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ABSTRACT 

Energy theft constitutes an issue of great importance for electricity operators. The attempt to detect and 

reduce non-technical losses is a challenging task due to insufficient inspection methods. With the 

evolution of advanced metering infrastructure (AMI) in smart grids, a more complicated status quo in 

energy theft has emerged and many new technologies are being adopted to solve the problem. In order to 

identify illegal residential consumers, a computational method of analyzing and identifying electricity 

consumption patterns of consumers based on data mining techniques has been presented. Combining 

principal component analysis (PCA) with mean shift algorithm for different power theft scenarios, we can 

now cope with the power theft detection problem sufficiently. The overall research has shown 

encouraging results in residential consumers power theft detection that will help utilities to improve the 

reliability, security and operation of power network. 
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1. INTRODUCTION 

A substantial quantity of losses during the entire operation of the electrical network (generation, 

transmission and distribution), proves the involvement of non-technical losses, mainly in the 

distribution network, due to electricity theft by illegal consumers. Detection of illegal 
consumers is an extremely challenging problem nowadays, due to the large amount of money 

that is not imputable to the state and the electricity provider [1]-[7]. 

Technical losses in power systems are naturally occurring losses, which are caused by actions 
internal to the power system, and consist mainly of power dissipation in electrical system 

components such as transmission lines, power transformers and measurement systems [8], [9]. 

Non-technical Losses (NTLs) refer to losses that occur independently of technical losses in 

power systems. NTLs are caused by actions external to the power system, and also by the loads 
and conditions that technical loss computations fail to take into account. More specifically, 

NTLs are mainly related to power theft, and can also be viewed as undetected consumer loads 

that local utilities and electricity distribution companies don’t know their existence.  
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NTLs are more difficult to measure because they are often non-countable by the system 
operators and thus have no recorded information [10]-[14]. There can be many reasons for 

power theft, such as high energy prices, unemployment, a weak financial situation of a 

consumer, tax purposes, weak accountability and enforcement of law, all of which reflect 

reasons to hide total energy consumption (moreover consumers who grow marijuana and 

produce drugs illegally or small-scale industries to hide a part or overall production) [15].  

Techniques of power theft are also plentiful, such as using an external phase in front of meter 

terminals, tampering with meters so that meters record lower rates of consumption, inserting 
foreign materials and drilling holes into electromechanical energy meters, arranging false 

readings by manipulating meter readers as well as exposing the meter to mechanical shock. The 

most common and simplest way of pilfering electricity is tapping energy directly from an 

overhead distribution feeder [16], [17]. 

Monitoring of consumer load profiles for energy theft detection can be found in the literature 

[17]-[20]. The most common methods for fraud detection are Support Vector Machines ([21]-

[23]), Artificial Neural Networks ([24], [39]), Bayesian Networks and Decision Trees [25], 
Extreme Learning Machines [26], Optimum-Path Forest [27], Fuzzy Clustering [28], Anomaly 

Detection [29] and Deep Learning which has recently achieved unprecedented performance in 

many areas of computer applications [30]-[32]. From the above technics, Support Vector 
Machines and Artificial Neural Networks are the leading technics due to good performance and 

easy adaption to different areas of research [17]-[19]. 

The main challenges and issues in NTL detection area are: handling imbalanced classes in the 

training data which also affects the evaluation metrics, describing features from the data which 
has a serious impact on the performance of a classifier, handling incorrect inspection results and 

recording results obtained through different methods comparable. This will allow researchers to 

deal with reliable, understandable and scalable results [17]-[19]. 

