
Natarajan Meghanathan et al. (Eds) : ACITY, AIAA, DPPR, CNDC, WIMNET, WEST, ICSS - 2019

pp. 37-52, 2019. © CS & IT-CSCP 2019 DOI: 10.5121/csit.2019.91704

AUTOMATION AND PRIORITISATION

TECHNIQUE FOR REGRESSION TESTING OF PB

TECH WEB APPLICATION

Ho Joong Kim and Shahid Ali

Department of Information Technology, AGI Institute, Auckland, New Zealand

ABSTRACT

Regression testing is a necessary process to ensure that the existing functionalities of a piece of

software are not affected by new features or fixing defects. However, in the case for the web

application of PB Tech, this process is very repetitive and time-consuming. In order to solve this

issue, automation testing is implemented and a new test case prioritisation technique is proposed

based on a combination of human- evaluation and statistical data of the highest earning features of

retailer websites. Using this technique, a regression test suite is created and the test execution times
are compared against a full regression test suite. The results revealed that the prioritisation

technique is effective at reducing test execution times. This technique could prove to be effective for

use in projects missing defect and requirements documentation.

KEYWORDS

Automation Testing, Regression Testing, Test Case Prioritization

1. INTRODUCTION

In order to add new functions to the PB Tech website or fix defects, it must be ensured that the

changes made do not affect the existing functionalities of the site. Because of this, regression
testing is required. Regression testing is performed to ensure that all existing functionalities are

working as intended and no new defects are introduced due to changes made. However, regression

testing is a very time-intensive and repetitive task when done manually, especially if all
functionalities are to be tested every time there is a change made. In order to solve this problem,

test cases can be automated which would significantly reduce the time and resource costs. The time

and resource cost can further be reduced by prioritising the test cases so that partial regression

testing can be performed instead of having to test all functionalities.

The objective of this project was to create a sample full regression test suite, that represents the

functionalities of PB Tech’s website, and perform test-case prioritisation and selection to form a

prioritised regression test suite. The test cases for both suites were automated and comparative
analysis between the prioritised regression test suite and full regression test suite was performed.

The test cases of this project were prioritised and selected using human evaluation-based test case

prioritisation in addition to a newly proposed technique. Automation test scripts were written to be
compiled in the prioritised regression test suite and the scripts were executed.

38 Computer Science & Information Technology (CS & IT)

The scope of this project was limited to the retail and customer related functionalities and did not

cover the service or educational functionalities that PB Tech also provides. The functionalities that
were automated were sign-in, sign-out, search, adding an item to cart, adding an item to a list,

navigation to the returns page and navigation to the promotions page.

This project report is organized as follow: Section 2 focuses on the literature review of the
automation regression testing. Section 3 is focused on the tools and techniques and research

methodology for the project. Section 4 contains results of execution of the test suites for this

project. Section 5 provides the discussion on the results of this research. In section 6
recommendations for future researches are provided. Finally, in section 7 conclusion to the research

project is provided.

2. LITERATURE REVIEW

In the past there were many researches carried out on regression test case prioritisation with

different techniques implemented. Regression testing is performed to make sure that any changes to
an application do not affect the existing functions. Test case prioritisation is an important technique

to increase efficiency of regression tests and reduce time and costs. These existing prioritisation

techniques are described in multiple different studies.

One study presented a prioritisation technique that filters tests through Information Retrieval and

compares the differences between two program versions, implemented through their tool REPiR

[1]. This resulted in more computational efficient testing that performs better than existing
prioritisation techniques.

Another study used a prioritisation technique through a regression test selection tool called

TestRank, which works through dynamic and natural language analyses of a code base and its test
suite and outputting a list tests ranked by relevance to changes [2]. The results showed that the

technique accelerated retesting during development while maintaining high fault detection.

Similarly, another study proposed using a combination of both prioritisation techniques and
regression test selection [3]. Through an algorithm, the test cases with high priority are prioritised,

and then through another algorithm, the tests are selected for regression. The results showed that the

technique could reduce the number of test cases and therefore the cost and resources for performing

regression testing.

