AUTOMATION AND PRIORITISATION
TECHNIQUE FOR REGRESSION TESTING OF PB
TECH WEB APPLICATION

Ho Joong Kim and Shahid Ali
Department of Information Technology, AGI Institute, Auckland, New Zealand

ABSTRACT

Regression testing is a necessary process to ensure that the existing functionalities of a piece of
software are not affected by new features or fixing defects. However, in the case for the web
application of PB Tech, this process is very repetitive and time-consuming. In order to solve this
issue, automation testing is implemented and a new test case prioritisation technique is proposed
based on a combination of human- evaluation and statistical data of the highest earning features of
retailer websites. Using this technique, a regression test suite is created and the test execution times
are compared against a full regression test suite. The results revealed that the prioritisation
technique is effective at reducing test execution times. This technique could prove to be effective for
use in projects missing defect and requirements documentation.

KEYWORDS

Automation Testing, Regression Testing, Test Case Prioritization

1. INTRODUCTION

In order to add new functions to the PB Tech website or fix defects, it must be ensured that the
changes made do not affect the existing functionalities of the site. Because of this, regression
testing is required. Regression testing is performed to ensure that all existing functionalities are
working as intended and no new defects are introduced due to changes made. However, regression
testing is a very time-intensive and repetitive task when done manually, especially if all
functionalities are to be tested every time there is a change made. In order to solve this problem,
test cases can be automated which would significantly reduce the time and resource costs. The time
and resource cost can further be reduced by prioritising the test cases so that partial regression
testing can be performed instead of having to test all functionalities.

The objective of this project was to create a sample full regression test suite, that represents the
functionalities of PB Tech’s website, and perform test-case prioritisation and selection to form a
prioritised regression test suite. The test cases for both suites were automated and comparative
analysis between the prioritised regression test suite and full regression test suite was performed.
The test cases of this project were prioritised and selected using human evaluation-based test case
prioritisation in addition to a newly proposed technique. Automation test scripts were written to be
compiled in the prioritised regression test suite and the scripts were executed.

Natarajan Meghanathan et al. (Eds) : ACITY, AIAA, DPPR, CNDC, WIMNET, WEST, ICSS - 2019
pp. 37-52, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91704

38 Computer Science & Information Technology (CS & IT)

The scope of this project was limited to the retail and customer related functionalities and did not
cover the service or educational functionalities that PB Tech also provides. The functionalities that
were automated were sign-in, sign-out, search, adding an item to cart, adding an item to a list,
navigation to the returns page and navigation to the promotions page.

This project report is organized as follow: Section 2 focuses on the literature review of the
automation regression testing. Section 3 is focused on the tools and techniques and research
methodology for the project. Section 4 contains results of execution of the test suites for this
project. Section 5 provides the discussion on the results of this research. In section 6
recommendations for future researches are provided. Finally, in section 7 conclusion to the research
project is provided.

2. LITERATURE REVIEW

In the past there were many researches carried out on regression test case prioritisation with
different techniques implemented. Regression testing is performed to make sure that any changes to
an application do not affect the existing functions. Test case prioritisation is an important technique
to increase efficiency of regression tests and reduce time and costs. These existing prioritisation
techniques are described in multiple different studies.

One study presented a prioritisation technique that filters tests through Information Retrieval and
compares the differences between two program versions, implemented through their tool REPIR
[1]. This resulted in more computational efficient testing that performs better than existing
prioritisation techniques.

Another study used a prioritisation technique through a regression test selection tool called
TestRank, which works through dynamic and natural language analyses of a code base and its test
suite and outputting a list tests ranked by relevance to changes [2]. The results showed that the
technique accelerated retesting during development while maintaining high fault detection.

Similarly, another study proposed using a combination of both prioritisation techniques and
regression test selection [3]. Through an algorithm, the test cases with high priority are prioritised,
and then through another algorithm, the tests are selected for regression. The results showed that the
technique could reduce the number of test cases and therefore the cost and resources for performing
regression testing.