This paper presents a computational method that uses energy consumption measurement 

patterns to detect illegal residential consumers in a smart grid environment. In general, 

electronic meters (smart meters) collect real-time information from the consumers several times 
per day. Despite the numerous daily residential load profiles that appear ([33], [34]), due to the 

examination over a long time period an artificial dataset with near real-time energy consumption 

patterns has been developed in this work. Furthermore, the well-known clustering algorithm 

mean shift [35] along with a number of applications in the power theft detection field ([17]-[19], 
[36]-[38]) has been proposed and implemented, which in combination with PCA analysis 

successfully maps residential energy consumption patterns in terms of legal and illegal. The 

NTL methods based on artificial intelligence are typically applied to features computed from 
customer electricity consumption profiles and require the feature extraction from historical data 

for training process [46]. The computational effort for the feature extraction from historical data 

is not necessary when combining PCA data analysis with mean shift clustering algorithm. Given 
that the mean shift is an unsupervised clustering algorithm it can perform clustering to any 

amount of historical data available. Obviously, the more the historical electricity consumption 

data are, the more effective are the data clustering and the corresponding power theft detection 

results. 

The main contributions of this paper are: a computational methodology for automated detection 

of illegal use of electricity in a local low voltage distribution network based on Principal 

Component Analysis (PCA) combined with the mean shift clustering, which is verified from the 
presented experimental results. Simulations with different numbers of power theft scenarios 

(Table 3), different percentages of partial power theft cases (scenario 2, Table 3), different 

percentages of power overload cases (power theft scenario 4, Table 3) and different 

consumption patterns for every consumer (Table 1). In this paper only the examination of power 
lines with non-technical losses is performed and not the whole power system (see Subsection 
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3.2), which is a computationally efficient fact. The insertion of smart meters via commercial 
power system analysis software is essential for the implementation of the proposed method in 

order to receive energy consumption measurements several times per day. 

The rest of this paper is organized as follows. Section 2 provides an overview of how residential 

and commercial consumption patterns are constructed. Section 3 describes the power system 
model used in this research, the power theft scenarios implemented and what kind of data is 

received from a commercial power system analysis environment for further processing. Section 

4 details the data preprocessing via data mining techniques (i.e. PCA, mean shift algorithm). In 

Section 5 experimental results are analyzed and finally a conclusion is presented in Section 6. 

2. CONSTRUCTION OF RESIDENTIAL AND COMMERCIAL ELECTRICITY 

CONSUMPTION PATTERNS 

Due to the lack of recorded statistics of the local utility from which we received data for an 

extended period of time, we were forced due to the needs of the present research to construct 

electricity consumption patterns for commercial and residential consumers.  

For residential consumers, the length of the time period, during which people are presented 

within a dwelling, influences decisively the profile loads of residence, as the majority of electric 

devices requires human presence to be mobilized and supervised in order to maintain their 
working mode [40]-[41]. To determine the time periods where people are resident at home, the 

following frequent electricity consumption scenarios were used as shown in Table 1. 

 

Table 1.  Frequent electricity consumption scenarios of residential consumers 
 

Scenarios Description 

1 

 

Absence from home 09:00 up to 13:00. Possibly 

inhabitants have part-time work in the morning. 

2 
 

Home absence from 09:00 up to 18:00. Possibly 
inhabitants have a full time work.  

3 Home absence from 09:00 up to 16:00. 

4 

 

Full home presence. Possibly infant existence under 

people supervision or elderly people presence. 

5 Home absence from 13:00 until 18:00. Possibly part 

time job during evening hours. 

6 Full absence on weekdays and partial presence 
during weekends. Possibly cottage existence near to 

the permanent residence. 

7 

 

Almost complete home absence. Presence only 

some days of the year for holidays. Possibly 
existing cottage far away from the permanent 

residence. 
 

Except for the frequent electricity consumption scenarios mentioned, various combinations of 
these scenarios can be simulated. The number and the type of electrical device used on a daily 

basis at home is constantly changing. Nevertheless, the most intense loads are space heating, 

space cooling, water heating, refrigeration and lighting. The freezer is included in the base load 

because it is a permanent electricity consumer for the whole year, while the cooling load 
(heating, ventilation, air condition) is seasonal. The electrical loads that are included for 

residential consumption patterns are shown in Table 2. 



