International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor
Networks (GRAPH-HOC) Vol.9, No.1, March 2017

THE NEIGHBORHOOD BROADCAST PROBLEM
IN WIRELESS AD Hoc SENSOR NETWORKS

Stefan Hoffmann and Egon Wanke

Heinrich-Heine-University Diisseldorf, Germany

ABSTRACT

This paper considers the following NEIGHBORHOOD BROADCAST problem: Distribute a message
to all neighbors of a network node v under the assumption that v does not participate due to
being corrupted or damaged. We present practical network protocol that can be used completely
reactive. It is parameterized with a positive integer k € N and it is proven to guarantee delivery for
k > 2d—1, if node v is d-locally connected, which means that the set of nodes with distance between
1 and d to v induces a connected subgraph of the communication graph. It is also shown that the
number of participating nodes is optimal under the restriction to 1-hop neighborhood information.
The protocol is also analyzed in simulations that demonstrate very high success rates for very low
values of k.
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1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number of small devices that are
deployed across a geographic area to monitor certain aspects of the environment. These
sensor nodes are able to communicate with each other through a wireless communication
channel. As a result of their size the resources of the sensor nodes are strongly limited in
terms of available energy, which leads to a very limited range of the radio transmitters.
Therefore the nodes also act as routers to relay messages on multi-hop routing paths,
which have to be discovered and maintained using a routing protocol such as the ones
proposed in [1, 2, 3, 4, 5, 6, 7, 8, 9].

WSNs are usually modeled as undirected communication graphs that contain one vertex
for each sensor node and an edge between two vertices if and only if the corresponding
sensor nodes are able to communicate with each other. From a technical point of view,
modeling a WSN as a directed graph is closer to reality, because physical radio links are not
necessarily symmetric [10, 11]. However, the usage of undirected graphs is well justified by
the observation that low-level communication protocols for wireless transmissions currently
in use, such as IEEE 802.11 or Bluetooth, require symmetry for reliable data transmission
via acknowledgements.

A task that arises naturally in WSNs is the following NEIGHBORHOOD BROADCAST: For
a sensor node v, a neighbor s of v has to transmit a message to all other neighbors of v
under the assumption that v itself does not obey any of the implemented network proto-
cols. This problem occurs during collaborative fault detection [12] where the neighbors of
a sensor node v want to exchange their observations in order to decide whether v should
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be excluded from the network due to faults or misbehavior. The NEIGHBORHOOD BROAD-
CAST problem also occurs during the exclusion of a misbehaving or faulty sensor node v
from the network, because every neighbor of v has to be instructed not to communicate
with v anymore and it can be applied, for example, to the detection algorithm presented
n [13]. A practical NEIGHBORHOOD BROADCAST algorithm also has applications in reac-
tively repairing unicast routing paths or multicast routing structures after node failures:
If there is a sufficient amount of redundancy within the routing information to determine
the successor(s) of a failed node v, the routing task can be accomplished by broadcasting
the message across the neighborhood of v.

In this paper we present the k-Hop Bouncing Flood (k-HBF) network protocol, which
is based on a parameter k € N, to distribute messages across the neighborhood of a
sensor node. The k-HBF protocol can be used in a completely reactive manner, i.e. it
does not need any initialization or maintenance. It only requires the nodes to know
their own neighborhood. Alternatively, an optional initialization phase can be used to
determine the optimal parameter k that guarantees successful delivery. Both approaches
are discussed in detail in this paper. Furthermore the protocol is easy to implement in a
distributed environment and therefore ready for practical applications. k-HBF is analyzed
theoretically and it is proven that the protocol is guaranteed to deliver a message to every
neighbor of a node v, if k > 2d—1 and v is d-locally connected in the communication graph
G, which means that the set of nodes with hop-distance between 1 and d to v induces a
connected subgraph of G. It is also shown that any invocation of the protocol results in
the transmission of at most k - A(G)**1 messages, where A(G) is the maximum vertex
degree of the communication graph. This means that, for any fixed parameter k, the
k-HBF protocol only requires communication within a localized area of the network. In
fact, k-HBF distributes the message to all nodes with hop-distance at most k+ 1 to v and
it is also proven that this is optimal, i.e. no network protocol that is restricted to the same
topology information can guarantee delivery to all neighbors of a d-locally connected node
v, unless every node with hop-distance at most 2d to v receives at least one message.

Additionally we present a linear time algorithm to solve the LOCAL CONNECTIVITY Dis-
TANCE (LCD)

problem, which asks for the smallest positive integer d € N such that a given vertex v is
d-locally connected in a given undirected graph G. This linear time algorithm is based on
global topology knowledge, but it can also be implemented as a distributed algorithm in
a WSN, an option that is also discussed in this paper. Therefore this algorithm can be
used to determine the optimal parameter k that is required for the success of the k-HBF
protocol.

Finally, an experimental analysis is performed and the simulation results demonstrate
that the k-HBF protocol successfully performs a NEIGHBORHOOD BROADCAST in almost
all cases for very low values of k. The computations are performed on several different
network topology models commonly used in wireless network research. As a side effect,
this analysis demonstrates a significant topological difference between these models.

Regarding related work: In [12] the authors focus on building data aggregation trees that
span the neighborhood of a sensor node v. To discover and initially contact all neighbors
of v they implicitly try to perform a NEIGHBORHOOD BROADCAST by briefly describing
the usage of limited range flooding. However, sending a message with the technique they
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mention is only guaranteed to reach all neighbors of v, if the flooding range is high enough
to flood the entire network, even in cases where it is not necessary to do so. In contrast,
the k-HBF protocols uses more sophisticated extensions to the flooding protocol such as
hop counter resets and allowing nodes to relay messages multiple times. The general
multicast problem in wireless ad hoc networks, i.e. the task of distributing message to
a known set of nodes, has received tremendous attention in the scientific community
and countless proposals for protocols have been made. Therefore we refer the reader to
[14, 15] for an overview on this topic. While these multicast protocols are theoretically
suitable for the NEIGHBORHOOD BROADCAST task, they require the initiating node to
know the neighborhood in which the message is to be distributed and this requires constant
maintenance, especially when the network topology is subjected to frequent changes. And
of course the entire network can be flooded to distribute a message across the neighborhood
of a node, for example by using the protocols in [16, 17, 18].