A different prioritisation technique that is proposed showed that instead of relying on software code

information as the majority of regression testing techniques do, suggested incorporating a

requirements-based clustering approach, where textual similarities in requirements a grouped
together and prioritised [4]. Results showed that using information about requirements during the

test case prioritization process could be beneficial.

Another requirements-based prioritisation technique that was recommended was the Priority of
Requirements for Test (PORT) [5]. PORT analyses requirements volatility, customer-assigned

priority, implementation complexity and fault proneness of the requirements, and uses these factors

to prioritise the test cases. Results showed improvement in rate of detection of severe faults, and
that customer priority was a key prioritisation factor contributing to improved fault detection rates.

Another study proposed a prioritisation technique that orders and prioritises the test cases based on

Computer Science & Information Technology (CS & IT) 39

the total code coverage through information gathered about the previous execution of test cases [6].

The results of this approach showed improvement in the rate of fault detection of test suites.

A study is conducted to focus on prioritization technique that orders the test cases in a test suite

such that it minimises the lines of code needed to be re-executed [7]. This results in faster code

coverage, leading to early detection of faults.

A proposed prioritisation approach was using a risk-based test case prioritisation technique that

focuses on new test cases [8]. The priority is decided according to test prioritisation calculated

through requirement analysis and using these values to evaluate relevant test cases and determine
their priority. Results show that the technique is effective in prioritising severe faults.

A different prioritisation technique was proposed that uses a static black-box test case prioritisation

technique that represents test cases using the linguistic data of the test cases [9]. The linguistic data
such as name, identifier and comments are analysed through a test analysis algorithm called topic

modelling to approximate the functionality of a test case and give priority to test cases that test

different functions. The results were that the technique was an effective way to statically prioritize

test cases, while being lightweight.

Due to limitations in documentation and resources, the prioritisation techniques suggested in these

studies cannot be implemented in this project. To apply these techniques, the documentation for the

requirements, version change and defects of PB tech’s web application are needed, which were not
available for access.

3. PROJECT EXECUTION

3.1. Project Planning

In this section we will discuss about tools and proposed architecture of automation framework for

this project.

3.1.1. Tools and Techniques

The regression testing automation was performed using Selenium WebDriver. Selenium is an open

source tool and is considered the most popular for testing web applications [10].The primary reason

to choose Selenium was due to the fact that it is an open-source tool, which means there are no
additional costs required.

An add-on to Selenium WebDriver was also used called TestNG. TestNG is an automation testing

framework that helps with execution of the Selenium test scripts and generates a test execution
report. It provides features such as TestNG listeners for tracking the test scripts that are passed,

failed and skipped, and assertions to compare expected results with actual results during script

execution [11]. TestNG also provides generating of test execution reports, which was necessary for
this project, as one of the drawbacks of Selenium WebDriver is that it does not natively have a test

reporting feature. Parallel execution of tests can also be accomplished with TestNG to further speed

up test execution.

40 Computer Science & Information Technology (CS & IT)

The Page Object Model (POM) pattern was used for writing the automation test scripts. The POM

model allows the mapping of pages of the web application to a page object. This pattern helps to
enhance the tests, making them more maintainable, reducing code duplication, building a layer of

abstraction, and hiding the inner implementation from tests [12]. This is especially helpful for

regression testing, as the page objects are easily accessible and can be reused for different
functionality tests.

3.1.2. Methodology for Project

The methodology chosen for the project was the Agile SCRUM methodology. Scrum was chosen
over more traditional methodologies as it can lead to productivity benefits in projects, an increase in

customer satisfaction, product and process quality, team motivation and cost reduction [13].

Another reason that Scrum was chosen was, Scrum methodology is ideal for rapidly changing and
accumulating requirements and is fast, quick and can adapt to changes easily [14]. This was

suitable for PB Tech’s web application as there were many changes to the requirements occurring

frequently due to customer demand.

3.1.3. Test Environment

The test environment for the project is given below. System: Intel i5-8265U 1.6GHz

NVIDIA GeForce MX130 2GB VRAM
12GB DDR4 memory 1000GB HDD

Test Data: a valid username and password for login is required Operating system: Windows 10

(x64)

Browser: Google Chrome 77.0.3865.90 (x64)

Dependencies: the test scripts written must ensure that each test is independent from each other so

that the true status of the test can be found. Also, to ensure the possibility for running parallel tests

in the future, the tests must be independent.

