKB data contains web pages from computer science department of
different universities. Web-page can belong to student, course, faculty, research
project or staff. We want to predict the category of a page given its linked page
categories. MSN is a mobile social network data base. Mote to mote interactions
are stored, each mote has its id and links represents trial and time stamp. We
want to predict the time stamp of connections. HEP data set is a network of
physics papers. We want to predict the topic of paper given paper attributes,
author names and publisher.

ORBC 1- A
B Proposed 80
Model 0.9+ 1604
09 0.8
1404 \ - RBC
0.74 e —Proposed
08 0.6+ 1204\ Model
g 0.54 -
¢ 3}
5 Ol o
807 < 04 3
< 0.34 =
H
0.24 =
06 0.14
0
05 0 40 . 60 & 20 40 60 80
ProxWebKB HEP MSN Training % Training %
(a) Accuracy results (b) HEP-Accuracy (c) HEP-Likelihood

Fig. 10. Real world data set results

As shown in Figure 10(a), we observe that our assumption does not fit well
on ProxWebKB and HEP data set, but in MSN mote to mote interactions are
correlated. To show the strength of our model, we add attributes to the HEP data
set which are formed using two or more existing attributes. We want to predict
the acceptability of a paper which is formed using paper citation degree and
journal name. We observe significant improvement in accuracy and likelihood
(refer Figure 10(b), 10(c)).

7 Conclusion & Future Work

We have shown the use of second order pseudolikelihood in the RDN learning.
We have shown improvements in highly correlated data sets both in parame-
ter estimation and classification accuracy. Our model works well for moderate
to large training size. It is true that pseudolikelihood works well in the real
world data sets but, we demonstrated the situations where second order learn-
ing is a better idea. As we move from PL to FL complexity will increase and
some times intractable but by moving to second order we are gaining in perfor-
mance which is a strong motivation for the use of second order learning in highly
correlated environment. In recent times, researchers are trying to optimize the
RDN computations and coming up with approaches to make it learn fast [17].
We believe introducing second order pseudolikelihood estimate in combination
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with fast learn RDN will make it even more faster in case of highly correlated
environment.
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