The rest of the paper is organized as follows: Section 2 introduces the necessary termi-
nology and notations before the k-HBF protocol is presented and evaluated in section 3.
Section 4 is dedicated to solving the LCD problem and the experimental results are given
in section 5 before the paper in concluded in section 6.

2. BAsic TERMINOLOGY

A pair G = (V, E) is an undirected graph with vertex set V and edge set E, if V is a finite
set and F C {{u,v} | u,v € V,u # v}. The vertex degree deg(v) of a vertex v € V' is given
by deg(v) := |{e € E | v € e}| and the mazimum vertex degree of G is denoted by A(G).
Two distinct vertices u,v € V are called adjacent, if {u,v} € E. A vertex v € V and an
edge e € E are called incident, if v € e.

A graph G’ = (V' F’) is a subgraph of a graph G = (V,E), if V' CV and E' C E. For a
subset of vertices U C V of an undirected graph G = (V, E) the graph G|y := (U, E|y),
E|ly :={{u,v} € E | u,v € U} is called the subgraph of G induced by U.

A path of length k — 1 between two vertices v1 and vy in an undirected graph is a sequence
of vertices vi,...,v; such that Vi € {1,...,k — 1}: {vj,viy1} € E. G is connected, if
there is a path between every pair of vertices. A connected component of G is a maximal
induced subgraph of G that is connected. A separation vertez is a vertex v € V such that
the induced subgraph G|y ) has more connected components than G.

A path uy,...,ug, k > 3 in an undirected graph G = (V, E) is a cycle if {ug,u1} € E. A
graph without cycles is a forest and a connected forest is a tree.

The distance dg(u,v) between two vertices u and v in an undirected graph G is the
smallest integer k£ such that there is a path of length k& between v and v in G. The set
N&(v) == {u € V | d(u,v) = d} is called the d-hop neighborhood of a vertex v € V and
N&[v] := UF_| N} (v) is the set of vertices with distance between 1 and d to v. If the graph
G is obvious from the context the notations d(u,v), N%(v) and N¢[v] can be used instead
of dg(u,v), N&(v) and NZ[v].

The diameter of an undirected graph G is the maximum distance between any two vertices
of G.
3
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Definition 1. Let d € N be a positive integer, G = (V, E') an undirected graph and v € V
a vertex. Vertex v is d-locally connected in G, if N&[v] induces a connected subgraph of
G.

Definition 2. For an undirected graph G = (V| E) and a vertex v € V, the smallest
positive integer d;, € N such that v is dyip-locally connected in G and not (dpin — 1)-
locally connected in G is called the local connectivity distance of v in G.

Throughout this paper the terms node and werter are used interchangeably with node
referring to a physical instance of a sensor node, while vertex refers to the mathematical
counterpart within the graph model.

In section 2 a practical network protocol for the following task is presented and analyzed.

NEIGHBORHOOD BROADCAST

Given: A WSN with undirected communication graph G = (V, E') and two nodes
v €V and s € N} (v).

Task:  Distribute a message originating at node s to all nodes in N} (v) without
participation of v.

During the analysis it is established that this NEIGHBORHOOD BROADCAST task is closely
related to the local connectivity distance and therefore the following LCD problem is
considered in section 4.

LocaL CONNECTIVITY DISTANCE (LCD)

Given: An undirected graph G = (V, E) and a vertex v € V.
Task:  Compute the local connectivity distance of v.

3. K-Hoprp BounciNGg FLoOD

Obviously, distributing a message M to all neighbors N'!(v) of v without the participation
of v itself is possible if and only if v is not a separation vertex of the communication graph
G = (V, E). But even if v is not a separation vertex, it might be necessary to broadcast M
throughout the entire network in order to distribute it to all neighbors N!(v): Consider
the cycle C,, with n vertices as a network topology:

Cp = ({v1, .., on}, {{viyvig1 | 1 <i <n}}U{vn,v1})

If any one of the nodes vy, ...,v, cannot be used to relay M, then the only remaining
path between both neighbors of this node traverses all other nodes and therefore every
multicast algorithm has to distribute M to all nodes. However, theoretical worst cases
like this are rather unlikely in a real sensor network, which is why a multicast algorithm
with a better performance than flooding the entire network is desirable for this scenario.

The k-Hop Bouncing Flood (k-HBF) protocol uses the idea of carrying a transmission
counter i; in the message header that restricts the number of retransmissions for each

message: The forwarding is stopped as soon as i; reaches the given parameter k € N.
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Figure 1: 2-HBF example on G = (V| E): Node u initiates the protocol for its neighbor
v to distribute M to N} (v) = {u,z,y,w,z}. The green (g) nodes receive M due to their
distance to u being at most 2 in G|y (), the blue (b) nodes receive M due to x resetting
the transmission counter i, the purple (p) nodes due to the reset at y and the yellow (y)
nodes due to the reset at w.

This disseminates the message to all nodes of distance at most k£ to the node s, who
initiated the protocol. This range limitation of the flooding process reduces the number
of nodes transmitting the message, but the protocol is no longer guaranteed to deliver
the message to all targets, as discussed above. Utilizing only information already present
at the individual sensor nodes, the success probability can be increased considerably by
resetting i; to 0 at every node that is adjacent to v, which leads to M “bouncing” along
the neighbors of v, see Figure 1 for an example. The idea is to distribute M not only to all
nodes of distance at most k to s, but to all nodes with distance at most k to any neighbor
of v or, equivalently, to every node with distance at most k£ + 1 to v. To achieve this it
is not sufficient to reset i; at every neighbor of v: For example the node r in Figure 1:
Before w resets the transmission counter to 0 and sends the message to its neighbors, node
r already received M with counter value 2 from s, but r is required to relay the message
from w again in order to deliver it to the yellow nodes. Unlike conventional flooding it is
therefore necessary that nodes can relay messages multiple times and simply marking a
message M as “already seen” by a particular node to prevent infinite transmission loops by
not relaying M again based on this mark is not sufficient anymore. In the k-HBF protocol,
each node r that received M keeps track of the minimum ¢,,;, , of all transmission counter
values contained in copies of M that reached r. Node r then relays M again at a later
time, if and only if the new transmission counter is strictly lower than 7,y ,, because in
this case it might reach additional nodes. This modification guarantees that every node
within the k-hop neighborhood of a node that performed a transmission counter reset will
eventually receive the message, while ensuring that the transmissions terminate due to the
observation that every node can transmit a message at most k times, before the minimum

transmission counter for this node reaches 0.
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3.1. Distributed Implementation

