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ABSTRACT 
 
In recent years, deep learning models have improved how well various diseases, particularly respiratory 

ailments, can be diagnosed. In order to assist in offering a diagnosis of respiratory pathologies in digitally 

recorded respiratory sounds, this research will provide an evaluation of the effectiveness of several deep 
learning models connected with the raw lung auscultation sounds in detecting respiratory pathologies. We 

will also determine which deep learning model is most appropriate for this purpose. With the development 

of computer -systems that can collect and analyze enormous volumes of data, the medical profession is 

establishing several non-invasive tools. This work attempts to develop a non-invasive technique for 

identifying respiratory sounds acquired by a stethoscope and voice recording software via machine 

learning techniques. This study suggests a trained and proven CNN-based approach for categorizing 

respiratory sounds. A visual representation of each audio sample is constructed, allowing resource 

identification for classification using methods like those used to effectively describe visuals. We used a 

technique called Mel Frequency Cepstral Coefficients (MFCCs). Here, features are retrieved and 

categorized via VGG16 (transfer learning) and prediction is accomplished using 5-fold cross-validation. 

Employing various data splitting techniques, Respiratory Sound Database obtained cutting-edge results, 
including accuracy of 95%, precision of 88%, recall score of 86%, and F1 score of 81 %. We trained and 

tested the model using a sound database made by the International Conference on Biomedical and Health 

Informatics (ICBHI) in 2017 and annotated by experts with a classification of the lung sound.   
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1. INTRODUCTION 
 

Respiratory illnesses are a factor in more than 4 million premature deaths each year. They make 

up the second-largest portion of the worldwide illness burden, behind cardiovascular diseases. 
The current coronavirus epidemic has further raised awareness of the significance of timely and 

precise detection of respiratory diseases [1-7].  

 
Breathing is so necessary that in 24 hours, an average human can breathe 25,000 times [8-12].  

 

According to the World Health Organization (WHO), the COVID-19 epidemic on May 24, 2021, 

there have been 166,860,081 verified cases, with 3,459,996 deaths recorded [13]. Heart disease is 
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a significant issue; 610,000 people died because of heart disorders, and lung disease is the leading 
cause of heart problems. Lung disorders are becoming the world's second leading cause of death. 

The acute and chronic respiratory conditions that directly impact individuals' health include 

COPD, asthma, lung inflammation, infectious diseases, tuberculosis, pulmonary embolism, sleep 

apnea, and occupational lung diseases [2, 14-26]. Lung sounds are non-stationary; their study and 
identification need sophisticated techniques. Hence, in order to overcome the drawbacks of 

employing the conventional methodologies and assure a more effective clinical diagnosis, an 

automatic identification system must be developed. Lung sounds often fall into one of two 
categories: normal if there is no respiratory problem present, or adventitious breathing. 

  

Effective respiratory disease management requires early diagnosis and patient monitoring. It is 
easy to discern lung sounds mainly through deep learning technologies. This system is suitable 

for removing general noise effects and classifying lung sounds into two categories: usual and 

unexpected. The most common unexpected lung sounds noted above normal ones are crackles, 

wheezes, and squawks, and their presence usually implies a pulmonary problem [27, 28]. Speech 
recognition was boosted via neural network model (acoustic signal source identification). A 

problematic human-level categorization performance was demonstrated.  

 
This approach employed MFCC as a pre-processing module. The MFCC method is used to 

convert signals into spectral images. ResNet101 and VGG16 are two feature extractors with 

DCNN classifiers [29-31]. This approach incorporated CNN classification, respiratory sound, and 
pre-trained image recognition. Additionally, we contrasted the outcomes of these feature 

extractors with RNN models such as the LSTM and BLSTM (Bidirectional Long Short-Term 

Memory). The NMADCNN end-to-end hybrid DCNN strategy categories lung sound as normal, 

wheezes, crackles or both and identifies noise in breath cycles [7, 9, 32, 33]. So, in this study, 
DCNN classifier ResNet101 and VGG16 are improved, which outperformed all competing 

algorithms compared to LSTM, BLSTM, and many other models. The dataset ICBHI 2017 

Respiratory Sound Database includes normal and three other types of inadvertent lung sounds, 
such as wheezes, crackles and their combination. These sounds are used to train and evaluate the 

model [34].  