A different prioritisation technique that is proposed showed that instead of relying on software code
information as the majority of regression testing techniques do, suggested incorporating a
requirements-based clustering approach, where textual similarities in requirements a grouped
together and prioritised [4]. Results showed that using information about requirements during the
test case prioritization process could be beneficial.

Another requirements-based prioritisation technique that was recommended was the Priority of
Requirements for Test (PORT) [5]. PORT analyses requirements volatility, customer-assigned
priority, implementation complexity and fault proneness of the requirements, and uses these factors
to prioritise the test cases. Results showed improvement in rate of detection of severe faults, and
that customer priority was a key prioritisation factor contributing to improved fault detection rates.

Another study proposed a prioritisation technique that orders and prioritises the test cases based on

Computer Science & Information Technology (CS & IT) 39

the total code coverage through information gathered about the previous execution of test cases [6].
The results of this approach showed improvement in the rate of fault detection of test suites.

A study is conducted to focus on prioritization technique that orders the test cases in a test suite
such that it minimises the lines of code needed to be re-executed [7]. This results in faster code
coverage, leading to early detection of faults.

A proposed prioritisation approach was using a risk-based test case prioritisation technique that
focuses on new test cases [8]. The priority is decided according to test prioritisation calculated
through requirement analysis and using these values to evaluate relevant test cases and determine
their priority. Results show that the technique is effective in prioritising severe faults.

A different prioritisation technique was proposed that uses a static black-box test case prioritisation
technique that represents test cases using the linguistic data of the test cases [9]. The linguistic data
such as name, identifier and comments are analysed through a test analysis algorithm called topic
modelling to approximate the functionality of a test case and give priority to test cases that test
different functions. The results were that the technique was an effective way to statically prioritize
test cases, while being lightweight.

Due to limitations in documentation and resources, the prioritisation techniques suggested in these
studies cannot be implemented in this project. To apply these techniques, the documentation for the
requirements, version change and defects of PB tech’s web application are needed, which were not
available for access.

3. PROJECT EXECUTION

3.1. Project Planning

In this section we will discuss about tools and proposed architecture of automation framework for
this project.

3.1.1. Tools and Techniques

The regression testing automation was performed using Selenium WebDriver. Selenium is an open
source tool and is considered the most popular for testing web applications [10].The primary reason
to choose Selenium was due to the fact that it is an open-source tool, which means there are no
additional costs required.

An add-on to Selenium WebDriver was also used called TestNG. TestNG is an automation testing
framework that helps with execution of the Selenium test scripts and generates a test execution
report. It provides features such as TestNG listeners for tracking the test scripts that are passed,
failed and skipped, and assertions to compare expected results with actual results during script
execution [11]. TestNG also provides generating of test execution reports, which was necessary for
this project, as one of the drawbacks of Selenium WebDriver is that it does not natively have a test
reporting feature. Parallel execution of tests can also be accomplished with TestNG to further speed
up test execution.

40 Computer Science & Information Technology (CS & IT)

The Page Object Model (POM) pattern was used for writing the automation test scripts. The POM
model allows the mapping of pages of the web application to a page object. This pattern helps to
enhance the tests, making them more maintainable, reducing code duplication, building a layer of
abstraction, and hiding the inner implementation from tests [12]. This is especially helpful for
regression testing, as the page objects are easily accessible and can be reused for different
functionality tests.

3.1.2. Methodology for Project

The methodology chosen for the project was the Agile SCRUM methodology. Scrum was chosen
over more traditional methodologies as it can lead to productivity benefits in projects, an increase in
customer satisfaction, product and process quality, team motivation and cost reduction [13].

Another reason that Scrum was chosen was, Scrum methodology is ideal for rapidly changing and
accumulating requirements and is fast, quick and can adapt to changes easily [14]. This was

suitable for PB Tech’s web application as there were many changes to the requirements occurring
frequently due to customer demand.