One of the biggest challenges for real world deployment of sensor networks is the testing
and debugging of implemented algorithms in a realistic environment, which introduces
additional problems that are usually not considered during simulation. In recent history
there have been several real world experiments that demonstrated this issue [19, 20, 21, 22]
and there has also been intensive work on testbed environments suitable to tackle this
problem [23, 24, 25, 26, 27].

From this point of view, the k-HBF protocol offers the advantage of an easy and straight-
forward distributed implementation, which is demonstrated by the pseudo code given in
Algorithm 1 for the main part of the protocol.

Algorithm 1 k-HBF protocol: Distributed implementation at node u

1: m<+1 > Counter for message ids
2: h < HashMap >h:IDx NODE — N
3: procedure SENDPACKET(m, s, v, k,i;, M,T)
4: Pass data to link layer:
5: Send (m, s, v, k,is, M) to all nodes in T C N*(u)
6: end procedure
7: procedure STARTHBF (k, v, M)
8: m+m+1
9: SENDPACKET(m, u, v, k,0, M, N*(u))
10: end procedure
11: procedure RECEIVEPACKET(m, s, v, k, iz, M)
12: imimu — 00
13: if h contains (m,s) then
14: iminu < h((m,s))
15: end if
16: if i, < imin,u then
17: if v € N'(u) then > neighbor resets 7;
18: SENDPACKET(m, s, v, k,0, M, N'(u))
19: h((m,s)) = —o0
20: return
21: end if
22: if i; < k then
23: SENDPACKET(m, s,v, k,i; + 1, M, N*(u))
24: h((m,s)) « i,
25 end if
26: end if

27: end procedure

Packets sent by the algorithm wrap around a given message M and add some header fields
required for the protocol itself in the format (message id, initiator s, target v, k, i, M),

where the message id m is unique for each node s, meaning that (m, s) provides a unique
message identifier throughout the network. The message header also contains the node v
for which the protocol was initiated as well as the distance parameter k and the transmis-

sion counter ;.
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Two extensions of the protocol arise from techniques commonly used in computer networks:

To ensure long-term stability of the network, the data structure used to organize the
mapping between message identifiers and minimum transmission counters at each node
should be implemented based on a soft-state approach in the sense that the entries are
deleted after a reasonable amount of time to avoid memory leaks.

In the next section it is shown that k-HBF is guaranteed to deliver M to all neighbors of
v, if k > 2d —1 and v is d-locally connected. Therefore the optimal choice of £ depends on
the local connectivity distance of v, which is usually unknown. If the application is able to
decide whether a broadcast attempt was successful (which is possible via acknowledgement,
for example, if [N (v)| is known or the target is one particular neighbor of v as in the case
of unicast route repair), the protocol can obviously be extended by successively increasing
the distance parameter k as long as the previous attempt was unsuccessful. According
to common practice one would double k after each failed attempt to achieve exponential
growth of the search area, which compensates for a potentially fast changing network
topology.

Another possible extension that allows dynamic adaptation of the k-HBF protocol after
the first execution for a node v is discussed at the end of section 4.

3.2. Analysis

This section evaluates the k-HBF protocol in terms of message complexity and success
guarantee. It is shown that the number of messages transmitted by an invocation of k-
HBF in a WSN with communication graph G is in k- A(G)**!. Furthermore a sufficient
condition for the delivery guarantee is proven: k-HBF is guaranteed to deliver M to
all neighbors of v, if £ > 2d — 1 and v is d-locally connected in G. Finally, it is also
proven that the set of nodes participating in the k-HBF protocol is optimal with respect
to all possible protocols for NEIGHBORHOOD BROADCAST that are restricted to the same
topology information.

Theorem 1. Let G = (V, E) be an undirected graph and k € N a positive integer. The
k-HBF protocol, initiated by a neighbor s € N'(v) for a node v € V and a message M,
transmits at most k - A(G)¥! messages.

Proof. Every neighbor v € N'(v) performs a limited range flooding of M with range k
and therefore at most A(G)* nodes receive the message due to the hop counter reset at
node u. Furthermore v has at most A(G) neighbors, which means that at most A(G)*+!
nodes receive M during the execution of the k-HBF protocol. Finally, every node w can
relay M at most k times, because afterwards the minimum transmission counter 7, .
is either 0 or —oc. In conjunction it follows that & - A(G)¥*! is an upper bound for the
number of transmitted messages. O

The Theorem above demonstrates a theoretical worst case for number of messages trans-
mitted the k-HBF protocol, assuming that every node in the considered part of the network
actually has the maximum vertex degree A(G). Furthermore it assumes that the sets of
nodes reached by each neighbor of v are pairwise disjoint, which is not possible, if v has
more than one neighbor. Therefore the average number of transmitted messages in any

real world application should be considerably lower than the presented upper bound. Of
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course the number of transmitted packets can be higher due to retransmissions, acknowl-
edgements etc.

The following Lemma and the subsequent Theorem are used to establish the connection
between the k-HBF protocol and the local connectivity distance of the node v it is executed
for.

Lemma 1. Let G = (V, E) be an undirected graph and d € N a positive integer. Let v € V
be a vertex that is d-locally connected in G. Then, for every pair of vertices s,t € N'(v),
there is a path p = wq,...,w; in G|V\{v} between wi; = s and wg = t such that for all
i€ {l,...,k—2d+ 1} the path w;, w;y1,..., w1241 of length 2d — 1 contains at least
one vertex of N'(v).

Proof. Let p’ = uq, ..., u, be a shortest path between ug = s and u,, =t in H := G|Nd[v}.
Since v € V is d-locally connected such a path exists and we also know that for every
vertex u on p’ the distance dg(u,v) is at most d.

