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ABSTRACT 
 

In January 2020, the first confirmed case of the novel severe acute respiratory syndrome coronavirus 2 

emerged in the United States of America. By March 2020, the USA had declared a national emergency and 

implemented stay-at-home policies subject to the individual initiative of health authorities of each state. 

However, ambiguity in the literature exists about the extent to which temporal variation of stay-at-home 

implementation contributes to an effective stay-at-home order. To examine the role of the implementation 

of stay-at-home policy at the county level on outbreak progression, we compiled the case count data and 
dates of policy commencement for 1720 counties from the US Counties: Socio-Health Data database. 

Measures of central tendency and rate of change identified correlation between the change of confirmed 

case counts compared to time, quantified by comparing four successive time points of 5 days to the initial 

date of each county’s stay-at-home implementation. We then used a deterministic county-level SIR 

epidemiological model to predict post stay-at-home case counts based on pre-stay-at-home parameters 

and compared the model to actual post-stay-at-home case counts to identify the degree of error Mean 

Squared Error (MSE). Our analyses demonstrated the high error between time since stay-at-home 

implementation and change in actual case counts compared to predicted case counts, which suggests an 

interaction between policy and COVID-19 transmission. Our findings shine light on the confounding 

variables of stay-at-home policy at the county level and the promising outlook of stay-at-home policy in the 

USA. 
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1. INTRODUCTION 
 

1.1. Covid-19: An Emergent Epidemic 
 

As the coronavirus epidemic (COVID-19) expands globally, reports of clinical outcomes and 

contributing risk factors to the rate of confirmed case growth are emerging. Previous SARS-2003 
and MERS-2012 epidemics have set the genetic precedent for the coronavirus family. Within the 

scope of COVID-19, the hotspot for the initial outbreak was first reported at a live animal market 

on December 12, 2019 in the city of Wuhan in Hubei Province and was declared a global 
pandemic on March 11, 2020 by the World Health Organization. 

 

The United States has the highest number of cases at over 1.7 million cases and over 100,000 

deaths because of the ongoing epidemic as of May 30, 2020 [1]. During the timeframe since the 
first confirmed COVID-19 case was reported on January 21, 2020 by the Centre for Disease 
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Control, transmission of COVID-19 gained traction at an exponential rate [1]. Federal travel bans 
from travellers from China in the last 14 days were instated on January 31, 2020. Due to the high 

rate of change of epidemiological metrics such as estimated transmission rates and confirmed 

case count per 1 million people compared to similar developed nations, the US government has 

been criticized for its inaction at the early stages of the national pandemic. 
 

1.2. The United States Stay-at-home Order 
 

On March 13, 2020, President Donald Trump declared a national emergency that enforced 

changes to measures in public policy and conduct to limit the spread of COVID-19. These 

measures included closures of non-essential services, discouraging gatherings of more than 50 
people, and promoting work to be done remotely. However, there exists an uncertain outlook of 

COVID-19 and the efforts of the healthcare system to sustain infection control measures at the 

national level. The public health system of the United States is subject to the individual initiative 
of its 50 member states, each with their own health authorities with fragmented jurisdiction based 

on geopolitical boundaries and variable healthcare resources. Due to this incongruent response, 

there exists variation in when stay-at-home procedures were implemented, to what extent they 
were reinforced, and the associated epidemiological consequences on a case by case basis at the 

county level. As seen in Figure 1, the general response to initiate medium and high severity stay-

at-home directives were gradual; some states also did not initiate any form of directive, such as 

the Midwest states of Nebraska, South Dakota, and North Dakota. The spatial and temporal 
variation in response contributes to an incongruent nation-wide response that can lead to 

confusion and disruption between states and their public health policies needed to support an 

effective stay-at-home [2]. 
 

1.3. Current Literature on Stay-at-home Order 

 
Several studies have been conducted evaluating the effectiveness of stay-at-home measures on 

controlling the spread of COVID-19. Several studies have quantified the effect of stay-at-home 
measures in Wuhan, the origin of the COVID-19 outbreak and the city that accounts for most of 

the China’s confirmed cases and deaths [3]. One study, focusing specifically on Wuhan, looked 

at the effects of imposing the stay-at-home and flight restrictions on the number of COVID-19 

cases. The researchers found a significant increase in doubling time, the time it takes for the 
number of confirmed case counts to double, from two days to four days before and after 

imposing stay-at-home orders while also noting a significant decrease in the correlation 

coefficient between domestic air travel and COVID19 transmission after imposing the flight 
restrictions [4]. A second study evaluated the correlation of population emigration out of Wuhan 

before the implementation of stay-at-home measures and found a correlation coefficient of 0.943 

between the number of provincial cases and emigration from Wuhan [3]. Recent research has 

been directed towards quantifying the effectiveness of stay-at-home measures in other areas of 
the world. Researchers in the USA predict that stay-at-home measures decreased the number of 

weekly cases by 30.2% after week one, 40.0% after week two and 48.6% after week three 

compared to countries that did not impose these measures [5]. The existing literature supports the 
proposal that the effect of stay-at-home orders can be quantified to evaluate its role in reducing 

rate of increase of confirmed case counts. 

