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ABSTRACT 
 
In this paper we present a hybrid technique that applies an ant colony optimization algorithm followed by 

simulated annealing local search approach to solving the Multi-Depot Periodic Open Capacitated Arc 

Routing Problem (MDPOCARP). This problem is a new variant of OCARP that has never been studied in 

the literature and consists of determining optimal routes in each period where each route starts from a 

given depot, visits a list of required edges and finishes by the last one. The final edge of the route is not 

required to be a depot. We developed a constructive heuristic, called Nearest Insertion Heuristic (NIH) to 

build an initial solution. The proposed algorithm is evaluated on three different benchmarks sets and 

numerical results show that the proposed approach achieves highly efficient results. 
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1. INTRODUCTION 
 

The Capacitated Arc Routing Problem (CARP) is a hard-combinatorial optimization problem 

introduced which consists of a network (or graph) where edges have a positive length and some 

of the edges (so-called required edges) are served [1]. The CARP aims to find an optimal set of 

vehicles routes of total minimum length. Each route should start and end at a predefined depot 

and each required edge should be serviced in exactly one route. A wide range of real word 

applications can be modeled as arc routing problems such as transportation industry, collection of 

household waste, mail delivery, meter reader, etc. 
 

The periodic CARP (PCARP) is a generalization of CARP in which routes are built over M 

periods that represent predefined schedules for visiting customers. A solution of the PCARP is a 

set of optimal routes for each planning period so that the both period constraint and capacitated 

vehicles along routes are satisfied. The Multi-Depot Open CARP (MDOCARP) is an extension of 

CARP in which vehicles can depart at more than one depot for servicing customers. The vehicles 

are not required to return back to a depot as in the CARP, instead they finish their route at the last 

served task. The Multi-Depot Periodic Open CARP (MDPOCARP) is a variant of OCARP in 

which the customer demands are served throughout planning periods. In MDPOCARP, there is a 

frequency f for each customer c indicating how many times within the planning period associated 

to c, the customer c must be visited. 
 

In this paper, we intend to contribute to solve MDPOCARP. Then, we focus on three features of 

the CARP problem at the same time: the periodic, open and multi-depot CARP. The motivation 

for addressing this problem comes from the wide range of real-world applications that can be 

seen as MDPOCARP. Indeed, the study of both periodic and multi-depot CARP is receiving  
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increasing attention, mostly in the last years, thanks to many real-world applications related to 

recycling, periodic deliveries of products to customers, periodic visits for providing specific 

services, Household waste collection, transportation of goods to supermarkets by manufacturing 

companies using trucks, maintenance of equipments, quality inspectors or home health care. In all 

these applications, vehicles start from a particular depot and finish at the last serviced customer. 

There is no need to return back at the end of the working period to the depots. 
 

This work proposes an Ant Colony Optimization (ACO) combined with the guided local search 

meta-heuristic Simulated Annealing (SA) for the MDPOCARP. Computational experiments were 

performed to evaluate the proposed method. The results are compared to a common initial 

heuristic method. The obtained solutions are high quality and results reveal a good performance. 

Furthermore, the use of multiple depots is addressed where we will show by experiments that the 

number of depots and the total travelled distance are proportional. This means as the number of 

involved depots increases, the generated solutions are significantly better, and the total cost 

reached is decreased. 

 

The remainder of this paper is organized as follows. Section 2 presents the related works 

associated to the studied problem. Section 3 describes the MDPOCARP problem and introduces 

an illustrative example. Section 4 presents a constructive initial solution and describes our 

proposed meta heuristic for solving the MDPOCARP problem. Section 5 shows the numerical 

experiments that we conducted on small, medium and large new instances. Finally, our 

conclusions follow in Section 6. 
 

2. RELATED WORKS 
 

In the best of our knowledge a solution for the studied MDPOCARP problem has never been 

developed in the literature, in spite of important practical problems could be easily modelled as an 

MDPOCARP. In this section, we present a brief overview of contributions which are technically 

close to our proposal, but which focus on various aspects of routing optimization problems. We 

discuss the difference between the problematic addressed by those contributions and those 

addressed by our approach. The CARP case with the characteristics studied in this work has not 

been extensively studied. The periodic CARP (PCARP) has been introduced by Lacomme et al. 