Path p’ will now be altered successively to fulfill the required condition as follows: Let

[ be the minimum index such that the path wu;,...,u;424—1 does not contain a vertex
adjacent to v. Now replace uy, ..., u 1041 with a path u;,...,s',... uj04—1 for a vertex
s € N'(v) such that both paths uy,...,s" and &', ... u; 041 have length at most 2d—1 as

follows. This proves the Lemma, because during each iteration the length of a consecutive
subsequence of the current path that violates the required condition is strictly shortened.

Let dy, ..., dj124—1 be the sequence D of distances to vertex v as defined by d; := dg (v, u;)
forie{l,...,l+2d—1}. Furthermore let j € {{+1,...,l4+2d—1} be the minimum index
such that d; is the second occurrence of this particular distance in D, meaning that there
is an index j’ < j with d;; = d;. Since all distances d; are between 2 and d by definition
of p’ it follows that j <[ +d — 1.

Now let v, s, qo, . .. ,qd,—1,u; be a shortest path between v and u; in G. Note that p’ does
not contain vertex s’, because p’ contains a shortest path p” between w;_; and wu; such
that p” contains vertex w;. Therefore dy(s’,u;) = dj —1 < dg(w—1,u;). Then it holds
that the length L(q) of the path ¢ = w, ..., uj,q4,—1,-..,q2,s" is at most 2d — 2, because

L(Q) = L(Ul,...,Uj) =+ L(uj’de—l)"'vq%sl)
< L(ul,...,uH_d_l) + dj*l < d—-1 + dj*l < 2d-2.
Furthermore it also holds that L(q’) for

/ /
qg =38,42,---,4d;—1,Uj, Uj+1, - .- Ul4+2d—1

is at most 2d — 1, because

L(¢)=L(s, q2, ..., qa,—1,uj) + L(uj, ujt1, . . . try2d4—1)
< L(ul,l, ULy o ,Uj) + L(’U,j, Ujtly .- ,qud,l) = L(’U,l,l, ULy ooy ul+2d,1) = 2d.

O

Theorem 2. Let d € N be a positive integer and v € V' a vertex with local connectivity
distance d in an undirected graph G = (V, E) that represents a WSN. Then the (2d — 1)-
HBF protocol, initiated by a neighbor s & Né(v) for node v and a message M, distributes

M to all nodes in NZ¥(v) even if v itself does not relay any messages.
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Figure 2: Proof of Lemma 1: The dashed lines represent paths of the noted lengths

Proof. Let t € N}(v) be an arbitrary neighbor of v. According to Lemma 1 there is a
path p between s and ¢ in G|y f,} such that every sub-path of length 2d — 1 contains at
least one neighbor of v. Therefore the message sent by s is relayed along p, because the
transmission counter 4; is reset after at most 2d — 1 transmissions and hence t receives M.
And since every neighbor of v receives M and resets the transmission counter once, M is
distributed to all nodes with hop-distance at most 2d — 1 to any neighbor of v, i.e. to all
nodes with hop-distance at most 2d to v. ]

Although the d-hop neighborhood of v is connected, it is necessary to distribute the
message across the 2d-hop neighborhood of v, unless there is additional information about
the network topology available. This is shown in the next Theorem.

Theorem 3. Let G = (V, E) be an undirected graph that represents a WSN, d € N a
positive integer and v € V' a vertex with local connectivity distance d.

Furthermore let P be a distributed algorithm satisfying the following properties:
1. P is initiated by a single node s € Né(v) to distribute a message M.
2. P does not run on node v.

3. P is deterministic and the only information P utilizes about the network topology is
the integer d and the knowledge about the 1-hop neighborhood N} (u) at each node w.

4. P terminates after a finite amount of steps and at that point every node in NZ(v)

received M.

Then P transmits at least one message to every node in
2d

NPl = | Né).
i=1

Proof. 1t is first shown that every node u € Ng;d(v) has to receive at least one message.
9
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Let H := G|y, be the induced subgraph of G' that does not contain v and consider the
graph
G = (V,EU{u,v}).

Vertex v is d-locally connected in G’: Since

NEw) = | M= U N,
S'ENE(v) s'ENE(v)

there is a path wq,...,wsq between wy = s’ for some vertex s’ € N(l;(v) and wyy = u in
H. And for all 1 <4 < 2d it holds that dg (v, w;) < d, because dp(s',w;) < d — 1 for
je{l,...,d} and dy(u,w;) <d—1for je{d+1,...,2d}.

Vertex v is not (d—1)-locally connected in G’: Every vertex s’ € N/, (v) satisfies d (s, u) >
2d — 1, because dg(v,u) = 2d. Therefore every path wi, ..., w; between wy = s’ for some
s' € NA(v) and w; = w in H satisfies [ > 2d and thus it holds that dg(wg,s’) > d — 1
and dp(wq,u) > d — 1. But then there is no path between neighbor u € N}, (v) and any
neighbor s’ € N} (v) in G,|Ng,_1(v)7 meaning that v is not (d — 1)-locally connected in G'.

We will now compare the execution of P initiated at node s in G to the execution of P
initiated at node s in G’: Since v is d-locally connected and not (d — 1)-locally connected
both in G and G, the integer d is identical in both executions of P and by property 3 these
two processes can only differ from each other due to a difference in the 1-hop neighborhood
information at some node. However, the 1-hop neighborhood in G and G’ is identical at
all nodes except for v and v and P does not have access to the information at node v by
property 2. Therefore both executions are identical until P sends a message to node u in
G’, which happens because of property 4, and thus u also receives a message in G.