 

1.4. Proposal of Investigation 
 

This paper intends to investigate the role of state-wide stay-at-home policies on attenuating rates 
of change of confirmed COVID-19 case counts. Initial forecasts at the city-level, such as in the 

case of New York City, have been proposed to be effective in reducing the growth rate of novel 
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confirmed cases. However, estimates indicate that almost half of transmissions may originate 
from asymptomatic carriers [6]. 

 

These estimates can suggest that stay-at-home policies may not be enough to attenuate 

transmission rates. This poses the need to investigate the effectiveness of stay-at-home policies at 
the county-level to critically understand if and to what extent these policies are effective using 

robust correlational analyses and models. We aim to fill the gap in literature surrounding the role 

of stay-at-home order in the United States through statistical analyses and models translated from 
similar quantitative approaches used by existing epidemiological literature. Thereby, our 

investigation develops a robust framework by which the United States can identify key strengths 

and weaknesses of their stay-at-home policies at the county level to modify their policy response 
according to the most recent data. 

 

 
 

Figure 1. Visualization of implementation of state-wide stay-at-home directives in the  
United States of America based on severity (low: white, medium: orange, high: red) during  

the week of March 23 to March 30 for each state (n=50). 

 

2. RESEARCH METHODS 
 

2.1. Dataset Sources 
 

The data was sourced from the Kaiser Family Foundation, the New York Times, and the US 
Census. They were joined thanks to a US Counties COVID 19 Socio-Health Data Notebook by 

John Davis [7]. The dataset contains a large set of geographically linked data about the 

population of the United States, including statistics such as suicide rate, number of mental health 

providers, and percent single household rate. The smallest geographical division is county. The 
data was collected from applicable counties with at least one confirmed case of COVID-19 

starting from January 1, 2020 to April 30, 2020 inclusive. We hereby examine and use only a few 

features for the purpose of this investigation. We use the county dimension of the dataset to 
investigate the effect of stay at home order. We join this county data with their state name to 

account for repetitive counties. In addition, the available data for COVID-19 cases was different 

for each county and created some unique challenges for inference that we address in the 
investigation. Other important features to consider include the date of stay at home order was 

implemented and the number of new infected cases by day. 
 

2.2. Statistics in the Search Range 
 

We investigated the difference in rates of change between day zero (day of stay-at-home 
implementation) and 5, 10, 15 and 20 days after. Comparisons between the rate of infections 

became necessary to evaluate the efficacy of stay-at-home orders. We looked at the percent 
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change in cases before and after stay at home orders and quantified them in terms of Daily 
Percent Change (DPC) of cases. We hereby represent the DPC time series using Equation 1. 

Where the DPC of a given day is computed by taking the new cases on the day of and dividing 

by the sum of new cases of today and yesterday. 

 

f(n) 
DPC(n) = 

f(n) + f(n − 1) 
 

Equation 1: Daily Percent Change 

 
Due to the exponential changes in cases, we expected the average DPC to decrease after the stay 

at home order. Overtime, the DPC is expected to decrease slowly rather than sharply due to the 

long incubation period of COVID19. Therefore, we wanted to evaluate the data at multi-step 
intervals after the date of stay-at-home (Day 0) as seen in Equation 2.  

 

Search Range = Day 0 + 5, 10, 15, 20 days 

 
Equation 2: Daily Percent Change 

 

This was done to compare the average DPC at two time points within these intervals: setting day 
zero as the date of stay-at-home implementation, we statistically compared DPC after 5, 10, 15 

and 20 days to produce a comparison between the two time points. We propose a set of four 

comparative statistics across the Search Range as part of our methodology, outlined in Table 1. 

We first evaluate summary statistics of the impact of stay at home order, by identifying the 
percentage of counties that witnessed a decrease of average DPC. Next, we examine the average 

of counties’ absolute percent change of DPC to evaluate of empirical effectiveness of the stay-at-

home-order. Different counties might have had drastically different absolute change rates of 
infection. Therefore, we can further explore the empirical change by comparing the percent 

change of DPC with relation to itself before the stay-at-home order. Lastly, data availability due 

to the difference in tracking start date can create biases in our analysis as our Search Range 
expands. As such, we examine and offer the percentage of counties that was dropped out of 

calculation because of unavailable data; a more in-depth discussion about the biases will 

accounted for in the results and discussion section. 

 

2.3. SIR Model Structure 
 
Predictive mathematical models for epidemics are crucial in comprehending the trajectory of an 

epidemic and plan for effective policy strategies, particularly through a regional perspective. 

The SIR model is one of the most common epidemiological models used to describe human to 

human transmission through three mutually exclusive and contiguous states of infection: 
susceptible (S), infected (I), and recovered (R). Peirlink et al., among other researchers, have 

similarly modelled COVID-19 transmission by estimating clinical severity and forecasts for 

death rates using the SIR model [8]. The SIR model was chosen for its simplicity, minimal 
number of model parameters and its proven ability to outline the epidemiological factors 

associated with COVID-19 at the regional scale. The SIR model is particularly well suited in 

distinguishing important features and developing insights into public health policy. The 

parsimonious assumptions used to set up the SIR model are used to increase generalizability and 
avoid overfitting on limited and incomplete datasets. 

 

The SIR model is used to describe human to human transmission through three mutually 
exclusive and contiguous states of infection: susceptible (S), infected (I), and recovered (R). 
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Peirlink et al., among other researchers, have similarly modelled COVID-19 transmission by 
estimating clinical severity and forecasts for death rates using the SIR model [8]. 