 

Significance: Numerous medical and computer science disciplines might benefit from this study 
because auscultation of the lungs is an essential part of a physical examination because 

respiratory sounds reveal critical details about the pathology and physiology of the lungs as well 

as airway blockage. This work helps determine the appropriate CNN model architecture for lung 
sound detection and classification and compares it with other CNN and RNN models.  

 

Objectives: The goal of this research is to effectively identify and categorize crackles, wheezes, 
and crackles with wheezes noises in the digital lung sound data utilizing cutting-edge signal 

processing methods and convolutional neural networks.  

 

The following are the primary goals of our research: 
 

• First, the MFCC approach is utilized to extract features from lung sound waves. It is used 

to transform signals into spectral images as input features for a convolutional neural 
network. 

• CNN models, as well as CNN's updated models and methods like VGG16 and Res101, are 

used to specify implementation and results. 
• Try to get more than 95% accuracy by improving our models. 

• The results are compared by RNN models such as the LSTM and BLSTM to determine the 

optimal architecture for lung sound detection and classification. 
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Statement of problem: The real problem is to improve the Lung sound aberration results by 
using CNN models (ResNet101 and VGG16) and compare it with different CNN and RNN 

models.  

 

Structure of the paper: A relevant literature history and approach, including datasets, 
preprocessing, and modeling, are presented in Sections 2 and 3. Our experimental design and 

findings are presented in Sections 4 and 5. Section 6 finally elaborates on the conclusion.  

 

2. RELATED WORK HISTORY 
 

Machine learning and deep learning have been used in a lot of relevant research proposals in the 

past few years. The techniques emphasized the classification of respiratory sounds, both 
unprocessed and processed. The most current and connected works to the subject of the study are 

discussed in this part. For the classification of lung sounds, a data set made up of crackle and non-

crackle classes and a total of 6000 audio files was used. For the detection of respiratory crackles, 

two feature extraction techniques that use time-frequency (TF) and time-scale analysis were 
recommended. The k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and multi-

layer sensor approaches were utilised in the classification stage, and the SVM classifier produced 

the best results, with an accuracy score of 97.5%. The authors used the normal, wheezes, crackles, 
and wheezes + crackles class designations from the ICBHI 2017 challenge database. The ICBHI 

2017 database presents a challenge because it contains noises, background noise, and various 

sampling frequencies (4 kHz, 10 kHz, 44.1 kHz). Feature extraction and classification were 

carried out using Decision Trees and spectral features, respectively.  
 

The precise identification of lung disorders such as Covid-19 and viral/bacterial pneumonia has 

recently gained considerable interest. One of the studies in this field used statistical signal 
processing approaches to classify breath sounds into three distinct categories: namely soft, soft, 

and loud [7]. Nevertheless, it does not imply the possibility of using parameters other than 

moderate, frequent, and severe breath counts for categorization purposes. In another significant 
study, convolutional neural networks are used for the automated classification of heart and lung 

sounds. This study provides a solid framework for the application of Machine Learning and 

Artificial Intelligence to lung auscultations [5].  