Knowing that every node in Ng;d(v) has to receive at least one message, it follows that
every node in Néd [v] has to receive at least one message, because it is possible to generate
a network topology G” that satisfies the preconditions of the Theorem while forcing every
node in Né‘,j,_l[v] to relay (and therefore receive) at least one message in order to reach
all nodes in N2%(v): G” contains all vertices and edges from G and for every vertex
w e Nédil[v] with distance x := dg(v, w) one additional vertex w’ that is connected to w
via a path of length 2d — . Then w’ € N2 (v) and therefore w has to receive at least one
message, which implies that w and all nodes on the path between w and w’ have to relay
that message. O

4. THE LCD PROBLEM

After having established that the (2d —1)-HBF protocol successfully distributes a message
within the neighborhood N'(v) of a sensor node v, if vertex v is d-locally connected in
the communication graph G = (V, E), this section investigates how to algorithmically
determine the local connectivity distance of a vertex, i.e. the minimum integer d > 0,
such that a given vertex v of an undirected graph is d-locally connected.

The LCD problem can obviously be solved in polynomial time by utilizing standard meth-
ods from graph theory as follows:

For a positive integer i € N the neighborhood N*[v] = Uj’:1 NJ(v) can be determined
in time O(|V| + |E|) by a slightly modified breadth first search, started at vertex v,
10
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that keeps track of the distance d(v,u) for every vertex u € V. Afterwards the induced
subgraph G| [, can be constructed in time O(|V'[+|E|) and tested for connectivity using,
for example, another breadth first search. The local connectivity distance can now be
computed by performing this test consecutively for all s € {1,...,|V|} in ascending order
until the first connectivity test yields a positive result. The overall running time of this

straightforward solution is obviously bounded by O(|V|- (|[V |+ |E|)) = O(|V |+ |V |- |E]).

The remainder of this section is dedicated to a more efficient solution for the LCD problem
that additionally provides the possibility for a distributed implementation and therefore
is more interesting in the context of WSNs. The algorithmic idea is based on the following
Theorem that is formulated using the terminology introduced in the next definition.
Definition 3. Let » € V be a vertex in an undirected graph G = (V, E). A shortest path
tree for G at root r is a tree T' = (V, Er), Er C E such that dg(r,v) = dr(r,v) for all
vertices v € V.

A tree T" = (V', E') of forest T'[y\(»y is called a branch of T'. The root of branch T" is the
(uniquely determined) vertex v’ € NA(r) that belongs to 17, i.e. v € V'. For all vertices
v e V\ {r} let r(v) denote the root of the branch of 7" that contains v.

Furthermore, an edge e = {u,v} € E is called bridge with respect to T, if u and v belong
to different branches of T'

Also see Figure 3 for an example of the terms and notations introduced in this definition.

Figure 3: Example for Definition 3: Left: Graph G = (V, E) with a shortest path tree
T = (V, Er) at root r (thick black edges). The dashed red edges are bridges with respect
to T. Right: Forest T'|y\ () that defines four branches of T, induced by the vertex sets
{a,e, f,1},{b},{c,g,k,l} and {d,h}. The root r(e) of e is vertex a, the root r(b) of b is
vertex b, the root r(k) of k is vertex c etc.

Theorem 4. Let G = (V, E) be an undirected graph, r € V' a vertex and T a shortest
path tree for G at root r. Furthermore let d € N be a positive integer and B C E the set
of bridges with respect to T'.

Every edge e € B is given a positive integer weight representing the maximum distance
from 7 to one of the vertices incident to e. Formally, define a mapping f : B +— N by

fHu,v}) = maz{dp(r,u),dr(r,v)}.

Additionally, define a set of edges F1 between neighbors of r with positive integer weights
11
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w : E1 — N based on the bridges B and their weights f as follows:

By = {{r(u),r()} | {u,v} € B}
w{u,v}) = min{f({,v'}) | {/,;v'} € BAr(W) =uAr@) =0}

Then vertex r is d-locally connected, if there is a subset £/ C E; such that
1. the graph (N} (r), E') is connected and
2. Vee E': w(e) <d.

Proof. Let E' C E; be a set of edges that satisfies the properties 1. and 2. above and
w,w € N(l;(r), w # w' two arbitrary neighbors of r. Then a path wi,...,w in G for
some positive integer k € N such that w1 = w, wy = w’ and Vi € {1,...,k} : dg(r,w;) <d
can be constructed as follows, meaning that r is d-locally connected in G.

Since (N} (r), E') is connected, there is a path between w and w’ in (NL(r), E'), i.e. there
is a sequence {vy, v}, ..., {v, v)} of edges of E' for some positive integer [ € N such that
vy =w,v; =w and Vi € {1,...,l—1} : v, = v;11. By definition of E1, which is a superset
of ', in conjunction with property 2. this means that there also is a sequence of bridges
{ur,u}, ..., {w, u;} satisfying the following properties:

a) Vie{1,...,1} : {u;,ul} € B

Therefore it is sufficient to prove that, for every pair v,v’ of two distinct vertices with
r(v) = r(v’), there is a path p between v and v' in G such that every vertex u in p
satisfies dg(r,u) < max{dg(r,v),dc(r,v’")}. Let p be the (unique) path between v and v’
in T'|y\fr}. Such a path exists, because v and v' belong to the same branch of T due to
r(v) = r(v"). Additionally, every vertex u in p satisfies dg(r, u) < maz{dg(r,v),dg(r,v")},
because T is a shortest path tree for G at root r and of course p also is a path in G, because
T is a subgraph of G. O

Based on Theorem the LCD problem can be solved by computing the smallest positive
integer d € N for which there is a set of edges £’ C F; such that the conditions 1 and 2
hold. It is now shown that this can be achieved by computing a minimum spanning tree
of the graph (N} (r), E1) with edge weights w as defined in Theorem .
Definition 4. For an undirected graph G = (V, E) with positive edge weights w : E +— N,
a subgraph (V, E') of G is a minimum spanning tree for G, if (V,E') is connected and
VE" CE

(V,E") is connected = Z w(e) > Z w(e).

ecE" e€E"

12
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MINIMUM SPANNING TREE (MST)

Given: An undirected graph G = (V, E') with positive edge weights w : F +— N
Task:  Compute a minimum spanning tree for G.

Although the MST problem computes an edge set in which the sum of all weights is
minimal while maintaining connectivity, it can also be used to compute the maximum
weight necessary for achieving connectivity, because the maximum weight of an edge in a
minimum spanning tree is independent of the tree itself as shown in the following Lemma.
Lemma 2. Let G = (V, E) be an undirected graph with positive edge weights w : F +— N
and Ty = (V, E'), T, = (V, E”) two minimum spanning trees for G. Then maxz{w(e) | e €
E'} = max{w(e) | e € E"}.