 

We employed the SIR model to estimate the expected number of COVID-19 case counts for each 

county in the dataset across a time series as an extension of our investigation on rate of change in 
confirmed case counts following stay-at-home implementation. The model uses data from before 

the date of stay-at-home implementation to forecast future case counts. We then compared 

estimates from the SIR model used to forecast the number of confirmed case counts in a 
deterministic scenario where stay-at-home had not been implemented against the actual data 

collected at the county-level to detect the degree of deviance between the two trends. 

 
Correlation between the SIR model that estimates case counts and the actual trend of case counts 

across a time series can suggest that stay-at-home policies did not play a role in the decrease of 

the rate of confirmed case count growth to some extent. Limited to no correlation between the 

SIR model that estimates case counts and the actual trend of case counts across a time series can 
suggest that stay-at-home policies could play a role in the decrease of the rate of confirmed case 

count growth to some extent. Further investigation is needed to determine causality and the 

relative temporal order of stay-at-home policy implementation and rate of change of confirmed 
case counts at the county level. 

 

We hypothesize that our models will observe a correlation with actual case count data before the 
stay-at-home order but divert as the stay-at-home order is in effect. This is used to further 

evaluate the correlation and potential role that stay-at-home plays in decreasing rate of increase 

of confirmed case counts, and to what power of statistical significance. Instead of evaluating 

historical data as proposed in previous studies, our novel approach involves comparing modelled 
forecasts based on pre-stay-at-home data with the trend of actual data. The SIR model measured 

the dependent variable of three counts of people categorized based on infection state as a 

function of the independent variable of time as seen in Equation Set 3. We then derived the rate 
of change for susceptible, recovered, and infected individuals as a function of time as seen in 

Equation 4, 5, and 6, respectively. 

 

Certain assumptions were made regarding fitting the SIR model within the context of COVID-
19. 

 

1. The effect of immigration and emigration on population count was ignored due to the 
significant decrease in immigration and emigration during the COVID-19 timeframe in the 

USA. 

2. The only way individuals can leave the susceptible group is if they become infected 
3. The rate of change of susceptibility over time depends on the number of people susceptible, 

the number of people infected and the degree of contact between infected and susceptible 

populations. 

4. Homogeneous mixing of the population and random contact between infected and 
susceptible populations. 

5. Each infected individual has a fixed number (b) of contacts each day that transmit the 

disease to susceptible individuals 
6. Each infected individual has a fixed fraction (k) that will recover each day 

 

S = S(t) 
I = I(t) 

R = RS(t) 
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Equation 3: SIR Model derived from # of susceptible people in a population S(t), the # of 
infectious individuals in a population I(t), and # of people who recovered in a population R(t) 

 

ds 

= −b × s(t) × i(t) 

dt 

 

Equation 4: Rate of change of the susceptible subpopulation as a function of time 

 

 
 

 

Equation 5: Rate of change of the recovered subpopulation as a function of time 

 

 

 

Equation 6: Rate of change of the infected subpopulation as a function of time 

 

 
 

Figure 2. The SIR Model is an epidemiological model is characterized by the number of susceptible 

people (S), number of people infected (I), and the number of people who have recovered (R) and computes 

the theoretical number of people infected by a contagious illness in a closed population over time. The 

number of contacts per day sufficient for the spread of the disease is represented by b. The fixed fraction of 

the infected group that recovers during any given day is represented by k. 
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Table 1. Sample statistics of daily percent change of counties in Search Range time points since the date of 

stay-at-home order 

 

 
 

 
 

The SIR model is fit using maximum likelihood estimation with a Poisson likelihood based on 

the rates of change of susceptible, recovered and infected subpopulations as a function of time as 

outlined in Equation 4, 5, and 6 respectively. . The model sensitivity to parameterization 
highlights the inherent variability between epidemiological projections of outbreak and the need 

for thorough, population-wide testing for the most accurate parameterization. Using the SIR 

model, if the rate of change of the infected subpopulation as seen in Equation 6 decreases during 
an outbreak progression, namely through population-wide intervention measures such as 

quarantine and social distancing, the rate of increase in new infections within the total population 

will decrease. However, we caution that if the rate of change of the infected subpopulation is not 
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zero, an outbreak can reemerge and produce distinct changes in the trajectory of new confirmed 
cases compared to the original SIR model. Thereby, the use of the SIR model is to model 

different scenarios under known parameters to illustrate the effectiveness of quarantine public 

health measures and stress the potential ramifications if these measures are eased too soon. 
 

2.4. SIR Model Parameters 
 

The SIR virology model is parameterized with the mean contact rate (MCR, also represented as 
k) and the mean recovery rate (MRR, also represented as b), as visualized in Figure 2. The 

selection of the MCR was applied differently for each individual city to determine the best fit. 

Specifically, the MCR fitted each city’s case count from the point when community transmission 
began to the day a stay at home order was in effect. This produced a case count curve for each of 

the counties with an estimate for future cases. Assuming the effectiveness of stay-at-home 

policies in decreasing transmission rates, the model was expected to diverge from the actual case 

count as the incubation period passes. 
 