3.2. Proposed Architecture of Automation Framework

The automation framework proposed for this project is shown in Figure 1. Figure 1 shows that the
architecture implemented for the PB Tech project was the Page Object Model (POM) pattern. The

POM pattern consists of page object classes that allow easier maintenance and increased reusability

of code. Each page of the PB Tech web application was given a separate page object. These page
objects were then reusable for test cases with different functionalities.

Selenium WebDriver was used to send commands through the web browser to the web application

under test. All test cases were run through the Test Suite, which required the use of the TestNG
framework to be implemented.

Computer Science & Information Technology (CS & IT) 41

Figure 1. Proposed Regression Test Suite Automation Framework

3.3. Test Cases for Project

The test cases that were considered for implementing into the regression test suite are given in

Table 1. These test cases were selected through human evaluation and represent the full regression

test suite for PB Tech’s website. Table 1 shows the test cases selected were: the functions of login,
homepage hero image, department header menu, brand header menu, promotions page, clearance

page, search bar, store finder, product returns page, careers page, product wish list, shopping cart

and stock availability checker.

Table 1. Test Cases for Project

3.4. Test Case Prioritisation and Selection

The prioritisation technique implemented was a combination of human evaluation-based test case

prioritisation [15], and a newly proposed prioritisation method based on the results of a study that

analysed the top 100 retailer websites to assess which online features are present in the websites

with the highest earnings [16]. The features of PB Tech’s website were compared and the features
that could be mapped to the features used in the study were selected for prioritisation. The mapped

product related online features were registration/sign-in, wish list, and search; the distribution

related online features were the shopping cart and return policy; and the promotion related features
were promotions/special offers. For the features that were not selected for the prioritised regression

suite, only human-based test case prioritisation is implemented, where test cases are prioritised

according to human evaluation.

42 Computer Science & Information Technology (CS & IT)

Table 2. Prioritised Test Cases

The test cases were then assigned a priority according to the prioritisation technique, shown in

Table 2. Table 2 shows the test cases prioritised according to the feature’s earnings and they were

assigned as high priority. The test cases such as product navigation by brand and department,
clearance products page, store finder, careers page and stock availability check were assigned as

medium priority while the homepage hero image was assigned as low priority.

After the test cases were prioritised accordingly, test case selection was performed. This was done
by selecting the test cases that were given a high priority. These were compiled into the prioritised

regression test suite.

3.5. Automation Test Script Design

Automation test scripts were created for each of the test cases selected for this project. An example

of this is shown in Figures 2 and 3. Figure 2 displays the automation script of test case TC01,

created according to the TestNG framework. This class calls an instance object of the Account page
class, found in Figure 3. The automation scripts were structured using the POM pattern, which

enables the page object classes to be reusable for other tests in the future.

Computer Science & Information Technology (CS & IT) 43

Figure 2. Account Page Object Class

44 Computer Science & Information Technology (CS & IT)

Figure 3. Sign-In Test Class

Computer Science & Information Technology (CS & IT) 45

Two different test suites were created in the process: the full regression test suite with all test cases,

and the prioritised regression test suite with only the prioritised test cases. The test suites were then
executed and TestNG reports were generated.

4. RESULTS

The results of execution of the test suites results in the generation of TestNG reports. The reports

that were analysed during this project were the emailable report, test times report and the method
execution chronological order report. The emailable report contains the total time taken to run the

suite, the individual times taken for each test and the number of passed, failed and skipped tests.

The test times report contains the total running time and the individual test running time in
decreasing order. The methods in chronological order report shows in detail which method of each

test is executed and at what times they are started. It also shows the start and end time of the test

including the driver setup and closure, which the other reports do not show.

The emailable report generated for the prioritised regression test suite is shown in Figure 4. Figure
4 shows that all test scripts passed, with no failed or skipped tests. The total time taken to execute

the test suite was 73.6 seconds and the individual times taken for each test is also shown.