 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.10, No.1, January 2019 

 72 

Table 2.  Load categories and electrical loads 
 

Load Categories Electrical Loads 
Personal hygiene Water Heater, Hair Dryer 

Preparation of food  Electrical oven, Microwave 

Watching TV Television 

Heat, Cooling Electrical Heating, Heat pump 

Household chores Vacuum cleaner, dishwasher, 

washing machine 

Study Computer 

Base Load Refrigerator, Freezer 

Lighting Electric lamps 
 

Based on our model, we examined the load profile over a six month period (April to 
September). The daily profiles are repeated every day, except for the weekends, by slightly 

changing the duration of activities and the magnitude of loads in order to produce different 

individual patterns. For the weekends, different profiles were constructed, as people tend to do 

outdoor activities. To include the influence of environmental conditions in the load profiles, we 
considered an increase in temperature in summer months. As a result, cooling loads were 

increased from the final load charts. Furthermore, it was considered that residents go on 

holidays once a year with a duration of 5 to 15 days. 

Moreover, commercial patterns were constructed with the same methodology adjusting the 

electric loads and the duration of activities for every special business. Taking into account all 

the factors above, a database with load patterns for every electricity consumption scenario and 

different type of businesses was constructed. Load records account for every 15 mins, 
simulating the smart meters operation in a real environment. Fig. 1 and Fig. 2 show an example 

of a residential electricity consumption scenario 2 (Table 1) and respectively, restaurant power 

consumption per day. The increased consumption from 90 to 150 days (July-August) in Fig. 1 
and Fig. 2 is due to the increased cooling load consumption as we previously noted. For 

residential consumers we consider a small reduction in cooling loads from the day 150 to the 

day 180 (i.e. during September), (see Fig. 1). 

 

 

Figure 1.  Scenario 2 power consumption from April to September 
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Figure 2.  Commercial power consumer (Restaurant) 

3. MODEL DEVELOPMENT AND DATA EXTRACTION 

3.1. Power system model 

The power system model was developed by means of commercial power system analysis 

software using the educational version of 40 buses offered for free use. The commercial power 
system analysis software used is an interactive power system simulation package, designed to 

simulate power system steady state operation on a time frame ranging from several minutes to 

several days. The software contains a highly effective power flow analysis package, efficiently 

solving the power flow problem in power systems containing up to 250,000 buses. 

Fig. 3 illustrates a part of the whole power system model, which is developed in a commercial 

power system analysis software environment for the needs of the present study. The power 

system model presented in this paper (i.e. Fig. 3) is a small part of the whole power system 
model, and consists of 3 commercial consumers (bold arrows) and 33 residential consumers 

(thin arrows). The whole power system model consists of 100 commercial and 1000 residential 

consumers. The lines are three phase balanced (one line equivalent) that can be modeled as a 
single line measuring between 250-300 meters in length. Each consumer has a fixed connection 

either single phase or three phase which is not possible to be changed by him.  

In the proposed methodology the electricity consumption data at the consumer level are 

analyzed in order NTLs to be identified when unusual electricity consumption events are 
observed. Moreover, in the beginning of every line and for every consumer, we have installed 

the minimum number of sum meters and smart meters respectively, in order to examine the total 

power consumed over 6 months and for every 15 mins. At the moment, smart meters are able to 
measure the electricity consumption every minute, but, because of communicational system 

limitations, they send data once a day or once a week or even once a month. However, such 

measurements would be available in the near future. Moreover, in the real world, consumer 
smart meters do not work synchronously and because of communication delays, there is a slight 

time difference among the measured values recorded. This difference would be a source of error 

in the method proposed due to the fact that the method considers the measurements of all smart 

meters to be received at the same time instance. In any case, these delays occurring in the real 
world don’t really affect the applicability of the proposed method. Along a line, we can observe 

that the number of consumers is increasing, as more and more consumers are connected in 
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reality. The characteristics of the distribution lines are that of ACSR 50 R: 0.381 Ω/Km and X: 

0.294 Ω/Km. 