Model fit was determined using MSE scores, a measure of the goodness of fit of a regression 

model. The MSE score of the SIR Model before the stay-at-home policies were implemented 
would show a high correlation and thus a low error between data and function as the SIR model 

was fitted to fit pre-policy implementation case counts. However, once the stay-at-home policies 

were implemented, we predict that the MSE score would diverge from the data as the rate of 
increase in total confirmed cases begins to decrease. By measuring the divergence of MSE, we 

will gain a better understanding of the infection curve in relation to the SIR model and how stay 

at home order has changed that dynamic. 

 

3. RESULTS 
 

 
 

Figure 3. Time since stay-at-home order (Day 0) is negatively correlated with the absolute average 

difference of confirmed case counts across all counties with valid data in the Search Range. Difference 

between Day 0 and Day 5 to 20 had absolute average differences of -0.0917%, -0.129%, -0.171% and -

0.176% respectively. 

 



Health Informatics - An International Journal (HIIJ) Vol.9, No.2/3, August 2020 

9 

 
 

Figure 4. Time since stay-at-home order (Day 0) is negatively correlated with the percentage difference of 

Daily percentage change. The average percent difference of percentage change for 5 days and 10 days were 

+3.0% and -34.9%. 

 

 
 

Figure 5. Time since stay-at-home order (Day 0) is negatively correlated with the percentage difference of 

Daily percentage change. The average percent difference of percentage change for 5 days and 10 days were 

+34.9% and -57.2%. 
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Table 2. Logarithmically transformed average MSE score for county case  

studies before and after stay-at-home order 

 

 
 

Table 3. Logarithmically transformed average MSE score for county  

case studies before and after stay-at-home order 

 

 
 

Table 4. Logarithmically transformed MSE score for county  

case studies before and after stay-at-home order 

 

 
 
Table 2 displays statistics for the sampled counties that compares the effect of the stay-at-home 

policy at two time points: the first time point at the day of policy implementation in a given 

county (Day 0) and the second time point at a specified number of days after the policy’s 

implementation. 
 

As previously indicated, we tracked four key statistics from the dataset. Overall, with a larger 

Search Range, we observed a great certainty in the decrease of the DPC, evident from both 

absolute average difference over time as well as relative percent change. However, given the lack 
of centralized reporting over a number of counties as well as the variation in availability of 

testing in certain regions of the United States, the proportion of counties which contains valid 

data for the entirety of the Search Range, up to 20 days since the start of the stay-at-home order, 
also decreases which can present skew within smaller subsets of data. We will discuss more in 

depth on the confounding variables as well as bias this may introduce in the discussion section. 
 

Table 2 displays the sample statistics comparing Day Zero of stay-at-home order implementation 
and increasing time points since then, as originally described in Table 1. We observed that the 

proportion of counties that reported a decrease in the rate of confirmed case counts compared to 

Day 0 increased as time increased, suggesting a positive correlation. The absolute average 
difference of confirmed case counts decreased over time, which suggests a negative correlation. 
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A similar negative correlation is noted for Percent difference of Daily Percent Change. It is 
important to note the positive percentage difference of Daily Percent Change comparing between 

Day 5 and Day 0. Finally, we observed that the proportion of the 1720 total counties that 

participated in this study decreased as we increased our Search Range, due to limitations within 

the dataset that led to underreporting and lack of complete data. We excluded these data points as 
part of our methodology to only include counties with valid data within the Search Range. 
 

Table 3 shows the logarithmically transformed average MSE score for county case studies before 

and after the stay-at-home order. We see that there is significant error compared to the error 
before the stay-at-home order that indicates a poor fit between the SIR model trained on pre stay-

at-home case count data and modelled under the scenario that the stay-at-home order did not 

exist compared to the actual case count data on average. This can suggest a deviance from 
expected trends following stay-at-home order. 

 

Table 4 shows the logarithmically transformed MSE score for county case studies before and 
after the stay-at-home order. The 3 counties, Los Angeles, Cobb County and Sonoma County, 

were chosen to be representative case studies whose results can be generalized to a limited 

degree to other similar sized and featured cities. 

 

4. DISCUSSION 
 

4.1.  A Retrospective Analysis on the Impact of Stay-at-home Policy 
 
The study’s purpose was to investigate the role of stay-at-home policy through comparison of the 

projected models of case counts in the scenario that stay-at-home did not exist compared to 

actual case counts over a time series at the county-level. The results comparing the statistics 
based on Daily Percent Change from Table 2 are consistent with the literature and reveal how 

stay-at-home policies correlate with a decrease in Daily Percent Change on average across all 

counties with valid data within the Search Range. There was a positive correlation observed 
between the size of the interval within the Search Range since day zero of policy implementation 

and the proportion of counties that reported a decrease in the rate of increase confirmed case 

counts. 

Surprisingly, the majority of counties reported a decrease in confirmed case count within 5 days 
of policy implementation and continued to reflect a decrease in subsequent intervals, which we 

interpreted as an indication of the sweeping implementation of stay-at-home policy and its 

correlated effect. The positive correlation parallels historical and epidemiological case reports of 
commensurate stay-at-home policies during epidemics. In particular, this compares to the 

precedent scenario within the coronavirus family, the response to the 2003 pandemic of severe 

acute respiratory syndrome, which shares similar border control, stay-at-home and population 

level surveillance policies at scale and subsequent decrease in confirmed case counts following 
implementation. An important aspect to note is that this positive correlation does not indicate 

temporal order of which variable came first, or the causation of stay-at-home policy 

implementation leading to the observed decrease of confirmed case counts across all counties on 
average. 
 