[2]. They proposed a memetic algorithm based on a linear sophisticated crossover. Recently, a 

two Phased Hybrid Local Search (PHLS) algorithm was proposed by Chen and Hao [3] for the 

PCARP. Usberti et al. [4] have addressed a variant of the classical open capacitated arc routing 

problem (OCARP) in which the set of edges are extended by depots and routes are not required to 

take the form of cycles. This variant of OCARP has been also solved by a hybrid genetic 

algorithm in [5]. The classical OCARP studied in this work, where a departure from a depot is 

mandatory by each vehicle, has been studied by Fung and Liu [6] . They proposed a mathematical 

formulation and generated lower bounds. They also developed a memetic algorithm which turns 

out superior than the classical genetic algorithm in solution quality for the classical OCARP. The 

Multi-depot CARP problem was developed by Kansou et Yassine [7] where two ant colony 

approaches and a memetic algorithm based on the splitting procedure and a special crossover 

have been proposed. Regarding the vehicle routing problem VRP on nodes case, several 

important works have been proposed. The periodic vehicle routing problem PVRP with 

intermediate facilities problem was introduced by Angelelli and Speranza in [8]. They solved it 

by a Tabu Search algorithm and presented computational results on a set of random generated 

instances and on a set of PVRP instances taken from the literature. Archetti et al. [9] worked on 

the flexible periodic VRP and a mathematical formulation has been proposed. Cornillier et al. 

[10] developed heuristics for the multi-depot petrol station replenishment problem with time 

windows while Cornillier et al. [11] developed an efficient heuristic for the same problem with 

unique depot and multiple periods without time windows. Popovic et al. [12] proposed a VNS 
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algorithm to solve the multi-product multi-period inventory routing problem in fuel delivery case. 

Vidal et al. [13] implemented a hybrid genetic algorithm for the multi-depot periodic vehicle 

routing problem VRP, heterogeneous capacitated vehicles and constrained route duration. The 

same last problem with identical vehicles was studied by Rahimi-Vahed et al. [14] where a 

modular heuristic algorithm was proposed. The authors worked on three vehicle routing 

problems, i.e., periodic, multi-depot and periodic with multi-depot problem. They conducted their 

experiments using suitable instances that show the effectiveness of the proposed method in terms 

of both quality and computational time. Nguyen et al. [15] proposed a genetic algorithm for the 

periodic VRP with time windows. They introduced two new crossover to tackle simultaneously 

the periodic and time windows cases. They found new best solutions for a number of large 

instances. The periodic VRP for Retail Distribution of Fuel Oils studied by Carotenuto et al. [16], 

a hybrid genetic algorithm was developed for solving it on a set of real case studies and on a set 

of randomly generated instances. Carotenuto et al. [16] provided a mathematical formulation for 

the multi-depot periodic VRP. They also proposed a hybrid genetic algorithm for solving the 

problem due to the large size of the real instances which the company has to deal with. Ran Liu et 

al. [17] studied for the first time the multi-depot open VRP (MDOVRP). The authors presented a 

mixed integer programming mathematical formulation and an effective meta-heuristic solution 

approach (hybrid genetic algorithm) for the resolution. Eduardo Lalla-Ruiz et al. [18] improved 

the last formulation proposed by [17] for the same problem MDOVRP and they provided better 

results in terms of solution quality and tighter linear bounds. 
 

3. PROBLEM DESCRIPTION 
 

The Multi-Depot Periodic Open problem (MDPOCARP) is an extension of Open CARP. It 

consists of a fleet of identical vehicles. Each vehicle is assigned to one depot and cannot exceed 

its capacity. The vehicle starts its route from one depot and it ends at the least served task. The 

tasks must be served a given number of periods (which is equal to its frequency ft on a whole 

multi period horizon H). H is composed of np periods and each task t has a predefined set of 

possible service combinations of periods Ct such that 𝑓𝑡≤ 𝑛𝑝. Each k belonging to a combination 

Ct must contain ft periods where the task will be served, i.e. |k| = ft, ∀ k∈ Ct, ∀ t ∈ Er. The 

number of tasks, or required edges, will be denoted by n and the cost of each task t is C(t). In the 

experiments conducted in this work, we will use np= |H| = 5 periods (see Section 5). In order to 

code the combinations of periods, we use the binary code and five sets of combinations 

depending on the frequencies. For example, the combination of five periods 10100 means that the 

task has the frequency 2 and will be served in period 1 and period 3. 