 

 

Figure 3.  Power System Model in a commercial software environment 

3.2. Power theft scenarios and local level power theft detection method 

For the needs of the present work, we have constructed power theft scenarios as shown in Table 

3. 

Table 3.  Power Theft Scenarios 

1. Consumers with smart meter fully stealing 

electricity due to power pass before the smart meter. 

2. Consumers with smart meter partially stealing 

electricity due to power pass before the smart meter. 

3. Consumers with no smart meter are connected 

illegally to the power grid. 

4. Consumers with abruptly increased consumption of 

electricity due to illegal activity or power delivery to 

unauthorized building. 

 

Having constructed a database for every frequent electricity consumption scenario (Table 1) and 

for different commercial consumers, as mentioned in Section 2, a random process ran for 

selecting a load pattern for every residential and commercial consumer in the grid. 
Consumption patterns were designed using Matlab software, and after they were introduced to 

the commercial power system analysis software used. 

For our experiments, we apply first to our case study grid of Fig. 3, different combinations of 

the power theft scenarios (Table 3). In order to evaluate the proposed computational method, we 
apply power theft scenarios only in line 1 (Fig. 3 left line). More specifically we consider two 

residential consumers with power theft scenario 1, four residential consumers with power theft 
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scenario 2, two residential consumers with power theft scenario 3 and three residential 
consumers with power theft scenario 4. Having introduced the smart meter readings for all 

consumers from our database to our case study grid, we ran our model for 6 months (April to 

September, i.e. from day zero to the day 180). We chose to receive results about the total active 

energy consumed from every line (sum meter reading), the total power losses for each line and 
the technical losses for each line respectively, as shown in Fig. 4. Total losses were estimated by 

the commercial power system analysis software, used for every line as the subtraction of 

consumers’ consumption from sum meter readings. Subsequently, for every line, technical 
losses are subtracted from total losses so as to receive results for non-technical losses. We didn’t 

take into consideration the reactive power because the percentage of reactive power for 

residential and commercial consumers was too low in contrast with industrial consumers. Fig. 4 

shows the distribution line results.  

More specifically, we can observe the sum meter readings in line 1 and line 2, total losses in line 

1 and line 2, technical losses in line 1 and line 2, and non-technical losses in line 1 and line 2. 

As a result, non-technical losses in line 1 (Fig. 4 (d)) are far more remarkable in comparison 
with non-technical losses in line 2 (Fig. 4(h)). Non-technical losses in line 2 (Fig. 4 (h)) may be 

due to computational errors of the commercial power system analysis software used. Given that 

these errors are quite small, i.e. they are less than 10% of the technical losses in line 2, we didn’t 
take them into consideration. Provided that significantly crucial technical losses are of priority 

for the electricity distribution companies, the result of the above observation leads to the 

detection of a power theft event in line one. The aim of the power theft detection method 

presented above is to permit electricity distribution companies to detect power theft events from 
the technical losses calculation of each line, which is easy to perform in real time by exploiting 

the advanced measuring features of the electronic smart meters. 

 

  

(a) (e) 

  

(b) (f) 



 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.10, No.1, January 2019 

 76 

  

(c) (g) 

  

(d) (h) 

Figure 4.  Distribution Line Results, (a) Sum meter readings in line 1, (b) Total losses in line 1, 

(c) Technical losses in line 1, (d) Non-technical losses in line 1, (e) Sum meter readings in line 

2, (f) Total losses in line 2, ,(g) Technical losses in line 2, (h)Non-technical losses in line 2 

4. DATA PREPROCESSING  

Having collected the appropriate results from the commercial power system analysis software 
used as mentioned in Section 3, the next step is to separate commercial and residential 

consumers from line 1 (Fig. 3 left line) a fact that can easily be done in reality, as the electricity 

provider knows the categories of the consumers-clients. From the residential consumers group, 
we remove those consumers with scenario 6, these with scenario 7 and those with zero 

consumption. For residential consumers, we keep only weekdays and we eliminate weekends 

due to the different habits of residents, especially during weekends. In this way, we enhance the 

clustering procedure to be more robust.  