There was a negative correlation observed from Table 2 between the size of the Search Range 

interval since day zero of policy implementation and the average absolute decrease of rate of 
change of confirmed cases across all counties with valid data within the Search Range. This 

correlation is consistent throughout the intervals of the Search Range, which we interpreted as an 

increase in the longevity and robustness of stay-at-home policy implementation since Day Zero. 
This supports the conclusion of a study by Jiang et al. that concluded that longer periods of stay-

at-home could be more effective in preventing viral transmission, in response to new findings 
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that median incubation periods of all infected were 1.8 days longer than previously estimated [9]. 
Thereby, we would expect based on literature that as the time since Day Zero of policy 

implementation increases, the decrease in Percent Daily Change at increasing time points 

compared to Day Zero increases, and this is reflected in the negative correlation observed. 
 

To further illustrate the difference in rate of change, we observed a negative correlation from 

Table 2 between the size of the Search Range interval and the average relative decrease of rate of 

change of confirmed cases across all counties with valid data within the Search Range. We noted 

that the average relative decrease of rate of change of confirmed cases at post-10, 15, and 20 
days reflected the negative correlation observed. However, we noted a low increase of 3.0% in 

average relative decrease of rate of change of confirmed cases at 5 days after Day Zero. 
 

This anomaly at Day 5 leads to two mutually inclusive conclusions: the presence of outliers in 
the county data at Day 5 that artificially skew the averaged mean of the statistic to be higher than 

expected and the implementation of stay-at-home policies did not have a significant effect that 

translates to confirmed case counts at Day 5. We believe both the incubation period and the 
presence of outliers outside of the interquartile range of the sample data may skew the data at 

Day 5 compared to subsequent intervals and be represented as more positive than expected. 

As seen in Figure 4, the boxplot at Day 5 illustrates a significant skew of positive value outliers 
that increase the overall mean of the statistic, since averaged values tend to be sensitive to 

statistical outliers. This supports the conclusion that the presence of outliers had an effect on the 

statistics on Day 5. 
 

We also believe that there was no significant effect at Day 5 observed due to the median 
incubation period that persists beyond Day 5, which reduces the reported case counts compared 

to subsequent intervals. This observation was determined by the near-zero average relative 

decrease of rate of change of confirmed cases at Day 5, which indicates that relative to 5 days 
before Day Zero, there was no empirically significant difference in rate of change. This in turn 

leads us to believe that at Day 5, there is no empirically significant relationship between 

implementation of stay-at-home policies and relative decrease in rate of change of confirmed 
cases. Based on literature that purports a median incubation period of 5.1 days [10], we would 

expect that 50% of the infected population on average would show symptoms by Day5,and even 

less would have already been diagnosed on the day that they show symptoms. Thereby, it is 

unlikely that the implementation of the stay-at-home policy would have an observable correlation 
with confirmed case counts by Day 5. 

 

Further investigation is needed to identify if and to what extent the two mutually inclusive 
conclusions contribute to a systematic decrease in the relative rate of change of confirmed case 

counts at Day 5. 

 
It is important to note the limitation that as the Search Range increased at 5 day steps, starting at 

5 days to 20 days since Day Zero of stay-at-home policy implementation, the number of counties 

with valid data within the Search Range decreased as part of a negative correlation as observed in 

Table 2. This is because the Search Range extended beyond the existing data for certain counties, 
which were then excluded based on the scope of the Search Range as part of the methodology. 

The decreasing subset of data as the Search Range increased was likely due to the inconsistent 

nature of reporting of confirmed cases at the county-level to the centralized national dataset. 
With respect to the interval at the 20 days post-Day Zero of policy implementation, 5.5% of the 

original 1720 counties had data, which can then lead to outliers having a greater skew on 

averaged data within a smaller subset of sample data.  
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4.2. SIR Model Case Studies 
 

The SIR Model is proposed to explain the projected infection dynamics by predicting the number 

of case counts based on pre-stay-at-home data in the scenario where stay-at-home did not exist 
compared to the actual number of confirmed case counts across a time series for each county. 

Underestimation and overestimation can be particularly impactful in the early stages of an 

epidemic due to lack of reliable information. After the SIR model parameters have been 
estimated based on the clinical case count data, we evaluated the effect of the implementation of 

the stay-at-home policy by comparing the error between trends of actual number of case counts 

and forecasted number of case counts from the SIR model. 

 
We used the first MSE value for each county’s time series data to investigate how well the SIR 

model correlated with the actual case counts over time before the stay-at-home, and the second 

MSE value to investigate how well the SIR model correlated with the actual case counts over 
time before the stay-at-home. The mean MSE score transformed logarithmically of all counties 

before stay-at-home was 2.095, which suggests relatively lower error indicative of good fit 

between the SIR model and the actual case count data, that is consistent with existing literature 
on the accuracy of SIR modelling with trained data and relevant clinical input parameters. The 

mean MSE score transformed logarithmically of all counties after stay-at-home was 9.179, which 

suggests relatively higher error indicative of poor fit between the SIR model and the actual case 

count data. This indicates that the significant deviance between the case counts in the scenario 
predicted by the SIR model where stay-at-home did not exist compared to the actual case count 

data post-stay at-home likely occurred due to a factor that strongly correlates with rapid change 

in transmission rates. The literature establishes that stay-at-home is purported to be an effective 
public health measure to decrease rate of transmission, and this is reflected in the deviance 

between the SIR model and the actual case counts. It is understood that the model is limited due 

to the sensitivity of the input parameters initiated in the methodology in recreating accurate 
models of epidemic transmission, such as the rate of testing and consistency of reporting at the 

county level, that can contribute to variation in input parameters and measures of central 

tendency at the national level. 
 