3.1.3. Test Environment

The test environment for the project is given below. System: Intel i5-8265U 1.6GHz

NVIDIA GeForce MX130 2GB VRAM

12GB DDR4 memory 1000GB HDD

Test Data: a valid username and password for login is required Operating system: Windows 10
(x64)

Browser: Google Chrome 77.0.3865.90 (x64)

Dependencies: the test scripts written must ensure that each test is independent from each other so
that the true status of the test can be found. Also, to ensure the possibility for running parallel tests
in the future, the tests must be independent.

3.2. Proposed Architecture of Automation Framework

The automation framework proposed for this project is shown in Figure 1. Figure 1 shows that the
architecture implemented for the PB Tech project was the Page Object Model (POM) pattern. The
POM pattern consists of page object classes that allow easier maintenance and increased reusability
of code. Each page of the PB Tech web application was given a separate page object. These page
objects were then reusable for test cases with different functionalities.

Selenium WebDriver was used to send commands through the web browser to the web application
under test. All test cases were run through the Test Suite, which required the use of the TestNG
framework to be implemented.

Computer Science & Information Technology (CS & IT) 41

Sign-in

Account Page Class Selenium Google npplication
Chrome
Search Page Class
Search functionality
TestNG
Product Page Class

Suite Class
List Page Class. Navigate to Returns page TestNG
Reports

- TestNG
Cart Page Class Add product to list Framework

TestNG
Add product to cart Logs

HomeFPage Class

Figure 1. Proposed Regression Test Suite Automation Framework
3.3. Test Cases for Project

The test cases that were considered for implementing into the regression test suite are given in
Table 1. These test cases were selected through human evaluation and represent the full regression
test suite for PB Tech’s website. Table 1 shows the test cases selected were: the functions of login,
homepage hero image, department header menu, brand header menu, promotions page, clearance
page, search bar, store finder, product returns page, careers page, product wish list, shopping cart
and stock availability checker.

Table 1. Test Cases for Project

Test Case ID | Test Case Description

TCO1 User can sign-in to PB Tech website

TCO2 User can click on Hero Image on homepage

TCO3 User can find product by department

TC04 User can find product by brand

TCO5 User can click and view products with promotions
TCO6 User can click and view products on clearance
TCO7 User can search for specific term in the search bar and sort by “Most Popular™
TCO8 User can view store finder page

TC09 User can view returns policy page

TCI10 User can view careers page

TCl11 User can add a product to a list

TC12 User can add products to the shopping cart

TC13 User can check stock availability of a product
TCl4 User can sign-out from website

3.4. Test Case Prioritisation and Selection

The prioritisation technique implemented was a combination of human evaluation-based test case
prioritisation [15], and a newly proposed prioritisation method based on the results of a study that
analysed the top 100 retailer websites to assess which online features are present in the websites
with the highest earnings [16]. The features of PB Tech’s website were compared and the features
that could be mapped to the features used in the study were selected for prioritisation. The mapped
product related online features were registration/sign-in, wish list, and search; the distribution
related online features were the shopping cart and return policy; and the promotion related features
were promotions/special offers. For the features that were not selected for the prioritised regression
suite, only human-based test case prioritisation is implemented, where test cases are prioritised
according to human evaluation.

42 Computer Science & Information Technology (CS & IT)
Table 2. Prioritised Test Cases

[Test Case ID Test Case Priority
TCO1 High
TCO2 Low
TCO3 Medum
TCO04 Medium
TCO5 High
TCO06 Medmum
TCO7 High
TCOS Medium
TC09 High
TC10 Medium
TCl11 High
TC12 High
TC13 Medium
TC14 High

The test cases were then assigned a priority according to the prioritisation technique, shown in
Table 2. Table 2 shows the test cases prioritised according to the feature’s earnings and they were
assigned as high priority. The test cases such as product navigation by brand and department,
clearance products page, store finder, careers page and stock availability check were assigned as
medium priority while the homepage hero image was assigned as low priority.

After the test cases were prioritised accordingly, test case selection was performed. This was done
by selecting the test cases that were given a high priority. These were compiled into the prioritised
regression test suite.