 
Table 1: Information about an example with nine tasks 

 

 
 

Table 1 presents the information about a concrete example of the studied problem. It consists of 9 

tasks that should be visited in 5 periods according to given frequencies. For example, Task 5 must 

be visited 4 times and Task 9 must be visited 3 times. Each task t has a given combination 

indicating the periods in which the Task t should be visited. For example, Task 5 should be 

visited in all periods except Period 1 and Task 9 should be visited in Period 1, Period 2 and 

Period 4. Table 2 illustrates the routes representing the solutions of the studied problem 

MDPOCARP. For example, the solution in period 1 consists of two routes (d1, task2, task7, task8) 

and (d2, task1, task6, task9) while the solution in period 4 consists of three routes (d1, task4, task5, 

task6), (d2, task3, task3, task1) and (d2, task8, task7, task9). 
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Table 2: example of a feasible MDPOCARP solution 
 

 
 

4. ALGORITHM FOR THE MDPOCARP PROBLEM 
 

We propose a Hybrid algorithm (that we call HACSA) based on both the Ant Colony 

optimization (AC) and the Simulated Annealing (SA) local search algorithm to solve the 

MDPOCARP. Ant colony algorithms are global search optimization techniques based on the 

foraging behavior of real ants, which have been found to be very effective in solving the 

travelling salesman problem TSP [19] [20] and the capacitated arc routing problem CARP [1]. In 

this work, we construct an initial solution S0 by a constructive heuristic explained in the next 

section. The AC algorithm uses a colony of Na artificial ants where each ant k represents a giant 

route (order of all different tasks) without delimiters, i.e. the capacity constraint is not verified. At 

each iteration of the AC, every ant starts its route from a random task. Moving of ants depends on 

two amounts: (1) Visibility amount 𝜇𝑖𝑗 which is a constant and represents the inverse of the 

distance Cij between tasks i and j (Cij = C(i, j) is the shortest distance calculated by Dijkstra's 

algorithm from the end node of i to the start node of j); (2) Pheromone amount τij which is a 

variable and represents initially the inverse of the cost of initial solution S0, i.e. τij = 
1

C(SO)
, ∀ i, j ∈ 

set of tasks. The cost C(S0) represents the sum of distances traversed by all M vehicles on all 

periods. Note that the amount of pheromone will be updated at the end of each iteration v by the 

following rule τij(v+1) = ρτij(v) + (1 - ρ)Δτij, where ρ is the evaporation parameter in [0,1], Δτij = 
1

C(best)
 if (i,j) is used by the ant that gives the best solution best and it will be zero otherwise. 

 

4.1. Initial Solution for MDPOCRP 
 

To build the initial solution of the proposed Hybrid Ant Colony algorithm, we propose a 

constructive heuristic, called Nearest Insertion Heuristic (NIH), which constructs the solution in 

sequential manner and mainly relies on the insertion method of tasks into a current solution. This 

heuristic consists in: 
 

• Sorting in increasing order all tasks to be inserted in an empty solution according to the 

distance from each task to its associated closet depot; 

• Choosing the starting task s of the route as the one which has the minimal distance from 

closet depot to it; 
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• Choosing other tasks of the route in such a way the next task after the last selected task 

among the candidate tasks using the nearest neighbor rule i.e. the closet task to the last 

selected one; 

• For each task t in the constructed route, we choose the best combination ct for task t and 

then we insert it into each day of ct. ct is the best combination that minimizes the insertion 

cost of t in the current solution, i.e., into each day d of that combination. Note that, in a 

given day, the insertion cost is the cost of inserting t after the last inserted task if the 

capacity constraint and the maximal distance constraints are verified. For the other case, 

it represents the cost to insert it at the beginning of a new route in the same day d. 
 