  
Bidirectional LSTM (BD-LSTM) and CNNs with deep learning models are used to identify lung 

illnesses. The King Abdullah University Hospital (KAUH) in Jordan provided a dataset of 103 

patients, and data from 110 more individuals was added from the publicly accessible challenge 
database of the International Conference on Biomedical Health Informatics. What was the most 

accurate classification of patients using CNN based on lung disease types? BD-LSTM has a 

99.62% accuracy rate, a 98.85% precision rate, and a 98.26% overall agreement rate between 
forecasts and original classes within the training scheme. a technique for classifying lung sounds 

that uses stochastic normalization and co-tuning to improve the classification outcomes. They 

divided the audio file into 8-second chunks before computing the corrected and normalized 

spectrogram. Next they jointly modified a Resnet50-based model, which they then applied to 
three distinct scenarios: two classes, three classes, and four classes. According to the findings, 

they performed at their best while employing 60-40 training and testing sets for a task involving 

two classes and ResNet101, scoring specificity of 91.77% and sensitivity of 95.76%. This 
research aimed to combine respiratory sound, CNN classification, and time-series feature 

extraction from pre-trained images. We also assessed the performance of several feature 

extractors. The LSTM model is utilized to obtain the findings after the MFCC model has been 

used for feature extraction [12]. The fact that LSTM outperforms a few competing models with 
an ICBHI score of 74% after being pitted against them shows the power of the LSTM-based 

framework in lung sound data pre-processing. This research aimed to combine respiratory sound, 
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CNN classification, and time-series feature extraction from pre-trained images. We also assessed 
the performance of several feature extractors [35]. The LSTM model is utilized to obtain the 

findings after the MFCC model has been used for feature extraction [36]. The fact that LSTM 

outperforms a few competing models with an ICBHI score of 74% after being pitted against them 

shows the power of the LSTM-based framework in lung sound data pre-processing [2, 31].  
 

3. METHODOLOGY 
 

In addition to outlining the measures used to assess the effectiveness of the built neural network, 
we also present the methodology utilized in this article and section. The method's significant 

components are depicted in the diagram in Figure 1. In 2017, the International Conference on 

Biomedical and Health Informatics (ICBHI) created a sound database with notes from medical 
professionals classifying lung sounds. AI libraries are used in a deep learning framework to 

recognize and classify the sounds of the lungs. The data set was divided into training and test 

data, and its performance was assessed using accepted measures. Data preprocessing, feature 

extraction using VGG16 (transfer learning), classification using CNN with training and testing, 
prediction using 5-fold cross-validation, and performance analysis utilizing metrics relevant to the 

current position make up its four main modules. Outcomes are assessed using industry-

standard performance criteria, including the F1 score, sensitivity (recall), accuracy, and 

precision.  
 

 
 

Fig. 1. Description of our models.  

 

3.1. Data Set  
 

Rocha et al. data set from the Challenge ICBHI 2017 was used in this article [27]. The primary 

purpose of this collection of breathing sounds was to aid the Informatics in Biomedical Health 
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ICBHI 2017 research challenge. The database, created by two research teams in Portugal and 
Greece, contains 920 recordings from 126 subjects that total 5.5 hours in length. 6,898 respiratory 

cycles were recorded, of which 3,642 were abnormality-free, 1,864 had crackles, 886 had 

wheezing, and 506 had both. The recordings, which were recorded using a variety of equipment, 

varied in length from 10 to 90 seconds. Each audio file was manually segmented into distinct 
breathing cycles, with each cycle given a date for the start and end of it as well as a binary 

number to indicate if it includes a crackle or a wheeze. In addition, the places at which the 

recordings could be obtained were detailed in the article. Data is collected from seven sites, 
recorded both chest sound and breathing sounds. These recordings were collected from the real 

patients. Patients with bronchiectasis, asthma, COPD, respiratory infections, and lower 

respiratory diseases were included. Both clinical and non-clinical settings (patients' homes) had 
their sound recordings made. Patients range in age from young children to older adults.  

 

Three skilled medical professionals, including two pulmonologists with specialized training and 

one cardiologist, documented the respiratory sound characteristics in the database.  
 

Table 1: Total number of dataset cycles for ICBHI 2017.  