3.5. Automation Test Script Design

Automation test scripts were created for each of the test cases selected for this project. An example
of this is shown in Figures 2 and 3. Figure 2 displays the automation script of test case TCOL,
created according to the TestNG framework. This class calls an instance object of the Account page
class, found in Figure 3. The automation scripts were structured using the POM pattern, which
enables the page object classes to be reusable for other tests in the future.

Computer Science & Information Technology (CS & IT)

1 package pbtech.pages;

2= import

w

org.openga.selenium. WebDriver;
import org.openga.selenium.WebElement;

import org.openga.selenium.interactions.Actions;

4
5 import
6

7 import org.openga.selenium.suppert.
g

import org.openga.selenium.suppert.

18 public class AccountPage {

49

WebDriver driver;

@FindBy(how = How.XPATH,
@CacheLookup
WebElement emailField;

@FindBy(how = How.XPATH,
@CacheLookup
WebElement pwField;

@FindBy (how = How.XPATH,
@CacheLookup
WebElement loginBtn;

@FindBy(how = How.XPATH,
@CacheLookup
WebElement userTab;

@FindBy (how = How.XPATH,
@CacheLookup
WebElement logoutBtn;

using

using

using

using

using

org.openga.selenium. support.Cachelookup;
import org.openga.selenium.support.

FindBy;
How;
PageFactory;

"//input[@id="try_login']™)

"f/input[@id="try_pass']")

"//button[contains(text(}), 'Sign In')]"}

"/ /div[@iclass="headButtons']/div[ficlass="header_button_float'][2]")

"//a[fihref="1logout_pdo.php']")

public AccountPage(WebDriver driver) {

this.driver = driver;

PageFactory.initELements(driver, this);

}

public void login(String email, String pw) {

emailField. sendKeys(email);

pwField. sendKeys (pw);
loginBtn.click();

}

public void logout() throws InterruptedException {
Actions action = new Actions(driver);
action.moveToElement(userTab).build().perform(};
Utilities.WAIT TWO SEC();

logoutBtn.click();

Figure 2. Account Page Object Class

44 Computer Science & Information Technology (CS & IT)

1 package pbtech.test;

2= import org.openqa.selenium.By;

3 import org.openqa.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;
import org.testng.annotations.BeforeSuite;
import org.testng.annotations.Test;

import org.testng.annotations.AfterSuite;
import org.testng.annotations.AfterTest;
import org.testng.Assert;

18 import pbtech.pages.HomePage;

11 import pbtech.pages.AccountPage;

12 import pbtech.pages.Utilities;

[FoR- R L

13

14 public class TestSignIn {
15 WebDriver driver;

16 HomePage homepage;

17 AccountPage account;
18

19 String email = "agitest7@8@gmail.com”;
20 String pw = "AGItestacc”;

21 String name = "Billy";

22 String logoutSuccess = "Create Account”;
23

249 (BeforeSuite

25 public void setup() {

26 System.setProperty("webdriver.chrome.driver”, "C:\\Temp\\chromedriver.exe");
27 driver = new ChromeDriver();

28 driver.get("https://ww.pbtech.co.nz/");

29 driver.manage().window().maximize();

30 homepage = new HomePage(driver);

3 }

32

338 fiTest

34 public void loginTest() throws InterruptedException {
35 //Utilities. WATT ONE SEC();

36 account = homepage.clickSignIn();

37 Utilities.NAIT ONE SEC():

38 String actuall = driver.findElement(By.xpoth("//div[@id="newRegForm']/h2")).getText();
39 String expectedl = "SIGN IN DETAILS";

4 Assert.agssertEquals(actuall, expectedl);

41

42 account. login(email, pw);

43 Utilities.NAIT ONE SEC():

a4 String actusl2 = driver.findElement(By.xpoth("//a[@href="my-account']")).getText();
45 String expected? = name;

46 Assert.agssertEquals(actual?, expected2);

47 }

43

499 ([@AfterTest

50 public void logout() throws InterruptedException{

51 Utilities.WAIT ONE SEC();

52 account. logout();

53 Utilities.WAIT ONE SEC();

4}

55

562 (AfterSuite

57 public void tearDown() {

58 driver.quit();

59 driver = null;

@}

61}

Figure 3. Sign-In Test Class

Computer Science & Information Technology (CS & IT) 45
Two different test suites were created in the process: the full regression test suite with all test cases,
and the prioritised regression test suite with only the prioritised test cases. The test suites were then
executed and TestNG reports were generated.