4.2. Local Search Procedure 
 

In order to improve the obtained solutions using our ACO-based algorithm, we integrate the 

Simulated Annealing local search method (SA). The (SA) is a heuristic which is commonly used 

to prevent the optimization algorithm to quickly falling into local minimum [21] [22]. It is based 

on random acceptance strategy with certain probability. At each iteration of our proposed (SA) 

algorithm, we will use one of the following four moves: 
 

• Swap: this move consists in exchanging the positions i and j of two different tasks 

belonging to the same feasible route; 

• Relocate: this move consists in removing one task from a position i and putting it in 

another position j chosen in the same route; 

• 2-opt: this move consists in choosing two positions i and j in a given route R and then re-

organizes R by replacing the sequence of tasks (i, i+1, … ,j) by the sequence (inverse(j), 

inverse(j-1), … , inverse(i)) where inverse(t) represents the inverse task for the task t; 

• Cross-exchange: this move involves two routes R1 and R2 where it chooses a task in a 

position i of R1 and a task in a position j of R2. It generates two new routes R1' and R2' as 

follows: R1' takes the first part of R1 from first task to task located at position i completed 

by another part of the route R2 starting with the task located at position j. R2' is built in 

the same way and that by linking the remaining first part of R2 with the second remaining 

part of R1. 
 

The algorithm used in the local search procedure is a Simulated Annealing (SA) method 

presented in Algorithm 1. 
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4.3. Ants Production 
 

Suppose that Visitedk is the set of already visited tasks by ant k. An ant k moves from the last 

visited task i to another task j by choosing the closest task j (j ∉ Visitedk) to i if the random 

variable q is strictly less than q0. Otherwise, it is chosen by using the following probability 

decision rule: 

                                                                        (1) 
 

where α and β are respectively the pheromone and visibility parameters, q0 is a constant 

parameter belongs to [0, 1] and q is a uniform random parameter in [0, 1]. This move of every ant 

is called the transition rule to add a task at the end of every sequence of tasks already constructed 

for every ant k. Once each ant is ready, then we will construct an associated feasible 

MDPOCARP solution by apply the following insertion procedure. 

 

4.4. Insertion Procedure 
 

Consider an ant k = (t1
k, t2

k, …, tn
k) where each ti

k is the task of order i in k. We associate firstly 

for k an empty solution Sk = (S1
k, S2

k, …, Snd
k) where each Sd

k, d = 1, …, nd, is the associated 

subsolution to the period d that contains firstly M empty routes. Secondly, we will insert each 

task ti
k indicated in the order of k into ftik sub-solutions (ft is the associated predefined frequency 

of task t). For the task t1
k we will find the best combination of days (from the associated set of 

predefined day combinations Ct1k that minimizes the cost to insert it in the associated sub-

solutions. Note that the insertion cost of a task t1k in a combination c ∈ Ct1k is Insertion = Σd ∈ c 

C(CDt1k, t1
k) where CDt represents the closest depot to task t. And the general insertion cost to 

insert another task t in a combination c ∈ Ct is Insertion: 

 

 

∑ 𝑚𝑖𝑛
𝑙∈𝑆𝑑

𝑘
 [𝐶(𝐶𝐷𝑡 , 𝑡) + 𝐶(𝑡, 𝑓𝑖𝑟𝑠𝑡) − 𝐶(𝐶𝐷𝑓𝑖𝑟𝑠𝑡 , 𝑓𝑖𝑟𝑠𝑡), 𝐶(𝑙𝑎𝑠𝑡, 𝑡), 𝐶(𝑙, 𝑡) + 𝐶(𝑡, 𝑙 + 1) − 𝐶(𝑙, 𝑙 + 1) ]

𝑑∈𝐶

 

 

With first and last denote respectively the first served task in the current route Sdk and its last 

served task, l+1 denotes the task next to t and it can be nothing if l is the last served task (in this 

case C(t, l+1)=C(l, l+1)=0). We will continue to insert the other tasks, one after the other but 

always checking the capacity constraint of each route when trying to find the best possible 

combination. It means that when a route in a such period (a sub-solution) can no longer serve the 

tested task (selected to insert), we open another route in this period and again by checking that the 

number of routes will not exceed M. In case if all M routes in a given period p of a day 

combination c ∈ Ct are closed to a given task t due to the capacity Q and maximal number of 

routes M constraints, we will study another day  combination c' ∈ Ct that will not involve the 

period p. The insertion procedure finishes when all tasks tik (by the order i =1. …, n) will be 

inserted in the solution Sk that will be a MDPOCARP feasible solution. 
 