As an extension of our investigation, we observed three categories of trends between case count 
forecasts from the SIR model compared to the actual case counts after the implementation of 

stay-at-home policy. 

 

  
 

Figure 6. SIR Model (yellow) prediction of expected case counts in the scenario that stay-at-home orders 

were not implemented compared to actual case counts of Los Angeles county, California. The high 
deviation (MSE = 13.065) between expected and actual case counts post stay-at-home implementation 

suggests that there may be a significant factor that influenced the number of actual case counts in Los 

Angeles county. 
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Figure 6 outlines the forecast of case counts based on the SIR model and the actual case counts 
after the implementation of stay-at-home for the city of Los Angeles, California. Here, we 

observed a strong correlation (MSE = 1.633) that represents a very good fit by the SIR model on 

the actual case count data pre-stay-at-home. It is important to note that after stay-at-home, a 

strong deviation (MSE = 13.065) between the forecast of case counts from the SIR model in the 
scenario in which stay-at-home was not implemented contrasted with the actual number of case 

counts reported after stay-at-home was implemented in the real world. Los Angeles case count 

data shows high error between the date since the start of the stay-at-home and the total confirmed 
case counts relative to the expected number of case counts. This deviation is representative of 

similar trends of other large metropolitan cities such as San Diego, New York City, and Houston 

defined by over one million population and regarded as economic hubs across the United States. 
We believe that these consistent empirical similarities in trends based on forecasted and actual 

data suggests that for large cities, there is a high error between the date since the start of the stay-

at-home and the rate of increase of transmission rates that translates to confirmed case counts. 

Thereby, large cities will likely experience a decrease in rate of change of confirmed case counts 
following implementation of stay-at-home policies compared to the scenario where these policies 

were not implemented. We noted that for larger cities, the reporting of confirmed cases were 

more likely to be consistent due to established healthcare systems and the lesser effect of bias 
from underreporting or overreporting of subsets of case counts on the total number of confirmed 

case counts. 

 

 
 

Figure 7. SIR Model (yellow) prediction of expected case counts in the scenario that stay-at-home orders 

were not implemented compared to actual case counts (red) of Cobb county, Georgia. The high deviation 

(MSE = 11.105) between expected and actual case counts post stay-at-home implementation suggests that 

there may be a significant factor that influenced the number of actual case counts in Cobb county. 

 

Figure 7 outlines the forecast of case counts based on the SIR model and the actual case counts 
after the implementation of stay-at-home for Cobb county in Georgia. Here, we observed a 

medium correlation (MSE = 3.577) that represents a good fit by the SIR model on the actual case 

count data pre-stay-at-home. It is important to note that after stay-at-home, we observed a strong 
deviation (MSE = 11.105) between the forecast of case counts from the SIR model in the 

scenario in which stay-at-home was not implemented contrasted with the actual number of case 

counts reported after stay-at-home was implemented in the real world. We observe that Cobb 
county shows a high error between the date since the start of the stay-at-home and the total 

confirmed case counts relative to the expected number of case counts. Cobb county is home to a 

suburban population of 760,141 with a large, in-city university campus and access to major 

transportation hubs and airports in nearby counties [11]. Cobb county has a less population count 
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and more variable population density than comparatively homogeneous and dense metropolitan 
areas such as Los Angeles. From this, we noted that the reporting of confirmed cases were less 

likely to be consistent due to less centralized healthcare systems and the greater effect of bias 

from underreporting or overreporting of subsets of case counts on the total number of confirmed 

case counts. However, the contrast between forecasted and actual confirmed case counts deviates 
similarly to counties with larger populations that are more robust to skew from underreporting or 

overreporting such as Los Angeles. From this, we believe that Cobb county likely experienced a 

decrease in rate of change of confirmed case counts following implementation of stay-at-home 
policy compared to the scenario where these policies were not implemented. Further 

investigation is warranted to investigate to what extent population size plays a role in reinforcing 

the robustness of the SIR predictive modelling to underreporting and overreporting. 
 

 
 

Figure 8. SIR Model (yellow) prediction of expected case counts in the scenario that stay-at-home orders 
were not implemented compared to actual case counts (red) of Sonoma county, California. The poor fit of 

the SIR model to post stay-at-home actual case count data (MSE = 3.639) invites further investigation of 

the anomaly of actual reported case counts and alternative models for edge cases such as Sonoma county. 

 

Figure 8 outlines the prediction of case counts based on the SIR model compared to the actual 

case counts after the implementation of stay-at-home for Sonoma county in California. Here, we 
observe a surprising trend where the expected number of cases predicted by the SIR model in the 

scenario where stay-at-home did not exist was predicted to have a lower number of case counts 

from Day 25 to Day 68 compared to the actual confirmed case counts. We believe that this 
suggests that following the implementation of stay-at-home policy in Sonoma county, the stay-at-

home policy may not have played a role with significant empirical observations of correlation 

between the date since the start of the stay-at-home and the number of confirmed case counts. 