4., RESULTS

The results of execution of the test suites results in the generation of TestNG reports. The reports
that were analysed during this project were the emailable report, test times report and the method
execution chronological order report. The emailable report contains the total time taken to run the
suite, the individual times taken for each test and the number of passed, failed and skipped tests.
The test times report contains the total running time and the individual test running time in
decreasing order. The methods in chronological order report shows in detail which method of each
test is executed and at what times they are started. It also shows the start and end time of the test
including the driver setup and closure, which the other reports do not show.

The emailable report generated for the prioritised regression test suite is shown in Figure 4. Figure
4 shows that all test scripts passed, with no failed or skipped tests. The total time taken to execute
the test suite was 73.6 seconds and the individual times taken for each test is also shown.

Test | # Passed | # Skipped ‘ # Failed | Time (ms) ‘ Included Groups ‘ Excluded Groups
TCPRegressionSuite
Test | 7| 0| o| 73.620] |
allSuites
Class | Method | Start | Time (ms)
TCPRegressionSuite
Test — passed

pbtechtest TestSignln | loginTest | 1569075115390 | 4911

allSuites

Figure 4. Prioritised Regression Test Suite Emailable Report

The result of the execution of the full regression test suite is given in Figure 5. Figure 5 shows that
all tests passed and the time taken to execute was 122.5 seconds. By prioritising the test cases, there
was a reduction of 48.8 seconds or 40% in total execution time.

The test time report, in decreasing order, of each test of the prioritised regression test suite are
shown in Figure 6. Figure 6 shows that the list functionality test took the longest at 12.7 seconds
and the returns page took the shortest time at 3.3 seconds.

46

Computer Science & Information Technology (CS & IT)
The times taken for the tests from the full regression test suite are shown in Figure 7. Figure 7
shows that the list functionality test also took the longest at 12.7 seconds and the find by brand test
took the shortest time at 3.4 seconds. However, the total running time is given in minutes, which is

imprecise compared to the times shown in the emailable reports.

Test | # Passed | # Skipped | # Failed | Time (ms) | Included Groups | Excluded Groups
CompleteRegressionSuite
Test 14 1] 0 122,481
allSuites
Class Method Start Time (ms)

CompleteRegressionSuite

Test — passed

allSuites

Figure 5. Full Regression Test Suite Emailable Report

Computer Science & Information Technology (CS & IT)

rTj_mes for TCPRegressionSuite
Total running time: 49 seconds
Number Method Class Time (ms)
] listTest pbtech.test TestlList 12,663
1 searchTest pbtech.test. TestSearch 10,861
2 cartTest pbtech.test TestCart 9.066
3 logoutTest pbtech test. TestSignOut 5,437
4 loginTest pbtech test. TestSignin 491
5 promotionsTest pbtech.test TestPromotions 3,384
6 returnsTest pbtech test TestReturns 3,310

Figure 6. Times for Prioritised Regression Test Suite

. . .
Times for CompleteRegressionSulte

Number
0
1
2
3
4
5
b
7
8
9

10
11
12
13

Total running time: 1 minutes

Method Class Time (ms)
listTest pbtech test TestList 12,714
searchTest pbtech.test TestSearch 11,700
cartTest pbtech test TestCart 9,470
loginTest pbtech test TestSignin 6,037
stockCheckTest pbtech test TestStock 6,643
homepageTest pbtech test TestHomepage 6,211
departTest pbtech test TestDepartment b,674
clearanceTest phbtech.test TestClearance 0,652
logoutTest pbtech.test TestsignOut 5,445
storeFinderTest pbtech test TestStoreFinder 4,930
careersTest pbtech test TestCareers 3,643
promotionsTest pbtech test TestPromations 3,490
returnsTest pbtech fest TestRetumns 3,406
brandTest pbtech test TestBrand 3,391

Figure 7. Times for Full Regression Test Suite

47

48 Computer Science & Information Technology (CS & IT)

The execution times of each method of the prioritised regression test suite, in chronological order,
are given in Figure 8. Figure 8 shows that the initial driver setup methods of the tests were all
executed at the start and took 84.4 seconds to complete, the driver closure methods took 3.8
seconds and the total method running time was 161.8 seconds.

