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ABSTRACT 
 
We propose a set of methods to classify vendors based on estimated CPU performance and predict CPU 

performance based on hardware components. For vendor classification, we use the highest and lowest 

estimated performance and frequency of occurrences of each vendor to create classification zones. These 

zones can be used to identify vendors who manufacture hardware that satisfy a given performance 

requirement. We use multi-layered neural networks for performance prediction, which account for 

nonlinearity in performance data. Various neural network architectures are analysed in comparison to 

linear, quadratic, and cubic regression. Experiments show that neural networks obtain low error and high 

correlation between predicted and published performance values, while cubic regression produces higher 

correlation than neural networks when more data is used for training than testing. An analysis of how the 

neural network architecture affects prediction is also performed. The proposed methods can be used to 

identify suitable hardware replacements. 
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1. INTRODUCTION 
 

Computer performance is measured in relation to computational time and valuable work 

produced and is partly determined by hardware components such as the amount of memory and 
processor speed [1]. For this study, we are interested in specifically the central processing unit 

(CPU) performance, which directly affects a computer’s performance. Hardware performance 

prediction can be useful from several perspectives. If an accurate prediction is obtained, it can 
assist in detecting counterfeit hardware as well as viruses, spyware, Trojans, and other types of 

malware. Malware and counterfeit components can decrease performance or cause performance 

instability. There is a plethora of security measures that can be adopted to prevent malicious 
programs from being downloaded and remove them when they have been downloaded [2, 3]. 

There are also many novel ways of detecting counterfeit hardware [4, 5]. Thus, methods of 

detecting malware and counterfeits based on hardware performance are useful and part of highly 

relevant topics in the technology field today. 
 

The computer vendors can also be classified by the quality of their hardware. Each vendor 

produces hardware that operates at different standards. These differences could be due to 
differences in the intellectual property used, as well as the cost point of the hardware. Classifying 

the hardware based on performance can assist in determining which vendor sells hardware 
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components that will maximize the average performance of the computer. It can also assist in 
identifying potential hardware replacements that will match the original performance standards. 

 

In the present paper, we propose a set of methods to (1) classify vendors based on estimated CPU 

performance and (2) predict CPU performance based on hardware components. 
 

The outline of the rest of this paper is as follows. Section 2 provides a brief overview of related 

work in the domain of hardware performance prediction and classification. Section 3 explains the 
proposed set of methods. Section 4 details our experiments and results. Section 5 presents our 

conclusions. 
 

2. RELATED WORK 
 

On the topic of classification, Kar et al. [6] proposed a pattern classification model that uses 

quantitative and qualitative measurements to guide decision making in relation to vendor 
selection. This tool would assist its user by providing a robust analysis of the supplied collection 

of vendors so that they may choose the best vendor. In our method, we will classify vendors 

based on quantitative estimated CPU performance data only. 

 
In the discussion of data analysis, Alexander et al. [7] presented a new methodology for 

analyzing computer performance data using nonlinear time series analysis techniques. The 
motivation was the concept that computers are deterministic nonlinear dynamic systems. Thus, 

the previous performance analyses in which computers were considered to be linear and time 

invariant are not representative of the nature of the actual testing conditions. In our method, we 

will address the same issue of the nonlinearity of our performance data and use neural networks 
as accommodation. 

 
Hardware performance prediction is a well-studied topic. Lopez et al. [8] explored a way to 

predict computer performance based on hardware component data without needing simulation. 

They used a deep learning model to generate a benchmark score for a given hardware 

configuration, then used multiple neural networks and principal component analysis to predict 
performance in comparison to the corresponding benchmarks. Neural network and linear 

regression techniques have been used to predict performance in multiprocessor systems [9]. 

Similarly, machine learning has been used to predict the performance of multi-threaded 
applications with various underlying hardware designs [10]. Girard et al. [11] designed a tool to 

predict the performance of avionic graphic hardware, which is used by engineers to determine 

the optimal hardware architecture design before manufacturing. Adjacent to the topic of 

predicting performance, Kang [12] used hardware performance to analyze the microeconomics of 
buying and leasing computers. 
 

The dataset used in this study has previously been used for detecting scientific anomalies using 

probability density estimators [13] and fitting linear models in high dimensional spaces [14]. 
 

3. PROPOSED SET OF METHODS 
 

3.1. CPU Performance Dataset Description 
 

We aim to classify and predict the performance of CPUs based on a set of ten parameters from an 

opensource dataset [15]. This dataset contains 209 entries, representing a variety of vendors and 
models of CPUs. Though the data was donated in 1987, the attributes provided still work well 

with the scope of our study and are used as test data for the proposed methods. The ten 

parameters of the dataset are listed below: 
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1. Vendor name 
2. Model name 
3. Machine cycle time in nanoseconds 
4. Minimum main memory in kilobytes 
5. Maximum main memory in kilobytes 
6. Cache memory in kilobytes 
7. Minimum channels in units 
8. Maximum channels in units 
9. Published relative performance 
10. Estimated relative performance from original article [16] 
 
Parameters 1 and 10 are used for vendor classification. Parameters 3 through 9 are used for 

performance prediction. Parameter 2 is not used in this study. Parameter 10 was calculated using 

linear regression by Ein-Dor and Feldmesser [16]. 