This conclusion is supported by the poor fit of the SIR Model (MSE = 3.639) to the actual case 
count data post-stay-at-home. 

 

The low MSE value for post-stay-at-home compares to the high MSE values of Los Angeles and 
Cobb County at around 13.065 and 11.105 respectively, which serves as an anomaly that we 

investigated further. Following Day 68, however, the expected number of cases forecasted by the 

SIR model exceeds the actual number of cases that indicates that there is an external variable 
influencing the confirmed case count, which we suggest can be due to stay-at-home 

implementation. 

 

Sonoma county is home to a rural population of 499,942 and hosts an agricultural and tourism 
industry, with accessible pathways to major transportation hubs, airports, and railroads [12]. 

Sonoma county has a significantly lower population count and more variable population density 
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than comparatively homogeneous and dense metropolitan areas such as Los Angeles. Like Cobb 
county, we noted that the reporting of confirmed cases were less likely to be consistent due to 

less centralized healthcare systems and the greater effect of bias from underreporting or 

overreporting of subsets of case counts on the total number of confirmed case counts. The SIR 

model reported a strong fit to the pre-stay-at-home actual case count data(MSE =1.083)but a 
poor fit to post stay-at-home actual case count data (MSE = 3.639), which suggests the 

possibility of overfitting of the SIR model on the pre-stay-at-home data. We propose that the 

anomalous nature of Sonoma county when comparing the SIR model forecast with the actual 
case number counts is indicative of overfitting of the SIR model based on under-reported case 

counts at the earliest stages of county-specific transmission before the date of stay-at-home 

implementation. One possible reason for overfitting is a sudden change in rate of increase of 
actual case counts post-stay-at-home that the SIR model could not account for since it was fitted 

based on pre-stay-at-home case count data, which can be seen on Day 25 of Figure X. Further 

investigation is warranted to investigate anomalous specific county-level stay-at-home policies 

and the extent to which they influence transmission rates. 
 

4.3. SIR Model Use Cases and Limitations 
 

The SIR model used in this study assumes that all individuals have the same probability to 

contract the disease and that there is homogenous mixing of the population. These assumptions 

fail to consider several factors relevant to COVID-19 transmission. This model considers 
individuals in self-stay-at-home before lockdown measures were officially announced as equally 

susceptible to those who did not self-stay-at-home. It also does not take into consideration 

variation in susceptibility in the population, for example, due to age comorbidity. The model also 
assumes that infection confers immunity; however, research to validate this claim is ongoing. 

Despite these limitations however, the SIR model is one of the most used models for epidemics 

and is useful in evaluating the difference in the rate of change in COVID-19 cases before and 
after lockdown measures were implemented. In fact, several variations of the SIR model exist 

and the one specifically used for this study, a time dependent SIR model, have been used by 

several other past studies to model COVID-19 transmission [13] [14]. This model is not only 

more adaptive than a static SIR model approach but also more predictive than many other 
traditional estimation methods. 

 

4.4. Variation in Stay-at-home Compliance 
 

This study focused on the effect of implementing a lockdown but not on the specific lockdown 

policies themselves. The extent of the lockdown policy, how strictly they were enforced and how 
this information was conveyed to residents, differed among the counties. These interdisciplinary 

factors likely play a role in determining the role of stay-at-home and warrants further 

investigation through correlational analyses.  
 

One factor that may contribute to variation in stay-at-home compliance during COVID-19 is the 

knowledge about the emerging outbreak of disease and communication of practical protocols. In 

the case of 5 Australian schools closed during the H1N1 flu pandemic, the unclear protocol led 
the public to create their own protocols based on their own accepted interpretations of the 

symptoms of the disease, degree of contact with infected individuals and overall transmission 

risk [15]. On the other hand, hyper-strict protocols can be difficult to understand. In this second 
case, health professionals stay-at-homed in Senegal during the Ebola epidemic did not 

consistently adhere to stay-at-home measures since they believed that the protocols were over 

precautionary [16]. The effectiveness of communicating stay-at-home policies will introduce 
random variation on if and when a statistically significant change is observed in confirmed case 

counts.  
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A second factor that may have contributed to this variation in stay-at-home compliance is 
politics. Specifically in the context of the USA, the COVID-19 situation has created a large 

political division between Republicans and Democrats. By April 22nd, only eight states 

(Arkansas, Iowa, Nebraska, North and South Dakota, Oklahoma, Utah, and Wyoming) had not 

implemented stay-at-home orders; interestingly, these are all typically Republican-leaning states 
[17]. As a general trend, Republican-led states have not only been slower, and less likely, to 

impose restrictions but tended to downplay the situation as well. Several Republican leaders have 

even encouraged citizens to continue to visit bars and restaurants amid the pandemic. In addition, 
recent polls suggest that Democrats in general express more concern regarding COVID-19 and 

have changed their personal behaviours to a greater extent than Republicans [18]. As such, 

politics may have produced variation in stay-at-home compliance and could have affected the 
effectiveness of stay-at-home policies. 