Subsequently, before applying principal component analysis (PCA) [42], [43] it is standard 

practice to first perform mean normalization at feature scaling, so that the features (power 

consumption) have zero mean and should have a comparable range of values due to the 

expression (1) below:  

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑗

(𝑖)

𝑚

𝑖=1

 (1) 

where 𝑋𝑗 is the jth consumer data vector and 𝜇𝑗  the average electricity consumption of each 

consumer. Then we replace each 𝑥𝑗
(𝑖)

 with (𝑥𝑗
(𝑖)

− 𝜇𝑗).  

Next step is to apply the technique principal component analysis (PCA) for dimensionality 

reduction while retaining most of the data’s variance. PCA obtains eigenvalues and eigenvectors 

(principal components) which represent the characteristics and relationship of the data. Those 
characteristics with lower eigenvalues can be eliminated as they are not significant components. 



 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.10, No.1, January 2019 

 77 

In our survey, the dimensions of data are 17568 as it represents the number of data points 
“electricity consumption per 15 min and for 6 months”. Subsequently we chose the first 10 

principal components (data dimentions after the application of PCA) so as to keep the data 

variance to 95 % according to the expression (2): 

1
𝑚

∑ ‖𝑥(𝑖) − 𝑥𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

‖
2

𝑚
𝑖=1

1
𝑚

∑ ‖𝑥(𝑖)‖2𝑚
𝑖=1

≤ 0.05 (2) 

In the expression (2) the numerator corresponds to the average square projection error with 

 𝑥𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

 denoting the projected data and the denominator, the total variation (m=17568, number 

of data points for a 6 month time period). After the principal component analysis, the 

implementation of the mean shift algorithm will take place [35]. 

Mean shift algorithm is a nonparametric clustering technique which does not require prior 

knowledge of the number of clusters, and does not constrain the shape of the clusters. Mean 
shift algorithm considers data points as a sample of a probability density function. If dense 

regions (or clusters) are present in the feature space, then they correspond to the mode (or local 

maxima) of the probability density function. For each data point, mean shift algorithm 
associates it with the nearby peak of the dataset’s probability density function. For each data 

point, mean shift algorithm defines a window around it and computes the mean of the data 

point. Then it shifts the center of the window to the mean and repeats the algorithm till it 
converges. After each iteration, we can consider that the window shifts to a denser region of the 

dataset.  

Mean shift assets are as follows: i) it does not presume spherical clusters, ii) it requires just one 

parameter (window size) to be tuned, iii) it finds a variable number of modes which are not 
given and it is robust to outliers and weak in non-constant regions, iv) it has no local minima, 

thus the clustering it defines is uniquely determined by the bandwidth, without the need to run 

the algorithm with different initializations, v) outliers, which can be very problematic for 
Gaussian mixtures and K-means, do not overly affect the kernel density estimates (KDE), other 

than creating singleton clusters.  

Disadvantages of the mean shift algorithm are: i) the output depend on window size. A large 
window size might result in incorrect clustering and might merge distinct clusters, whereas a 

very small window size might result in too many clusters, ii) efficient implementation is used on 

short cuts in the search and it does not scale well directly with dimension of feature space when 

it is above ten, iii) the classic mean shift algorithm is time intensive. The time complexity of it is 
given by O(Tn2) where T is the number of iterations and n is the number of data points in the 

data set. For the implementation of the mean shift algorithm to the data of the present work, we 

define a kernel density estimator as in the expression (3): 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (3) 

with bandwidth ℎ > 0, d the number of dimentions, 𝑥𝑖 the data points and kernel 𝛫(𝜒) =

𝑒−𝑥2/2𝜎2
 for the Gaussian kernel. Gausian kernels are easier to analyze and give rise to simpler 

formulas.  