 

3.2. Proposed Classification Method for Hardware Vendors 
 
The highest and lowest estimated performance values are recorded for each vendor, along with 

the frequency of occurrences of each vendor in the dataset. This information is used to create 

classification zones. Each zone is labeled with a range of relative performance. The goal is to 

produce a guide such that given a performance requirement, a list of vendors that manufacture 
hardware that meet the requirement can be produced. 

 

3.3. Proposed Prediction Method for Hardware Performance 
 

Input parameters 3 through 8 are used to predict the performance of the CPUs. Then, parameter 9 

is used with our predicted performance value to calculate the Mean Squared Error (MSE) of the 
prediction and the correlation between predicted and published performance values. The MSE of 

the prediction provides insight on the level of accuracy of the prediction in relation to the 

published performance value. The correlation reflects the percentage of similarity between the 
predicted and published performance values. 

 
The following is the standard formula used to calculate the MSE for a dataset of n CPUs, where 
pi is the predicted performance and pi’ is the published performance: 

 

 
 

To determine the correlation of the predicted and published performance values, we used the 

Pearson correlation formula to find the correlation coefficient and the significance level of the 

correlation. The correlation coefficient r is calculated as follows, with the values m representing 
the mean of the predicted and published values: 

 

 
The significance level of the correlation is ascertained by first calculating the t value as follows: 
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Then, the corresponding significance level is determined using the t distribution table with a 

degree of freedom of n - 2. If the significance level is less than 5%, then the correlation between 
the predicted and published performance values is considered to be significant. 
 

Since the performance of a CPU is affected by many hardware components, there is no perfect or 

absolute formula to predict its performance. The scatterplot matrix between the inputs and output 

of our dataset is shown in Figure 1. From this figure, we can see that the relationship between the 
input variables V3 – V8 and the output variable V9 is random and nonlinear. As a result, we will 

use multilayered neural networks, which are suited for random nonlinear input and output 

relationships. 
 

Specifically, the performance predictions will be acquired using various architectures of a 

multilayered feed forward network with six inputs and one output. When selecting architectures 

for our tests, we aim for a variety of hidden layers to determine the level of versatility of the 
neural network in producing quality results. The inputs to the neural network are the previously 

discussed parameters. The output is the predicted performance, which is used with parameter 9 to 

calculate the MSE and correlation values. 
 

We will also use regression analysis for prediction since CPU performance is a continuous 

measurement. Specifically, we will use linear, quadratic, and cubic regression to model the input 

and output relationship of this dataset and predict performance. The input and output values for 
each of these are the same used for the neural network. The predicting capabilities of the neural 

networks will be compared to that of the regression analysis. 
 

 
 

Figure 1.  Scatterplot matrix of input and output variables for CPU performance data. 

 

4. EXPERIMENTS AND RESULTS 
 

4.1.  Vendor Classification Based on Estimated CPU Performance 

 
The classification task is performed with the vendor names and estimated relative performances 

of each CPU in the dataset. The dataset contains 209 entries with 30 different vendors, out of 
which the highest and lowest performance values for each vendor as well as the frequency of 

occurrences of each vendor are tabulated in Table 1. 
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Table 1: Highest and lowest relative performance values along with frequency of occurrence of each 

vendor from the CPU performance dataset. 

 

Vendor Highest 

Performance 
Lowest 

Performance 
Frequency 

Amdahl 1238 132 9 

Sperry 978 24 13 

NAS 603 29 19 

Siemens 382 19 12 

IBM 361 15 32 

NCR 281 19 13 

Adviser 199 199 1 

Honeywell 181 20 13 

Gould 157 75 3 

CDC 138 23 9 

IPL 128 30 6 

Burroughs 124 22 8 

BASF 117 70 2 

Magnuson 88 37 6 

Cambex 74 30 5 

DG 72 19 7 

Nixdorf 67 21 3 
Perkin-

Elmer 
64 24 3 

BTI 64 15 2 

HP 54 18 7 

DEC 54 18 6 

Prime 53 20 5 

Harris 53 18 7 

Wang 47 25 2 

Stratus 41 41 1 

Formation 34 34 5 

Microdata 33 33 1 

C.R.D 28 21 6 

Apollo 24 23 2 

Four-Phase 19 19 1 

 

The classification result is shown in Figure 2. According to the results, the vendors can be 

classified into five zones. Each zone represents a performance standard, with Zone I being the 
lowest relative performance of 200 or less, and Zone V being the highest relative performance of 

1000 or more. If the desired relative performance is less than 200, any vendor can be chosen. If 

the performance requirement is from 200 – 400, any one of NCR, IBM, Siemens, NAS, Sperry, 
or Amdahl can be chosen. The vendors NAS, Sperry, or Amdahl can be chosen for a performance 

requirement from 400 – 600. The vendors Sperry or Amdahl can be chosen for a performance 

requirement from 600 – 1000. Last, only Amdahl can be chosen for performance requirements 

more than 1000.  