Figure 4. Prioritised Regression Test Suite Emailable Report

The result of the execution of the full regression test suite is given in Figure 5. Figure 5 shows that

all tests passed and the time taken to execute was 122.5 seconds. By prioritising the test cases, there
was a reduction of 48.8 seconds or 40% in total execution time.

The test time report, in decreasing order, of each test of the prioritised regression test suite are

shown in Figure 6. Figure 6 shows that the list functionality test took the longest at 12.7 seconds

and the returns page took the shortest time at 3.3 seconds.

46 Computer Science & Information Technology (CS & IT)

The times taken for the tests from the full regression test suite are shown in Figure 7. Figure 7

shows that the list functionality test also took the longest at 12.7 seconds and the find by brand test
took the shortest time at 3.4 seconds. However, the total running time is given in minutes, which is

imprecise compared to the times shown in the emailable reports.

Figure 5. Full Regression Test Suite Emailable Report

Computer Science & Information Technology (CS & IT) 47

Figure 6. Times for Prioritised Regression Test Suite

Figure 7. Times for Full Regression Test Suite

48 Computer Science & Information Technology (CS & IT)

The execution times of each method of the prioritised regression test suite, in chronological order,

are given in Figure 8. Figure 8 shows that the initial driver setup methods of the tests were all
executed at the start and took 84.4 seconds to complete, the driver closure methods took 3.8

seconds and the total method running time was 161.8 seconds.

The times of each method of the full regression test suite is given in Figure 9. Figure 9 shows that
the driver setup methods took 168 seconds to complete, the driver closure methods took 8.1 seconds

and the total method running time 298.6 seconds.

The decrease in time taken for both the setup and closure methods is around 50%. This indicates
that there is a linear increase proportional to the increase in tests executed. There also is a decrease

in the total method execution time by 46%.

Computer Science & Information Technology (CS & IT) 49

Figure 8. Prioritised Regression Test Suite Methods in Chronological Order

50 Computer Science & Information Technology (CS & IT)

Figure 9. Full Regression Test Suite Methods in Chronological Order

5. DISCUSSION

The results show that the compared to the full regression test suite, the time taken to run the

prioritised regression test suite was significantly reduced. As the full regression test suite continues

to grow from new features, the time saved by the proposed technique would also continue to

increase.

Computer Science & Information Technology (CS & IT) 51

The results show that the execution of the tests in both the full regression test suite and the

prioritised regression test suite were all passed. The execution results given from a TestNG test can
result in a passed, failed or skipped status. During the execution, if a test failed, then the other tests

that are dependent on the same test would have been skipped, which would have affected the results

and made the time measurements inaccurate. However, this was prevented by making all the tests
independent, and the result of this project was that all tests passed with no failed or skipped tests.

A comparison with previous studies is difficult as the performance indicators used in those studies
are based on comparing fault detection rate with previous versions. This is the case for many of the

studies, such as in the study of Saha et al., where they used Average Percentage Faults Detected as

a metric for prioritization effectiveness [1]. However, in this project, the sole performance indicator
was the duration of the test suites. Therefore, it is not possible to give a direct comparison with the

prioritisation techniques found in the previous studies.

As an alternative to the many different test case prioritisation techniques that exist, the technique

proposed in this report was able to reduce the time taken without the need for fault rate information
or requirements analysis. This technique could be helpful as an alternative method to use for

projects that are missing the required documentation in order to compare the fault detection rate or

perform requirements based test case prioritisation techniques.

6. RECOMMENDATIONS

During this project, one of the most prominent problems encountered was the lack of
documentation of PB Tech’s web application requirements, defects and complete regression suite.

Due to this, there was no feasible method to implement other test case prioritisation techniques to

compare to. This was due to having no access to PB Tech’s project and systems. The only solution

to this issue to is by gaining authorisation to access their systems and documentation.

Another potential issue that was observed was the automation tests were only executing 7 test cases
but took 73.6 seconds to complete. This could be due to hardware limitations of the test

environment that was implemented. A potential solution is to upgrade the hardware to improve the

performance of the tests. Another solution could be to execute the tests in parallel, which could

save more time.

A factor that needs consideration is, the time taken to perform a human evaluation-based test case

prioritisation technique may be significantly slower compared to other prioritisation techniques and
could offset the overall time saved. To measure the amount of time lost due to this would require

further analysis. This can possibly be solved through fully automating the prioritisation process

with statistical data instead of human evaluation. However, this may become costly to implement.
Further analysis into an alternative solution is needed.