Proof. Let my := max{w(e) | e € E'}, ma := maz{w(e) | e € E"} and let e; € E' be an
edge with w(e1) = mi. Assume that m; # mg and, without loss of generality, let m; > mao.
Then the subgraph (V, E’\ {e1}) consists of exactly two connected components induced
by vertex sets V; and V. Obviously V3 UV, = V and since (V, E”) is connected there is an
edge {v1,v2} € E” with vy € V] and v9 € Va. Additionally w({v1,v2}) < ma < my = w(ey)
and therefore 77 is not a minimum spanning tree, because (V, (E’\ {e1}) U {{v1,v2}}) is

connected and
Y wle) > w({vr,ve}) —wle)) + > wle).

eck’ ecE’
O

According to Theorem and Lemma 2 the LCD problem can be solved using the following
algorithm.

1. Compute a shortest path tree T for G at root r.

2. Determine edge set F7 and their weights w as defined in Theorem .
3. Solve the MST problem on the graph (NA(r), E1) with weights w.
4

. Return the maximum edge weight that occurs in the computed minimum spanning
tree.

In a centralized algorithm these steps can be implemented as follows:

1. The shortest path tree T' at root r as defined in Definition 3 (where the length of a
path equals the number of edges) can be computed in time O(|V|+ |E|) by running a
breadth first search on vertex r. A simple extension of this breadth first search allows
the simultaneous computation of the distance dg(r, v) and the root r(v) for every vertex
v € V, which is saved at vertex v.

2. Using the information collected in the previous step, one iteration over the edge set F
is sufficient to decide whether an edge e € E is a bridge and to compute the weight
f(e) for all of these bridges. Let L be a list of all bridges and for a vertex w € NA(r)
let p(r) be the position of w in the adjacency list of . Now assign to every bridge
{u,v} in list L a key (p(r(u)),p(r(v))) with p(r(u)) < p(r(v)), which is then used to

13
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sort L in linear time with bucket sort. Afterwards the edge set F7 and their weights w
can be easily constructed by iterating the sorted list once more. Therefore the overall
running time for this step is O(|V| + | E|).

3. The MST problem as defined above with integer edge weights can theoretically be
solved in linear time using the trans-dichotomous minimum spanning tree algorithm
presented in [28].

4. This step can obviously be done in time O(|V| + |E|).

The discussion above establishes the following Theorem.
Theorem 5. The LCD problem can be solved in linear time.

However, the linear time algorithm for computing integer weight minimum spanning trees
in [28] is purely theoretical and not applicable in practice. If, for example, Prim’s algorithm
[29] is used for step 3, then the overall running of the algorithm above is in

O(IV[ + [E] + A(G) - log(A(G)))-

Additional to the theoretically achievable linear time implementation based on global
topology knowledge, this approach is suitable for a distributed implementation in a WSN:
If a node r wants to determine the minimum distance d such that the d-hop neighborhood
Ng; [r] is connected, the network needs to cooperate in order to determine the edge set E;
and the weights w. Once this is done and the collected data has been transmitted to node
r, the steps 3 and 4 can be solved locally by r itself.

The shortest path tree T' at root r can be built by a modified flooding algorithm, started
at node r: Every transmitted message M contain a hop-counter ¢ that is incremented
after each transmission and keeps track of the distance to r. Every node v receiving such
a message M updates a parent pointer to identify its parent p in the tree and notifies p
that v is a child of p, if ¢ is lower than the currently saved distance to r. Additionally M
also contains the neighbor u € N1(r) that originally transmitted the message, allowing
every node v to identify the root r(v) of its own branch. Based on this information it
is possible to compute all bridges e € B and their weights f(e) after 7" has been built
by having every node v exchange the collected distance and branch information with all
neighbors in N'(v).

Afterwards T can be used as a data aggregation tree to transmit the collected information
to r while simultaneously computing the minimum weight w(e) for every edge e € Fji:
Starting at the leafs of T' the nodes send a list of edges in F; that result from their
incident bridges to their respective parent in 7. Every node that is not a leaf in T" waits
until it received these lists from its children in T', merges all lists including its own one
by computing the minimum weight for every edge that is contained in one of the lists and
sends the resulting list to its parent.

To avoid flooding the entire network, it is possible to use limited range flooding with
increasing ranges to successively build larger subgraphs of T" until r discovers connectivity
within the considered neighborhood.

While the approach above is very efficient in terms of transmitted messages, it has to

be performed proactively, because in order to determine the local connectivity distance
14
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of a node v the node itself has to participate in the computation. If this is not viable,
it is also possible to determine the local connectivity distance of a node v without its
participation by using the k-HBF protocol, assuming that a neighbor s € N!(v) is capable
of deciding whether an execution of k-HBF was successful: An additional counter i,,q; in
the transmitted messages can keep track of the maximum value that the counter 7; ever
reached before it has been reset. If every neighbor u € N'(v) computes the minimum
value kpin(u) of the ip,4, counters of all messages u received and transmits the result back
to the initiating node s, then s is capable of determining the minimum value £, (and
therefore the local connectivity distance of v) such that the k,,;,~-HBF protocol succeeds
via kmin = maz{kmin(u) | v € N1(v) \ {s}}. By distributing the value ky,;, to all nodes
in N'(v), the protocol can be extended to provide increased performance during future
executions for the same node v.

5. EXPERIMENTAL ANALYSIS

Based on the theoretical analysis in section , the experimental analysis of the k-HBF pro-
tocol is performed by solving the LCD problem rather than simulating the protocol itself.
The computations are done on randomly generated graph using different graph models
that are commonly used for simulations in the wireless network research community. The
simulation software has been implemented in Java and executed in the Java Runtime En-
vironment at version 8u74 on a system running the Kubuntu 12.04 LTS operating system,
whose NativePRNG was used for random number generation.

For every set of parameters the results are computed for 100 graphs that are generated as
follows:

1. 9000 vertices are placed randomly in a 3000 x 3000 square.
2. Edges are added according to one of the graph models described below.