 

4.5. Variation in Testing 
 

The number of tests administered was also not considered in this study. Because the number of 

cases per day is dependent on the number of tests administered, the perceived effectiveness or 
ineffectiveness of implementing stay-at-home measures could be due to a significant difference 

in the number of administered tests before and after lockdown measures. Since March 14th, the 

number of tests administered in the USA has been steadily increasing, reaching almost 4 million 

tests on April 18th [19]. However, the number of testing kits available and the number of tests 
administered vary drastically between counties. Not only this but several states have been 

reported as not distinguishing between the overall number of tests performed and the total 

number of individuals tested. In addition, there have also been issues with the inclusion of 
serology or antibody tests, which are not diagnostic tests, in their total number of tests [20]. This 

highlights a significant limitation to not only to this study but to the available COVID-19 case 

data in the USA as a whole. 
 

4.6. Epidemiological Considerations of Herd Immunity 
 
Herd immunity is defined as the protection from infection conferred to susceptible individuals 

when a proportion of immune individuals exist within the population [21]. This stems from the 

sum of the effects of individual immunity scaled to a population and leads to two primary 

scenarios: the first scenario where a pathogen can freely transmit through susceptible hosts of a 
naive population and the second scenario where a proportion of the population has conferred 

immunity from previous infection or vaccines that prevents further pathogenic transmission. 

Kissler et al. state that unless a previous immunizing infection that confers the same degree of 
immunity to COVID-19 had taken place, there is otherwise little evidence to suggest that herd 

immunity is a key factor in reducing transmission rates in May 2020 within the scope of the 

United States during the implementation of the stay-at-home policy [22]. 
 

Herd immunity is expected to take up to 18 months in the absence of a vaccine, and given the 

timeframe since the first confirmed case of COVID-19 in the United States on January 22, 2020, 

it is unlikely that the propagation of immunity was expedited. Furthermore, a study by Bao et. al 
found that rhesus macaques were immune to reinfection one month after the first viral infection, 

which can suggest a degree of short-term immunity [23]. Despite promising findings in the early 

stages of immunological research, it remains to be determined to what extent herd immunity 
currently scales to the size of the American population and the potential effect on reducing 

confirmed case counts in comparison to stay-at-home measures. Further mass serological testing 

is required to estimate how close the population of the United States is to reaching the minimum 
herd immunity threshold. 

 



Health Informatics - An International Journal (HIIJ) Vol.9, No.2/3, August 2020 

18 

5. CONCLUSION 
 
This study evaluated the role of stay-at-home measures in decreasing the transmission rate of 

COVID-19. Our findings suggest that while stay-at-home measures were effective overall, they 

are more likely to be effective in larger, higher density counties. This is due to the nature of 

counties with smaller populations and population distributions. 
 

An SIR model was first proposed for each county to model COVID-19 transmission before stay-

at-home measures were implemented. Based on this model, a Percent Daily Change was 
determined by comparing the actual number of cases with the predicted number of cases 5, 10, 

15, and 20 days after these measures were implemented. Overall, most counties (75.1%) saw a 

decrease in the number of reported cases within 5 days of implementation with almost all 

(97.4%) counties showing a decrease by 20 days. Interestingly, at 5 days after stay-at-home 
measures were implemented, we observed a slight increase of 3.0% in the percentage difference 

in the Percent Daily Change, but this can be explained due the median incubation period of 

COVID-19 being 5.1 days. 
 

We then focused our attention to three key counties (Los Angeles, Cobb County, Sonoma 

County) to represent a large metropolitan city, a medium-sized city, and medium-sized Township. 
While both Los Angeles and Cobb County showed a strong fit with the SIR model before stay-at-

home was implemented (MSE = 1.633, 3.577 respectively) and a weak fit after (MSE = 13.065, 

11.105 respectively), Sonoma County produced unexpected results. Unlike the other two 

counties, stay-at-home measures produced higher numbers of cases than predicted using the SIR 
model. We suggest that a lower population count, more variable population density, less 

centralized healthcare systems leading to inconsistent reporting as well as greater effects of bias 

from underreporting or overreporting as potential reasons for these observations. As such, based 
on these results, we propose that stay-at-home home measures are most effective when 

implemented in larger cities. We also note a promising outlook for the role of quarantine on 

attenuating the increase in actual case counts on average across sampled counties. 
 

Further investigation is still needed to better understand why and to what extent these anomalies 

are affecting the effectiveness of stay-at-home measures at the county-level. Since this was a 

correlational study, we propose potential for further investigation on the temporal order of the 
stay-at-home implementation and decrease in rate of case count change and experimental 

validation for causal factors. Subtle interplays between causation and association across the 

variable nature of counties across the United States should be noted. In fact, improvements in 
different factors such as testing rates, resource allocation and knowledge dissemination can 

decrease efficiency of transmission to variable extents, which individually should be analysed to 

provide a holistic outlook of outbreak progression. This will vastly improve the efficacy of stay-

at-home policies at the county level, as policies can be uniquely devised to fit the needs of that 
county. 

 

Our study contributes to existing literature of public health policy by determining that the 
emergent nature of COVID-19 transmission and stay-at-home policy can be quantified to better 

prepare the public health response at scale across the United States. On a larger scale, the results 

of this study can be applied globally as well as towards future outbreaks. Several additional 
factors, such as variations in testing and compliance rates, that may affect the effectiveness of 

quarantine policies were also suggested and a further investigation on these topics can provide 

more localized, targeted means of slowing down the transmission rates of infectious diseases. 
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