The times of each method of the full regression test suite is given in Figure 9. Figure 9 shows that
the driver setup methods took 168 seconds to complete, the driver closure methods took 8.1 seconds
and the total method running time 298.6 seconds.

The decrease in time taken for both the setup and closure methods is around 50%. This indicates
that there is a linear increase proportional to the increase in tests executed. There also is a decrease
in the total method execution time by 46%.

Computer Science & Information Technology (CS & IT)

“ D
Methods in chronological order
pbtech.test. TestCart
setup 2 ms
pbtech.test. TestList
setup 12979 ms
pbtech.test. TestPromotions
setup 25087 ms
pbtech.test. TestReturns
setup 36981 ms
pbtech.test. TestSearch
setup 48789 ms
pbtech.test.TestSignln
setup 60724 ms
pbtech.test. TestSignOut
setup 72549 ms
pbtech.test. TestCart
login 84373 ms
pbtech.test. TestList
login 86337 ms
pbtech.test. TestSignOut
login 89092 ms
pbtech.test. TestSignln
loginTest 94162 ms
pbtech.test. TestPromotions
promotionsTest 99881 ms
pbtech.test. TestSearch
searchlest 102466 ms
pbtech.test.TestReturns
returnsTest 113328 ms
pbtech.test. TestList
listTest 116639 ms
pbtech.test.TestCart
cartTest 129303 ms
pbtech.test. TestSignOut
logoutTest 138370 ms
pbtech.test. TestCart
logout 143808 ms
pbtech.test. TestList
logout 148211 ms
pbtech.test.TestSignln
logout 152491 ms
pbtech.test.TestCart
tearDown 158020 ms
pbtech.test. TestList
tearDown 158696 ms
pbtech.test. TestPromotions
tearDown 159336 ms
pbtech.test. TestReturns
tearDown 159924 ms
pbtech.test. TestSearch
tearDown 160536 ms
pbtech.test.TestSignln
tearDown 161147 ms
pbtech.test. TestSignOut
tearDown 161774 msj