7. CONCLUSION

This project demonstrated the effectiveness of the proposed test case prioritisation technique by

significantly reducing the time taken to execute the prioritised regression suite compared to full
regression testing. This also confirms that human evaluation-based and statistics based prioritisation

is a viable technique in reducing testing times. This project also indicated the reusability of

automation scripts which allows easier and faster repeated testing. These findings are significant as

they show how automation and test case prioritisation can greatly improve the regression testing
process and alleviate repetitive tests

52 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Saha, R. K., Zhang, L., Khurshid, S., & Perry, D. E. (2015). An information retrieval approach for
regression test prioritization based on program changes. In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, 1, 268-279.

[2] Cibulski, H., & Yehudai, A. (2011). Regression test selection techniques for test-driven development. In

2011 IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, 115-124.

[3] Malhotra, R., Kaur, A., & Singh, Y. (2010). A Regression Test Selection and Prioritization. Journal of

Information Processing Systems, 6(2), 235-252.

[4] Arafeen, M. J., & Do, H. (2013). Test case prioritization using requirements-based clustering. In 2013

IEEE Sixth International Conference on Software Testing, Verification and Validation, 312-321.

[5] Srikanth, H., Williams, L., & Osborne, J. (2005). System test case prioritization of new and regression

test cases. In 2005 International Symposium on Empirical Software Engineering, 10.

[6] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for regression

testing. IEEE Transactions on software engineering, 27(10), 929-948.

[7] Badhera, U., Purohit, G. N., & Biswas, D. (2012). Test case prioritization algorithm based upon

modified code coverage in regression testing. International Journal of Software Engineering &

Applications, 3(6), 29.

[8] Yoon, M., Lee, E., Song, M., & Choi, B. (2012). A test case prioritization through correlation of

requirement and risk. Journal of Software Engineering and Applications, 5(10), 823.

[9] Thomas, S. W., Hemmati, H., Hassan, A. E., & Blostein, D. (2014). Static test case prioritization using
topic models. Empirical Software Engineering, 19(1), 182-212.

[10] Gojare, S., Joshi, R., & Gaigaware, D. (2015). Analysis and design of selenium webdriver automation

testing framework. Procedia Computer Science, 50, 341-346.

[11] Jain, C. R., & Kaluri, R. (2015). Design of automation scripts execution application for selenium

webdriver and test NG framework. ARPN J Eng Appl Sci, 10, 2440-2445.

[12] Vila, E., Novakova, G., & Todorova, D. (2017). Automation Testing Framework for Web Applications

with Selenium WebDriver: Opportunities and Threats. International Conference on Advances in Image

Processing, 144-150.

[13] Cardozo, E., Neto, J., Barza, A., França, A. & da Silva, F. (2010). SCRUM and Productivity in

Software Projects: A Systematic Literature Review. EASE.

[14] Mahalakshmi, M., & Sundararajan, M. (2013). Traditional SDLC Vs Scrum Methodology – A

Comparative Study. International Journal of Emerging Technology and Advanced Engineering, 3(6),

192-196.

[15] Saklani, N. K., Singh, P. (2017). Review of Prioritization Techniques in Regression Testing.

International Journal of Computer Science and Mobile Computing, 6(4), 216-221.

[16] Girard, T., Anitsal, M. M., & Anitsal, I. (2008). Online features of the top 100 US retailers' web sites.

The International Journal of the Academic Business World, 2(1), 9-1.

	1. Introduction
	2. Literature Review
	3. Project Execution
	3.1.1. Tools and Techniques
	3.1.3. Test Environment
	3.2. Proposed Architecture of Automation Framework
	3.3. Test Cases for Project
	3.4. Test Case Prioritisation and Selection
	3.5. Automation Test Script Design
	4. RESULTS
	The emailable report generated for the prioritised regression test suite is shown in Figure 4. Figure 4 shows that all test scripts passed, with no failed or skipped tests. The total time taken to execute the test suite was 73.6 seconds and the indivi...
	5. Discussion
	References