3. The connected component containing the maximum number of vertices is determined
and used for the simulation.

To generate edges the following models are used:

1. Unit Disk Graph (UDG) with radius » € R: An edge between two vertices is generated
if and only if their euclidean is at most . It is well known that this graph model is
unrealistic for real life wireless networks and yet it is still used by many researchers for
simulations. We use this model as a point of reference.

2. Waxman with parameters « € [0,1] and r» € R: The random graph model introduced
by Waxman in [30] captures important effects that occur in real life networks. Unlike
the UDG model it does not guarantee the existence of edges between vertices that
are positioned close to each other and it also generates “long” edges. The Waxman
model is often used by researchers, because it is implemented in the BRITE topology
generator that can easily be used in conjunction with the ns-3 network simulator. In
this model an edge between two vertices u, v is added to the graph with probability

P(u,v) = a-ewp (M)

where d(u,v) denotes the euclidean distance between u and v. The scaling factor of

0.5 - v/2 has been chosen such that, for & = 1 and the values used for r, the average
15
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vertex degree of the generated graphs is similar to the UDG model with the same
parameter r.

3. Locality with parameter » € R: The locality model that is mentioned in [31] and
also implemented in the BRITE topology generator partitions the euclidean distances
between two vertices into a finite amount of categories and assigns different, constant
probabilities to each category. Based on the parameter r and the euclidean distance
d(u,v) between u and v, the edge {u,v} is added with probability

P(u,v) = 08-0.1-(i—1),
if r - % < d(u,v) < r- i' for i € {1,...,8}. Edges between vertex pairs u,v with
d(u,v) > 2r are not added. Unlike the UDG model, edges between vertices that are
positioned close to each other are not guaranteed while there still is an upper bound
for the distance between adjacent vertices and in contrast to the Waxman model the
probability does not decrease exponentially with the distance.

For every set of parameters, the average vertex degree § and the average graph diameter
& are determined for comparability. Then, for every distance dp,;n, it is computed how
many of the n vertices are dp,;,-locally connected, but not (du, — 1)-locally connected,
i.e. have local connectivity distance d;,y,.

Two special cases are noted separately in the following tables: The number of separation
vertices is given in row d,,;;, = 00, because these vertices are obviously never d-locally
connected and it is not possible to perform a NEIGHBORHOOD BROADCAST for them.
Also the number Ay of vertices with vertex degree 1 is given separately due to the fact
that they are trivially 1-locally connected. The A; vertices are also contained in the
number given for d,,;, = 1.

i
i

0,9 0,9
0,8 0.8
(%] (%]
.0_(3 0,7 .g 0,7
06 06 B waxman a=0.75, r=90
> 05 mwaxman a=0.75, r=70 05
5 . 5 ®waxman a=0.5, r=110
c 04 m unit disk graph r=60 c 04 o
] K o unit disk graph r=70
£ 03 locality r=50 £ 03 locality =70
So0.2 £o0.2 tyr=
1 I
0 S 0= —
1 2 3 4 1 2 3
local connectivity distance local connectivity distance

Figure 4: Distribution of local connectivity distances in graphs with similar vertex degree:
Left: Waxman: § = 11.06, UDG: § = 11.12, Locality: § = 9.79 Right: Waxman o = 0.75:
6 = 16.98, Waxman « = 0.5: § = 17.78, UDG: § = 15.10, Locality: § = 19

Since the existence of edges between vertices that are positioned close to each other are
guaranteed and the fact that the maximum length of any edge is bounded in the purely
theoretical unit disk graph model, the Tables 5 and 6 exhibit that the majority of vertices
in this model is 1-locally connected, even in very sparse graphs. All graphs generated based
on the Waxman model contain a significantly lower rate of 1-locally connected vertices and
the number of vertices clearly spikes at local connectivity distance 2. In the locality model

on the other hand, the spike gradually shifts from local connectivity distance 2 to local
16
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Table 1: Waxman Model

« 1 « 1

r 50 r 70

n 899170 n 899987

0 7.63 ) 14.75

%} 37.38 [0} 22.07

A1 4556 A1 70

dpmin || #vertices (%) dpmin || F#vertices (%)

1 34228 (3.80) 1 41529 (4.61)

2 797634 (88.7) 2 854816 (94.98)

3 61867  (6.88) 3 3560 (0.40)

4-6 || 781 (0.09) 4 2 (0.00)

00 4660  (0.52) 00 71 (0.01)

Table 2: Waxman Model

o 1 o 0.75

T 110 T 50

n 900000 n 895888

1) 35.54 1) 5.74

%] 12.14 %} 42.2

Aq 0 A1 18821

dpmin || #vertices (%) dpmin || #vertices (%)

1 81543 (9.10) 1 20015 (2.23)

2 818301 (90.92) 2 657711 (73.41)

3 156 (0.02) 3 189849 (21.19)

o |0 (0.00) 4 8373 (0.93)
5 331 (0.04)
6 28 (0.00)
co | 19581 (2.19)

Table 3: Waxman Model

o 0.75 o 0.75

r 90 r 110

n 899997 n 900000

1) 18.07 1) 26.66

1] 16.98 1%} 13.06

AN 30 Aq 0

dpmin || #vertices (%) dpmin || #vertices (%)

1 16325  (1.81) 1 25332 (2.81)

2 881550 (97.95) 2 874132 (97.13)

3 2002 (0.23) 3 536 (0.06)

o || 30 (0.00) ~ |0 (0.00)

o' 1

T 90

n 900000

) 24.09

%] 15.8

Ay 1

dmin || #vertices (%)
1 60066 (6.67)
2 839379 (93.26)
3 554 (0.06)
o |1 (0.00)
o 0.75