Figure 8. Prioritised Regression Test Suite Methods in Chronological Order

49

50 Computer Science & Information Technology (CS & IT)

Methods in chronological order
pbtech . test. TestBrand
setup @ ms
pbtech.test. TestCareers
setup 13415 ms
pbtech.test. TestCart
setup 25409 ms
pbtech.test. TestClearance
setup 37413 ms
pbtech.test. TestDepartment
setup 49639 ms
pbtech.test. TestHomepage
setup 61243 ms
pbtech.test. TestList
setup 73179 ms
pbtech.test. TestPromotions
setup 84956 ms
pbtech.test. TestReturns
setup 96662 ms
pbtech.test. TestSearch
setup 108938 ms
pbtech.test. TestSignln
setup 1213231 ms
pbtech.test. TestSignOut
setup 134247 ms
pbtech test. TestStock
setup 146635 ms
pbtech.test. TestStoreFinder
setup 158258 ms
pbtech.test. TestCart
login 167978 ms
pbtech.test. TestList
login 170947 ms
pbtech.test. TestSignOut
login 179519 ms
pbtech.test. TestSignln
loginTest 185141 ms
pbtech.test. TestHomepage
homepageTest 19218@ ms
pbtech.test. TestDepartment
departTest 199392 ms
pbtech.test. TestBrand
brandTast 205266 _ms
pbtech.test. TestPromotions
promotionsTest 208658 ms
pbtech.test. TestClearance
clearanceTest 212148 ms
pbtech.test. TestSearch
searchTest 217801 ms
pbtech test. TestStoreFinder
storeFinderTest 229502 ms
pbtech.test. TestReturns
returnsTest 234433 ms
pbtech.test. TestCareers
careersTest 237842 ms
pbtech.test. TestList
listTest 241685 ms
pbtech.test. TestCart
cartTest 254400 ms
pbtech.test. TestStock
stockCheckTest 263871 ms
pbtech.test. TestSignOut
logoutTest 2780515 ms
pbtech.test. TestCart
logout 275960 ms
pbtech.test. TestList
logout 280383 ms
pbtech.test. TestSignln
logout 285083 ms
pbtech.test. TestBrand
tearDown 2900490 ms
pbtech.test. TestCareers
tearDown 2916088 ms
pbtech.test. TestCart
tearbDown 291698 ms
pbtech.test. TestClearance
tearbown 292398 ms
pbtech.test. TestDepartment
tearDown 293008 ms
pbtech.test. TestHomepage
tearDown 293657 ms
pbtech.test. TestList
tearDown 294262 ms
pbtech.test. TestPromotions
tearDown 294878 ms
pbtech.test. TestReturns
tearDown 295484 ms
pbtech.test. TestSearch
tearbown 296118 ms
pbtech.test. TestSignln
tearbown 296778 ms
pbtech.test. TestSignOut
tearDown 297392 ms
pbtech.test. TestStock
tearDown 298017 ms
pbtech. test. TestStoreFinder
tearDown 298626 ms

Figure 9. Full Regression Test Suite Methods in Chronological Order

5. DiscussioN

The results show that the compared to the full regression test suite, the time taken to run the
prioritised regression test suite was significantly reduced. As the full regression test suite continues
to grow from new features, the time saved by the proposed technique would also continue to
increase.

Computer Science & Information Technology (CS & IT) 51
The results show that the execution of the tests in both the full regression test suite and the
prioritised regression test suite were all passed. The execution results given from a TestNG test can
result in a passed, failed or skipped status. During the execution, if a test failed, then the other tests
that are dependent on the same test would have been skipped, which would have affected the results
and made the time measurements inaccurate. However, this was prevented by making all the tests
independent, and the result of this project was that all tests passed with no failed or skipped tests.

A comparison with previous studies is difficult as the performance indicators used in those studies
are based on comparing fault detection rate with previous versions. This is the case for many of the
studies, such as in the study of Saha et al., where they used Average Percentage Faults Detected as
a metric for prioritization effectiveness [1]. However, in this project, the sole performance indicator
was the duration of the test suites. Therefore, it is not possible to give a direct comparison with the
prioritisation techniques found in the previous studies.

As an alternative to the many different test case prioritisation techniques that exist, the technique
proposed in this report was able to reduce the time taken without the need for fault rate information
or requirements analysis. This technique could be helpful as an alternative method to use for
projects that are missing the required documentation in order to compare the fault detection rate or
perform requirements based test case prioritisation techniques.

6. RECOMMENDATIONS

During this project, one of the most prominent problems encountered was the lack of
documentation of PB Tech’s web application requirements, defects and complete regression suite.
Due to this, there was no feasible method to implement other test case prioritisation techniques to
compare to. This was due to having no access to PB Tech’s project and systems. The only solution
to this issue to is by gaining authorisation to access their systems and documentation.

Another potential issue that was observed was the automation tests were only executing 7 test cases
but took 73.6 seconds to complete. This could be due to hardware limitations of the test
environment that was implemented. A potential solution is to upgrade the hardware to improve the
performance of the tests. Another solution could be to execute the tests in parallel, which could
save more time.

A factor that needs consideration is, the time taken to perform a human evaluation-based test case
prioritisation technique may be significantly slower compared to other prioritisation techniques and
could offset the overall time saved. To measure the amount of time lost due to this would require
further analysis. This can possibly be solved through fully automating the prioritisation process
with statistical data instead of human evaluation. However, this may become costly to implement.
Further analysis into an alternative solution is needed.