 
            Dataset  Total  

Crackles cycles  1864  

Wheezes cycles  886  

Combination of crackles and wheezes  506  

Normal cycles  3642  

Total  6898  

 

3.2. Pre-processing  
 
During processing, the 5-second-long audio recordings are windowed or separated into parts. If 

required, segments are filled with zero to ensure that their sizes are same. The number of samples 

from each class can be used for CNN training and can be increased using this technique. As a 

result, there are the following numbers for each category: There are 7,488 samples for wheezing, 
6,415 samples for crackles, 732 samples total for both classes (crackles and wheezing), and 6,850 

samples total for the class without any respiratory abnormalities.  

 

   
 

Fig. 2. All steps of pre-processing modules.  
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Spectrograms display the frequency spectrum of a sound and how it varies over a short time. The 
primary distinction is that an MFCC utilizes a quasi-logarithmic spaced frequency scale, which is 

more similar to how the human auditory system perceives sound, as opposed to a spectrogram, 

which uses a spaced linear frequency scale (such that an equal number of Hertz are used to space 

out each frequency section) [37, 38].  
 

Table 2: Cycle data for an ICBHI 2017 database audio file. 

 

Cycles  Start time  End time  Crackles  Wheezes  

1  0.804  3.256  0  0  

2  3.256  5.566  0  0  

3  5.566  7.851  0  1  

4  7.851  10.054  0  1  

5  10.054  12.066  1  0  

6  12.066  14.47  1  0  

7  14.47  16.696  1  1  

8  16.696  18.887  1  1  

9  18.887  19.792  1  1  

 
Table 3: Statistics for each of the cycle classes. 

 

Cycle Classes  Cycle No.  Patients No.  

Maximum  

Duration. (s)  

Minimum  

Duration. (s)  

Average  

Duration. (s)  

Normal.  3,642  124  16.163  0.2  2.6  

Crackle.  1,864  74  8.736  0.367  2.785  

Wheeze.  886  63  9.217  0.228  2.703  

Crackle & 

Wheeze.  

506  35  8.592  0.571  3.06  

 

3.3. Modeling  
 
Author Mel-spectrograms of lung sounds are generated, and VGG16 is used to extract features. 

The classification is made using CNN, while the prediction is performed using 5-fold 

crossvalidation. Two or three breathing cycles are needed to accurately analyze lung sounds. The 
typical normal respiratory rate is 15 to 20 breaths per minute (three to four seconds each breath), 

while in pathologic circumstances, it tends to be faster. So, after experimenting with several 

choices, six seconds ultimately chosen for the duration of the breathing sound. In the process of 
transfer learning, pre-trained models such as VGG16 are used as feature extractors. The 16layer 

VGG16 model, which is trained on fixed-size pictures and uses small-size kernels with a 

responsive Feld 33, processes the input via a series of convolutional layers. Our model's input 

size is 256 x 256, while VGG16's default input size is 224 x 224. (Fig. 3). Without introducing a 
fully linked layer and by freezing all five convolutional blocks, we can use weights that had 

already been trained on ImageNet to predict the test sets using a single layer of a simple CNN. 

The 5-fold cross-validation used method to prevent overfitting (Fig. 4). The dataset is randomly 
divided into training sets of 80% and test sets of 20%, with 20% of the training set used for 

validation.  
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Fig. 3. Feature extracted by VGG16 architecture.  
 
The VGG16 architecture is used in our model. Our model's input size is 256×256. Without a 

completely linked layer, all layers are constrained to extracting characteristics and classifying  

respiratory sounds.  

 

 
 

Fig. 4.  Cross-validation with five levels of replication. The outcomes of five iterations are the average of 

all performances.  

 
The main premise of 5-fold cross-validation is to split the training set into 5 sections. The model 

is trained to use four of the five divisions each time, and one is used to assess it. As a  result, the 

data set's instances are used once for testing and four times for training. Averaging the 

measurements determines the result. From the results of our models, accuracy, precision, recall 
score extrapolated.  