Mean shift algorithm can be considered to be based on the gradient ascent on the density 

contour. The generic formula for gradient ascent is: 
 

𝑥1 = 𝑥0 + 𝜂𝑓′(𝑥0) (4) 
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∇𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝛫′ (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (5) 

By applying the expression (5) to kernel density estimator and setting the expression (5) equal 

to zero, we get the expression (6).Expression (7) is the mean shift to a denser region [35]: 

𝑥⃗ =
∑ 𝐾′ (

𝑥 − 𝑥𝑖
ℎ

) 𝑥𝑖⃗⃗⃗⃗𝑛
𝑖=1

∑ 𝐾′ (
𝑥 − 𝑥𝑖

ℎ
)𝑛

𝑖=1

 (6) 

Assuming 𝑔(𝑥) = −𝐾′(𝑥) we have 

𝑚(𝑥) =
∑ g (

𝑥 − 𝑥𝑖
ℎ

) 𝑥𝑖⃗⃗⃗⃗𝑛
𝑖=1

∑ g (
𝑥 − 𝑥𝑖

ℎ
)𝑛

𝑖=1

− 𝑥 (7) 

The fundamental parameter in mean shift algorithm is the bandwidth h (window size), which 

determines the number of clusters. In the mean shift algorithm the number of clusters has no 

particular restrictions. Exploring a range of bandwidths, we ended up with a value that produces 
5 clusters as the number of the most frequent residential consumers scenarios, i.e. the first five 

scenarios of Table 1. Scenario 6 and scenario 7 were removed during the data preprocessing. 
The cluster number chosen is 5 because the vast majoriy of consumers belong to the proposed 

first 5 classes. The systems don’t know the residential type a priori. Each particular household is 
classified only by taking into account its consumption behaviour. The runtime of our 

experiments is less than a minute. 

 

 

 

Figure 5.  Representation of the proposed method with a summarized flowchart consisted of 7 

different steps 
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5. EXPERIMENTAL RESULTS 

Simulating the whole system model using the commercial power system analysis software, 

which consists of 100 commercial and 1000 residential consumers, we randomly changed the 
number of power theft scenarios, the percentage of power theft scenario 2 (Table 3), the 

percentage of power overload consumption for power theft scenario 4 (Table 3) and the 

consumption patterns for every consumer. The power theft scenarios presented and examined 

here are the most frequently referred to and adopted in the bibliography [8]. 

Other scenarios that would be taken into account are power theft from a public organization, and 

power theft at specific times per day, but they are not considered in this work because they 

rarely occur.  

As shown in Fig.6 (c) and Fig.6 (d), by simulating the whole system except for mean shift 

algorithm, but also with DBSCAN clustering algorithm [36], [44], for residential consumers, 

with partial power theft (power theft scenario 2) equal or higher to 65% of the usual 
consumption and for residential consumers with overload consumption equal or higher to 60% 

of the usual consumption (power theft scenario 4), we have high rates of success (hit rate 

metric) for power theft detection and power overload consumption detection for both 
algorithms. Hit rate (or sensitivity or recall or true positive rate (TPR)) measures the proportion 

of the number of True Positives divided by the number of True Positives and False Negatives 

and is defined as TP/(TP + FN), where TP is a consumer correctly identified and FN is a 
consumer incorrectly rejected [45]. The regular users of energy are the True Negative (TN) 

cases which are not necessary in the hit rate calculation. 

For the zero consumption loads observed, (power theft scenario 1 or non-habitable dwelling) or 

for residential consumptions with scenario 6 and scenario 7 and for consumers with power theft 
scenario 3, the proposed detection method cannot be applied. In cases of zero consumption 

loads and for residential consumptions with scenario 6 and scenario 7, we need to verify if the 

house is inhabited or not by requesting the corresponding data from the tax services. In case the 
house is declared inhabited, then there is a strong indication for power theft incident.This step is 

necessary due to the fact that consumption scenarios 6 and 7 have very low consumption in 

comparison with the other scenarios.  