Suppose that Rdmk = (t1dm, ..., t|Rdmk|dm) is the mth route in the period d of the solution Sk, then the total 

cost of a solution Sk is calculated by the following rule: 
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𝐶𝑜𝑠𝑡 = ∑ 𝑓𝑙𝐶(𝑙)

𝑛

𝑙=1

+ ∑ ∑ 𝐶 (𝐶𝐷𝑡1
𝑑𝑚 , 𝑡1

𝑑𝑚)

𝑛

𝑚=1

𝑛𝑝

𝑑=1

+ ∑ 𝐶( 𝑡𝑗−1
𝑑𝑚, 𝑡𝑗

𝑑𝑚)

𝑗=|𝑅𝑑𝑚
𝑘 |

𝑚=1

 

 

4.5. The Proposed HACSA Algorithm 
 

The proposed Hybrid Ant Colony with the Simulated Annealing algorithm HACSA is shown in 

Algorithm 2. 

 

 
 

5. NUMERICAL EXPERIMENTS 
 

5.1. Benchmark instances 
 

In [5] the authors tested the hybrid genetic on the OCARP instances derived from the benchmark 

of CARP instances, which includes 23 gdb ( [23]) 34 val ( [24]), and 24 egl ( [25]) instances. The 

authors in [2] developed a method to build the periodic instances for the original CARP problem 

using a horizon of 5 periods on the gdb and egl instances. They assigned a random frequency 

between 1 and 5 to each task and then built a set of combinations of periods for each frequency. 

For the studied problem MDPOCARP, we use the same OCARP instances used in [5]. Similarly, 

to [2] we generate our benchmark instances for three new sets: 23 mdpogdb, 34 mdpoval and 24 

mdpoegl, totaling 81 instances. We constructed five sets of combinations depending on the 

frequencies. The minimal value of the number of vehicles M used in our experiments is the 

minimal number of vehicles necessary for finding a feasible solution and is obtained by carrying 

out 2000 random solutions to have at least 50% of feasible solutions between them. We added 

three depots to Golden’s instances, four depots to Benavant's instances and six depots to Eglese's 

instance. For all instances, the first node represents a depot and the other depots are randomly 

selected. 
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5.2. Results 
 

The experiments were implemented in Java and run on a 2.6GHz Dual Core computer with a 

memory of 16GB under Windows Ten. Tables 3, 4 and 5 show the results for all instances after 

running 1000 iterations of our algorithm. For each table, the columns correspond respectively to: 

(1) problem name instance; (2) the number of vehicles M; (3) cost obtained by NIH method; (4) 

cost obtained with our HACSA method; (5) running time T in seconds for HACSA ; (6) gap in 

percentage of HACSA cost compared to NIH. The gaps GG(%), GB(%) and GE(%) are 

respectively the percent improvement of AS solution cost with respect to initial solution NIH. 

They are computed as follows:  
 

GX(%) = 
NIH−HACSA 

NIH 
 X 100 with X ∈ {G, B, E} 

 

The average gaps GG, GB and GE are respectively 31.8, 45 and 42.4. The overall gap averages 

39.7 between the obtained solution cost with HACSA method and that obtained with the initial 

method NIH for the 81 test instances shows that the HACSA method improves significantly the 

quality of the solutions and provides better solutions. The average running time 33.7 seconds 

shows the performance of our approach. 
 