 

For deep feature extraction, we employ the completely connected layers, each of which produces 
an output in 4096 dimensions. The class labels in number 10 are all predicted using the SVM 

method. Transfer learning is applied to the pre-trained VGG16 model in Fig. 2. The input lung 

spectrogram images were employed to further trained (i.e., fine-tuned) the pretrained VGG16 
model. The VGG16 model's final three layers are not considered to achieve  fine-tuning 

flexibility since the layers are set up for 1,000 classes of ImageNet tasks.  
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Fig. 5. The suggested transfer learning approach for classifying lung sounds.  

 

4. EXPERIMENT 
 
The study started with LSTM, BLSTM, random forest, focal function, and SVM-based classifiers 

to compare them to VGG16 and ResNet101 and the CNN model.  

 

4.1. Extra Features  
 

The extraction of the resources needed to train our model is covered in the next stage. To do this, 
high-precision image classification techniques have been used to discover classification features 

using a visual representation of each audio sample. MFCCs make it more proficient. Each audio 

sample has a visual representation according to the resources we extracted using the MFCC for 
each audio file in the dataset. In this manner, these images used to train the classifier.  

 

 
 

Fig. 6. MFCC Normal Class.  

 

 
 

Fig. 7. MFCC Wheezes Class. 

 

 
 

Fig. 8. MFCC Crackles Class.  
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Fig. 9. MFCC Both Class. 

 

4.2. Evaluation and Assessment Criteria  
 
The statistical indications of a diagnostic test's ability to identify aberrant from regular patients 

are unreliable because of the dataset, sensitivity, and specificity. The original paper's data set 

includes suggestions for a sensitivity, specificity, and overall score [39-42]. The general 
assessment result is as follows:  

 

 
 

Cross-validating patients allowed for the evaluation of results. Cross-validation entails splitting 

the dataset into separate iterations for training and testing. The cross-validation result is reliable 
as a result. There are no trained group patients in each split test set since 5-fold crossvalidation is 

being used in this case. This was verified using actual, real-oriented data partitioning.  

 

4.3. Experimental Setup  
 

There have been many experiments that have used different data and pre-processing phases. 
Comparing different ways to evaluate their accuracy and effectiveness is the basic idea. 

Respiratory noises from patients with pulmonary illnesses are rectified. Pulmonologists verified 

and categorized the sounds. Mel-spectrogram created from the sounds, and VGG16 is used to 

extract the features (transfer learning). According to CNN, respiratory sounds are categorized. 
Deep learning classification of respiratory sounds could be useful for pulmonary illness 

screening, monitoring, and diagnosis.  

 
Although it is an excellent and robust experiment, it lacks an endwise experiment since each lung 

sound must be divided into the lung cycle before the lung cycle technique can be applied to it. 

The third experiment is directed due to the second experiment's flaw. Here, model effectiveness is 
tested to locate important data and where to place it inside the vast feature space. It necessitates 

scoring the lung-based data for dualistic components.  

 

There are formulas for precision, false alarm rate, sensitivity, and specificity, respectively, in 
equations 2 to 5  
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Accuracy is defined as the proportion of properly recognized participants to the full set of 

subjects. 
 

5. RESULTS  
 

Implementation for the modeling is done in the TensorFlow framework using multiple supporting 
python libraries for image processing. Our training is done on NVIDIA titan GPU with an Intel 

9th generation i7 processor with 64GB memory. The model is trained in batches. In the system, 

raw sound is taken as input files and separated them into four separate classes.  

 
Extracted MFCCs from these sound files for training our model. The output layers of the VGG16 

model and configure other dimensions according to our problem. After training, to test our model 

used the testing dataset.  
 

Hyperparameter tuning is the key step in improving the extracted features and fine-tuning the 

model according to the specific problem. Results have been enhanced in hyper-parameter tuning 
during the 5-fold cross-validation. The results are significantly better due to the model's fine-

tuning and MFCCs' noise elimination.  

 
Table 3: The metrics used to assess how effectively the neural network test performed. 