T 70

n 899928

) 11.06

%] 24.18

Ay 578

dmin || Fvertices (%)
1 12104 (1.34)
2 872618 (96.97)
3 14594 (1.62)
4 30 (0.00)
00 582 (0.06)
« 0.5

r 50

n 874040

1) 3.92

o) 51.83

Aq 74781

dmin || #vertices (%)
1 16385  (1.87)
2 352649 (40.35)
3 328613 (37.60)
4 80075  (9.16)
5-9 | 15100  (1.73)
00 81209  (9.29)
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Table 4: Waxman Model

a 0.5 a 0.5 « 0.5
r 70 r 90 T 110
n 898911 n 899944 n 899996
0 7.38 0 12.03 0 17.78
1] 28.04 1] 19.1 (%] 14.56
Aq 5940 Aq 377 Aq 31
dpmin || F#vertices (%) dpmin || F#vertices (%) dmin || #vertices (%)
1 4847 (0.54) 1 2012 (0.22) 1 2103 (0.23)
2 770761 (85.74) 2 883397 (98.16) 2 894926 (99.44)
3 116337 (12.94) 3 14144 (1.57) 3 2034 (0.33)
4 906 (0.10) 4 8 (0.00) 00 33 (0.00)
5 23 (0.00) o || 383 (0.04)
0o || 6037 (0.67)
Table 5: Unit Disk Graph Model
r 40 r 50 r 60
n 784287 n 897819 n 899868
1) 5.13 ) 7.76 1) 11.12
(%} 222.63 1%} 118.13 (%} 89.56
Aq 20140 Aq 3307 Aq 320
Amin #vertices (% Amin #vertices (%) Amin #vertices (%)
1 531542 (67.78 1 750717 (83.62) 1 847605 (94.19)
2 71115 (9.07 2 67635  (7.53) 2 36412 (4.05)
3-6 67179  (8.57 3 32973  (3.67) 3 10895  (1.21)
720 || 36789 (4.69 4 17447 (1.94) 4 3153 (0.35)
21-50 || 9104  (1.16 5 0494  (1.06) 5111 1254  (0.14)
51 — 80 || 1568 (0.20 6 —10 12118  (1.35) 00 549 (0.06)
81— 121 || 389  (0.05 11-21( 840  (0.09)
00 66601  (8.49 00 6595 (0.73)
Table 6: Unit Disk Graph Model (left) / Locality Model (right)

r 70

T 90
n 899983 n 900000
) 15.10

) 31.16
@ 73.37
A, 39 (%] 28.91

_ Ay 0

dmin_|| #vertices (%) dpmin || #vertices (%)
1 886854 (98.54)

1 861893 (95.77)
2 11383 (1.26)

2 38107  (4.23)
3 1470 (0.16) e (0.00)
o | 62 (0.01)
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Table 7: Locality Model

r 30 T 50 r 70

n 790951 n 899844 n 899996

0 3.75 1) 9.79 ) 19.00

(%} 190.64 %} 61.59 %] 39.14

Aq 69865 Aq 933 Aq 10

dmin #vertices (%) dpmin || #vertices (%) pmin || #vertices (%)
1 171022 (21.62) 1 407176 (45.25) 1 722197 (30.24)
2 365517 (46.21) 2 487215 (54.14) 2 177787 (19.75)
3 56484 (7.14) 3 4190 (0.47) 3 2 (0.00)
4-10 | 65442  (8.27) 4 268 (0.03) o || 10 (0.00)
11-40 | 20853  (2.64) 5 12 (0.00)

41-102 || 1861 (0.23) 6 7 (0.00)

~ 109772 (13.88) s~ || 976 (0.11)

connectivity distance 1 with increasing vertex degree, presumably due to the still existing
maximum edge length in this model.

Measuring the success rate of the k-HBF protocol as a percentage of non-separation ver-
tices, the conducted simulations indicate a success rate of more than 80% across all con-
sidered graphs models for the 5-HBF protocol, the minimum being defined by the very
sparse graphs with an average vertex degree below 6. Restricted to graphs with an average
vertex degree of at least 7, the success rate of the 5-HBF protocol is above 95% and the
success rate of the 3-HBF protocol is still above 85%.

While one might intuitively presume that most of the vertices with higher local connectiv-
ity distance are close to the border of the geometric region that graph is placed across, the
sample graphs taken during the simulation do not verify this conjecture: Typically these
vertices offer some sort of “shortcut” through an otherwise sparse region of the graph, see
Figure 5 for an example.

6. CONCLUSION

A protocol that offers the possibility of performing a NEIGHBORHOOD BROADCAST has
applications in several areas of ad hoc wireless networking such as fault tolerance, routing
and security. The presented k-HBF protocol is easy to implement and has been proven to
distribute a message successfully across the neighborhood of a non-cooperating node v, if
the parameter k is chosen to be at least 2d — 1 with d being the local connectivity distance
of v and it has been shown that the set of participating nodes is optimal.

The local connectivity distance of a vertex v can be computed in linear time based on global
topology knowledge or proactively in an ad hoc wireless network with a reasonable amount
of transmitted messages. This knowledge can be used to optimize future executions of the
k-HBF protocol or as a metric for redundancy and the importance of v within the network.
Alternatively the local connectivity distance can also be determined reactively by the k-
HBF protocol itself, which provides the possibility of a dynamically adapting protocol.

The presented simulations demonstrate that the k-HBF protocol can be expected to pro-
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—Waxmanl -4 Waxman0.75 —»—Waxman0.5 —#— Unit Disk Graph Locality

average local connectivity distance

0 5 10 15 20 25 30 35

average vertex degree

Figure 5: Left: An induced subgraph of a unit disk graph with radius r = 50: The red (r)
vertices have local connectivity distance 5 due to their position between two “holes”. Other
distances are blue (dpin = 1), green (dpin = 2), yellow (dpmin = 3) and black (din > 5).
Note that the local connectivity distance of some vertices at the border is not verifiable
based on this image, because some incident edges have been removed. Right: Topological
difference between graph models: While the average local connectivity distance quickly
approaches 1 with increasing vertex degree for the idealized unit disk graph and locality
models, the more realistic Waxman model exhibits an average local connectivity distance
of about 2 for reasonably dense networks.

vide very high success rates in real world networks for values of k as low as 3 to 5. As
a side effect, the results clearly show a significant, topological difference between graphs
generated by the idealized unit disk graph model and more realistic network models, fur-
ther strengthening the known recommendations that unit disk graphs should not be used
to model wireless networks.
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