Table 3: Results of HACSA algorithm on Golden's set instances 
 

Instance M NIH HACSA T GG Instance M NIH HACSA T GG 

mdpogdb1  5 1152 774 24 32.8 mdpogdb12  8 1559 1044 23 33 

mdpogdb2 5 1372 898 36 34.5 mdpogdb13 7 1923 1552 19 19.3 

mdpogdb3 5 955 668 23 30.1 mdpogdb14 5 424 275 14 35.1 

mdpogdb4 4 1135 686 16 39.6 mdpogdb15 4 237 171 15 27.8 

mdpogdb5 5 1388 953 45 31.3 mdpogdb16 6 495 357 41 27.9 

mdpogdb6 5 1478 872 33 41 mdpogdb17 5 347 259 29 25.4 

mdpogdb7 5 1154 804 32 30.3 mdpogdb18 5 691 489 68 29.2 

mdpogdb8 10 1417 852 109 39.9 mdpogdb19 3 198 128 1 35.4 

mdpogdb9 8 1410 860 82 39 mdpogdb20 5 471 326 17 30.8 

mdpogdb10 4 1037 675 25 34.9 mdpogdb21 6 722 499 24 30.9 

mdpogdb11 5 1865 1170 84 37.3 mdpogdb22 8 741 594 111 19.8 

 mdpogdb23 10 934 682 105 27 
 

Table 4: Results of HACSA algorithm on Benavent's set instances 
 

Instance M NIH HACSA T GB Instance M NIH HACSA T GB 

mdpoval1A  2 1268 576 91 54.6 mdpoval6A 9 2549 2056 23 19.3 

mdpoval1B 4 1004 535 108 46.7 mdpoval6B 4 1344 702 3 47.8 

mdpoval1C 9 820 523 48 36.2 mdpoval6C 10 1160 760 2 34.5 

mdpoval2A 2 1484 706 82 52.4 mdpoval7A 10 3908 3033 94 22.4 

mdpoval2B 3 1263 682 58 46 mdpoval7B 5 2280 1121 17 50.8 

mdpoval2C 9 917 599 55 34.7 mdpoval7C 9 1964 1034 8 47.4 

mdpoval3A 4 558 243 55 56.5 mdpoval8A 3 2689 1313 16 51.2 

mdpoval3B 3 467 210 65 55 mdpoval8B 4 2339 1188 10 49.2 

mdpoval3C 8 408 229 38 43.9 mdpoval8C 13 3212 2102 16 24.6 

mdpoval4A 5 3600 1957 6 45.6 mdpoval9A 4 2174 978 24 55 

mdpoval4B 4 2612 1251 4 52.1 mdpoval9B 6 2675 1484 41 44.5 

mdpoval4C 5 2816 1311 3 53.4 mdpoval9C 5 2328 1099 24 52.8 

mdpoval4D 17 3111 2102 14 32.4 mdpoval9D 10 2222 1194 15 46.3 

mdpoval5A 4 3316 1771 12 46.6 mdpoval10A 4 3326 1774 43 46.7 

mdpoval5B 8 3978 2769 21 30.4 mdpoval10B 6 3003 1609 63 46.4 

mdpoval5C 6 2949 1452 8 50.8 mdpoval10C 6 3116 1635 43 47.5 

mdpoval5D 9 2822 1473 6 47.8 mdpoval10D 9 2818 1489 20 47.2 
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Table 5: Results of HACSA algorithm on Eglese's set instances 

 

Instance M NIH HACSA T GE Instance M NIH HACSA T GE 

mdpoegle1A  5 12551 7481 8 40.4 mdpoegls1A  7 17829 9020 15 49.4 

mdpoegle1B 7 12325 7201 6 41.6 mdpoegls1B 10 20362 10454 10 48.7 

mdpoegle1C 10 10694 7464 6 30.2 mdpoegls1C 14 15091 9561 9 36.6 

mdpoegle2A 7 19618 10365 6 47.2 mdpoegls2A 13 41749 20577 40 50.7 

mdpoegle2B 10 16530 10293 11 37.7 mdpoegls2B 19 36258 20439 41 43.6 

mdpoegle2C 14 19435 10974 12 43.3 mdpoegls2C 26 35044 21225 35 39.4 

mdpoegle3A 8 21355 11315 18 47 mdpoegls3A 13 37034 18947 42 48.8 

mdpoegle3B 12 22379 12081 14 46 mdpoegls3B 20 382112 22216 35 41.9 

mdpoegle3C 17 20407 14080 14 31 mdpoegls3C 28 40054 25301 55 36.8 

mdpoegle4A 9 25803 12960 18 49.8 mdpoegls4A 18 52135 24229 56 53.5 

mdpoegle4B 14 22188 13336 16 39.9 mdpoegls4B 25 47873 26544 47 44.6 

mdpoegle4C 20 23029 15756 15 31.6 mdpoegls4C 35 59951 37035 63 38.2 

 

5.3. Parameters 
 

The results in Tables 3, 4 and 5 are given by executing ten runs of the algorithm HACSA for each 

instance. For all runs, the HA algorithm parameters were set as: Na =25, q0 = 0.5, pr =0.7, α = 1, β 

= 1, ρ = 0.2 and iterH = 1000. We selected these parameters values after previous empirical tests. 