In Fig. 6 (a) and Fig. 6 (b) we present, with respect to the first two most significant components 
of the PCA, the output of the mean shift algorithm and the output of DBSCAN algorithm 

respectively for a simulation with consumers with 20% power theft and 20% overload of the 

whole power system model. The 5 clusters which correspond to the 5 more frequent residential 
consumption scenarios, as well as the clusters with outliers which correpond to consumers with 

power theft scenario 2 and power theft scenario 4, are clearly shown in Fig. 6 (a) and Fig. 6 (b). 

For those outliers concerning consumers cases that do not belong to any class corresponding to 
the scenarios determined in Table 1 and Table 3, it must be suggested to the local utility to 

check any such outlier case individualy for potential power theft activity. In distribution 

networks of thousands of consumers, the clustering methodology presented in Section 4 permits 

us to classify the consumers according to the type (class) in which they belong to. Concerning 
residential consumers with power theft scenario 3, it can be said that it is impossible to be 

detected with the proposed method because no smart meters are connected to the power grid in 

that scenario. It is worth noting that other equally efficient metrics could be: AUC (area under 

curve), precision metric, F1 score, etc [18]. 

https://en.wikipedia.org/wiki/Hit_rate
https://en.wikipedia.org/wiki/Sensitivity_(test)
https://en.wikipedia.org/wiki/Information_retrieval#Recall
https://en.wikipedia.org/wiki/Sensitivity_(test)
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(a) 

 

(b) 
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(c) 

 

 

(d) 

Figure 6.  Experimental results: a) Mean shift clustering results, b) DBSCAN clustering results, 

c) Mean shift-DBSCAN hit rate for power theft detection d) Mean shift-DBSCAN hit rate for 

abruptly increased power consumption detection 
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6. CONCLUSIONS 

This paper initially presents the power theft phenomenon and demonstrates how much 

widespread it is among utilities worldwide. Energy-theft detection is a persistent and difficult 

problem to cope with in power grids management.  

This paper reflects the fact that the development of advanced smart electronic metering 

infrastructure in smart grids allows for more manageable energy theft localization, thus 
advanced technologies of data mining can be adopted and developed in power theft successful 

detection. The presented methodology concerns only residential consumers, given that the 

commercial consumers present a very big variability in their electricity needs and consumption. 
Thus, the proposed methodology cannot be applied for commercial consumer power theft 

incidents.  

Furthermore, the proposed methodology differs from other approaches in power theft case 

detection ([17]-[19]) in the examination and detection of various scenarios of partial power theft 
cases, with successful results as well as success in detecting power abrupt changes and overload 

consumptions, see Fig. 6. Moreover, the method does not need additional hardware installation, 

as it is based only on the data collected from electronic smart meters. In addition, knowing the 
consumption behaviour of a consumer (see Fig. 6. a), b)) we enhance applications in similar 

areas such as: power marketing strategy, public policy and social marketing. 

A comparison among the accuracy of different solutions is difficult to establish due to the fact 
that studies deal with very different data, coming from different locations, representing different 

realities and presenting different data types [17]-[19]. By comparing mean shift algorithm with 

DBSCAN algorithm to the same data, it clearly shows in Fig. 6 (c) and Fig. 6 (d) that for power 

theft and power overload incidents with percentages less than 40% of the usual consumption, 
mean shift has a better performance compared with power theft and power overload percentages 

over 40% of the usual consumption where DBSCAN algorithm achieves higher success rates. 

Electricity theft detection should be considered as one of the most important aspects of efficient 

management in future distribution networks, as well.  

In conclusion, the overall research has shown that the proposed methodology combines the 

advantages of the PCA dimensionality reduction of the big electricity consumption data with the 

advantages of the Mean-shift clustering algorithm, giving encouraging results for the successful 
partial power theft detection as well as for the illegal power overload detection in power 

distribution grids. 
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