7. CONCLUSION

This project demonstrated the effectiveness of the proposed test case prioritisation technique by
significantly reducing the time taken to execute the prioritised regression suite compared to full
regression testing. This also confirms that human evaluation-based and statistics based prioritisation
is a viable technique in reducing testing times. This project also indicated the reusability of
automation scripts which allows easier and faster repeated testing. These findings are significant as
they show how automation and test case prioritisation can greatly improve the regression testing
process and alleviate repetitive tests

52 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Saha, R. K., Zhang, L., Khurshid, S., & Perry, D. E. (2015). An information retrieval approach for
regression test prioritization based on program changes. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, 1, 268-279.

[2] Cibulski, H., & Yehudai, A. (2011). Regression test selection techniques for test-driven development. In
2011 IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, 115-124.

[3] Malhotra, R., Kaur, A., & Singh, Y. (2010). A Regression Test Selection and Prioritization. Journal of
Information Processing Systems, 6(2), 235-252.

[4] Arafeen, M. J., & Do, H. (2013). Test case prioritization using requirements-based clustering. In 2013
IEEE Sixth International Conference on Software Testing, Verification and Validation, 312-321.

[5] Srikanth, H., Williams, L., & Osborne, J. (2005). System test case prioritization of new and regression
test cases. In 2005 International Symposium on Empirical Software Engineering, 10.

[6] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for regression
testing. IEEE Transactions on software engineering, 27(10), 929-948.

[71 Badhera, U., Purohit, G. N., & Biswas, D. (2012). Test case prioritization algorithm based upon
modified code coverage in regression testing. International Journal of Software Engineering &
Applications, 3(6), 29.

[8] Yoon, M., Lee, E., Song, M., & Choi, B. (2012). A test case prioritization through correlation of
requirement and risk. Journal of Software Engineering and Applications, 5(10), 823.

[91 Thomas, S. W., Hemmati, H., Hassan, A. E., & Blostein, D. (2014). Static test case prioritization using
topic models. Empirical Software Engineering, 19(1), 182-212.

[10] Gojare, S., Joshi, R., & Gaigaware, D. (2015). Analysis and design of selenium webdriver automation
testing framework. Procedia Computer Science, 50, 341-346.

[11] Jain, C. R., & Kaluri, R. (2015). Design of automation scripts execution application for selenium
webdriver and test NG framework. ARPN J Eng Appl Sci, 10, 2440-2445,

[12] Vila, E., Novakova, G., & Todorova, D. (2017). Automation Testing Framework for Web Applications
with Selenium WebDriver: Opportunities and Threats. International Conference on Advances in Image
Processing, 144-150.

[13] Cardozo, E., Neto, J., Barza, A., Franga, A. & da Silva, F. (2010). SCRUM and Productivity in
Software Projects: A Systematic Literature Review. EASE.

[14] Mahalakshmi, M., & Sundararajan, M. (2013). Traditional SDLC Vs Scrum Methodology — A
Comparative Study. International Journal of Emerging Technology and Advanced Engineering, 3(6),
192-196.

[15] Saklani, N. K., Singh, P. (2017). Review of Prioritization Techniques in Regression Testing.
International Journal of Computer Science and Mobile Computing, 6(4), 216-221.

[16] Girard, T., Anitsal, M. M., & Anitsal, I. (2008). Online features of the top 100 US retailers' web sites.

The International Journal of the Academic Business World, 2(1), 9-1.

	1. Introduction
	2. Literature Review
	3. Project Execution
	3.1.1. Tools and Techniques
	3.1.3. Test Environment
	3.2. Proposed Architecture of Automation Framework
	3.3. Test Cases for Project
	3.4. Test Case Prioritisation and Selection
	3.5. Automation Test Script Design
	4. RESULTS
	The emailable report generated for the prioritised regression test suite is shown in Figure 4. Figure 4 shows that all test scripts passed, with no failed or skipped tests. The total time taken to execute the test suite was 73.6 seconds and the indivi...
	5. Discussion
	References