 

5.4. The Effect of using Multi-Depots 

 
Table 6 reports the results when executing our algorithm HACSA on Eglese's instances with 3 

depots. The first column is the cost obtained by HACSA method while the second column is the 

running time in seconds. The third column reports the gap G36 between HACSA3 (with 3 depots) 

and HACSA6 (with 6 depots) which is computed as 

 

G36= 
HACSA3−HACSA6 

HACSA3
 X 100 

 

 

The fourth column diffG63 = G6 - G3 reports the difference between the gap GE with 6 depots 

and the gap GE with 3 depots. 

 

 
Table 6: Comparison of HACSA algorithm with multiple depots on Eglese's instance set. 

 

Instance HACSA3 T3 GE(%) G36(%) DiffG63 

mdpoegle1A 7919 9 36.9 5.531 3.4 

mdpoegle1B 7532 7 38.9 4.395 2.7 

mdpoegle1C 8822 8 17.5 15.393 12.7 

mdpoegle2A 10589 11 46 2.115 1.2 

mdpoegle2B 10978 17 33.6 6.24 4.1 

mdpoegle2C 12610 19 34.8 12.974 8.5 

mdpoegle3A 11580 19 45.8 2.288 1.2 

mdpoegle3B 13012 16 41.9 7.155 4.1 

mdpoegle3C 17783 19 12.9 20.823 18.1 

mdpoegle4A 14891 25 42.3 12.968 7.5 

mdpoegle4B 14444 23 34.9 7.671 5 

mdpoegle4C 16289 17 29.3 3.272 2.3 
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Table 7: Comparison of HACSA algorithm with multiple depots on Eglese's instance set. 

 

Instance HACSA3 T3 GE(%) G36(%) DiffG63 

mdpoegls1A  9583 13 46.3 5.875 3.1 

mdpoegls1B 11575 15 43.2 9.685 5.5 

mdpoegls1C 10934 11 27.5 12.557 9.1 

mdpoegls2A 20951 52 49.8 1.785 0.9 

mdpoegls2B 23148 50 36.2 11.703 7.4 

mdpoegls2C 23083 56 34.1 8.049 5.3 

mdpoegls3A 19658 59 46.9 3.617 1.9 

mdpoegls3B 24212 49 36.6 8.244 5.3 

mdpoegls3C 26903 57 32.8 5.955 4 

mdpoegls4A 27050 64 48.1 10.429 5.4 

mdpoegls4B 29510 66 38.4 10.051 6.2 

mdpoegls4C 37810 96 36.9 2.05 1.3 

 

 

Figure 1 and Figure 2 illustrates the importance of using multiple depots. It reports the difference 

of results between the use of 3 depots and 6 depots for the Eglese's test instances. Figure 1 

illustrates a histogram that represents the difference of costs obtained by using 3 depots and 6 

depots and Figure 2 shows a curve that represents the difference between the gap GE when using 

3 depots and 6 depots. Both figures emphasize that using 6 depots instead of 3 depots decreases 

significantly the obtained cost. The average gap GE when using 3 depots is 37.15 while the 

average gap GE when using 6 depots is 42.4. That yields that the average total distance 

improvement is 5.25%. Consequently, as the number of depots increases, the obtained average 

cost decreases. 

 
 

 
 

Figure 1: HACSA3's costs vs. HASCSA6's costs 
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Figure 2: GE with 3 depots vs. GE with 6 depots 

 

6. CONCLUSION 
 

This work introduces for the first time the Multi-Depot Periodic Open Capacitated Arc Routing 

Problem (MDPOCARP) which is a NP-hard problem optimization problem deriving from the 

family of arc routing problem. Firstly, a constructive heuristic was developed for generating 

initial solution for MDPOCARP which relies on finding nearest neighbor. Secondly, a hybrid ant 

colony algorithm (HACSA) was proposed. It is composed by the ant colony optimization 

algorithm combined with both insertion procedure and local search algorithm. The insertion 

procedure is used to construct feasible ants. The local search uses swap, relocate, 2-opt and cross-

exchange moves. 

 

The computational experiments, using three set of benchmarks mdpogld, mdpoval and mdpoegl 

derived respectively from the CARP instances [23], [24], [25] has shown that HACSA generates 

good and promising solutions for MDPOCARP. 
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