 
Class  Accuracy  Precision  Recall  F1 Score  

Normal  97.46%  0.98  0.97  0.98  

Wheezes  97.68%  0.90  0.92  0.91  

Crackles  96.96%  0.94  0.95  0.94  

Both  97.9%  0.86  0.85  0.86  

     
Table 4: Confusion matrix 

 

 Normal  Wheezes  Crackle  Both  

Normal  706  05  5  4  

Wheezes  05  163  9  4  

Crackle  10  6  356  7  

Both  06  03  5  86  
 

In our model, all the classes perform almost equally well. Using transfer learning and Softmax 

activation function in the output layer after pre-processing from the dataset outperformed all other 
models with an overall accuracy of 95.06%.  
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Table 5: The classification accuracy for the CNN models ResNet-101 and AlexNet 
 

CNN models  Transfer learning +SoftMax (Acc%)  

AlexNet  60.5  

ResNet-101  59.10  

VGG16(our)  95.06  

 

VGG16 received the highest score in Table 6 of 95% for each respiratory cycle. Following the 
completion of the test set calculation, a comparison is made between complex models and our 

suggested approach. The sensitivity and F-score of the method are shown in Table 6.  

 
Table 6: Individually breathing cycle Results. 

 
Feature  Accurac 

y  

Precision  Recall  F1  

Extractor    score  Score  

Inception V3  0.74  0.71  0.72  0.72  

ResNet101  0.78  0.74  0.73  0.73  

VGG16  0.95  0.88  0.86  0.81  

 

Table 7 demonstrates that by utilizing the aforementioned metrics. Suggested models outperform 
all their rival models in every category; the VG16 technique provided the best presentation of 

above 95%, 88%, and 86%. As evidenced by the 1-2% variation in the ICBHI score across 

various frame-making settings, the context based on CNN to the critical stage in the pre-
processing of lung-sound information is potent or forceful. Since baseline models are not 

employed to balance data-damaging components, such as the sound of repetitive breathing, 

another model must deal with the large volumes and localization of the breathing cycle. 
Therefore, neither PCA nor augmentation contributes to addressing these issues.  

 
Table 7: Regarding F-score, accuracy, specificity, and sensitivity, compared the techniques. 

  
Feature extractor  Accuracy  Precision  Recall  F1  

   score  Score  

InceptionV3 [20]  0.74  0.71  0.72  0.72  

DenseNet201 [20]  0.78  0.73  0.96  0.74  

LSTM-DAE [19]  0.92  0.71  0.78  0.94  

BLSTM-DAE [19]  0.93  0.74  0.80  0.97  

VGG19 [20]  0.80  0.74  0.82  0.76  

LSTM [19]  0.88  0.86  0.62  0.72  

BLSTM [19]  0.90  0.89  0.73  0.74  

Boosted Tree [20]  0.72  0.78  0.21  0.49  

ResNet101   0.78  0.74  0.73  0.73  

VGG16 (Our)  0.95  0.88  0.86  0.81  
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6. CONCLUSION 
 
One of the most significant concerns in public health, the automatic detection of lung disorders, is 

the focus of this effort. No complicated datasets including sounds, background noises, and a range 

of sampling frequencies have been employed for lung sound classification, despite the fact that 

there has been many research on the subject. The majority of the work was completed utilizing 
conventional techniques. Deep learning, a cutting-edge technique, is applied to the problem of 

lung sound detection to improve classification performance. Images with one-to-one spectrogram 

qualities are obtained with colormap during the pre-processing stage of the suggested approaches 
to extract deep features and apply them to finetune. The CNN VGG16 model is utilized to 

accomplish feature extraction in both deep learning techniques. Additionally, the CNN Alex Net 

and ResNet-50 classification models are evaluated, and the VGG16 model is taken for the 
recommended methods since it provided superior classification accuracy. Compared to 

ResNet101, which received a score of 0.78, and many other models, VGG16 achieved a score of 

0.95, outperforming all competing approaches. However, it must be upgraded to produce even 

better outcomes.  
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