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.4, July 2020 

6 

 
 

Figure 2.  Classification of vendors based on estimated relative CPU performance. 

 

4.2. CPU Performance Prediction Based on Hardware Components 
 

After scaling the data using Min-Max scaling, we construct several multilayered neural network 

architectures with various numbers of hidden layers. In Tables 2 through 5, the training-testing 
ratios represent the proportion of the dataset that is used for training and testing, respectively. 

The sequences of architecture values represent the number of neurons in each layer of the neural 

network. The scaled MSE and correlation of the predictions are calculated for each neural 

network architecture at each training-testing ratio. We also calculate the MSE and correlation of 
the predictions found by linear, quadratic, and cubic regression analysis. All correlation 

coefficients have a significance value less than 5%, except for quadratic regression at 62.5% - 

37.5% training-testing ratio. Therefore, the correlation coefficients between predicted and 
published performances for this study do have significance. 

 

For all training-testing ratios, the lowest MSE values are produced by a neural network. For 
training-testing ratios 62.5% - 37.5% and 65% - 35%, the highest correlation values are produced 

by a neural network. For training-testing ratio 67.25% - 32.75%, the highest correlation value is 

produced by cubic regression, with a neural network outperforming linear and quadratic 

regression. For training-testing ratio 70% - 30%, the highest correlation values are produced by 
cubic and quadratic regression, with a neural network outperforming only linear regression. 

 
Table 2: The MSE and predicted-published performance correlation for CPU performance prediction with 

62.5% - 37.5% training-testing ratio. 

 

Training-Testing Method Architecture Scaled MSE Correlation Significance 

62.5% - 37.5%  

 
Neural Network 

6 – 3 – 1 0.00357 0.913 2.2 e-16 

6 – 4 – 2 – 1 0.00387 0.909 2.2 e-16 

6 – 4 – 3 – 2 – 1 0.00307 0.924 2.2 e-16 

6 – 5 – 4 – 3 – 2 – 1  0.00369 0.914 2.2 e-16 

 
Regression 

Linear 0.00629 0.848 2.2 e-16 

Quadratic 0.02555 0.136 0.2326 

Cubic 0.01549 0.898 2.2 e-16 
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Table 3: The MSE and predicted-published performance correlation for CPU performance prediction with 

65% - 35% training-testing ratio. 

 

Training-Testing Method Architecture Scaled MSE Correlation Significance 

65% - 35%  

 
Neural Network 

6 – 3 – 1 0.00190 0.956 2.2 e-16 

6 – 4 – 2 – 1 0.00209 0.951 2.2 e-16 

6 – 4 – 3 – 2 – 1 0.00359 0.915 2.2 e-16 

6 – 5 – 4 – 3 – 2 – 1  0.00197 0.958 2.2 e-16 

 
Regression 

Linear 0.00470 0.884 2.2 e-16 

Quadratic 0.00260 0.940 2.2 e-16 

Cubic 0.00242 0.944 2.2 e-16 

 
Table 4: The MSE and predicted-published performance correlation for CPU performance prediction with 

67.25% - 32.75% training-testing ratio. 

 

Training-Testing Method Architecture Scaled MSE Correlation Significance 

67.25% - 32.75%  

 
Neural Network 

6 – 3 – 1 0.00284 0.934 2.2 e-16 

6 – 4 – 2 – 1 0.00223 0.954 2.2 e-16 

6 – 4 – 3 – 2 – 1 0.00342 0.920 2.2 e-16 

6 – 5 – 4 – 3 – 2 – 1  0.00220 0.952 2.2 e-16 

 
Regression 

Linear 0.00500 0.884 2.2 e-16 

Quadratic 0.00757 0.910 2.2 e-16 

Cubic 0.00685 0.961 2.2 e-16 

     
 

 
Table 5: The MSE and predicted-published performance correlation for CPU performance prediction with 

70% - 30% training-testing ratio. 

 

Training-Testing Method Architecture Scaled MSE Correlation  Significance 

70% - 30% 

 
Neural Network 

6 – 3 – 1 0.00351 0.898 2.2 e-16 

6 – 4 – 2 – 1 0.00332 0.886 2.2 e-16 

6 – 4 – 3 – 2 – 1 0.00414 0.880 2.2 e-16 

6 – 5 – 4 – 3 – 2 – 1  0.00348 0.867 2.2 e-16 

 
Regression 

Linear 0.00355 0.850 2.2 e-16 

Quadratic 0.00386 0.922 2.2 e-16 

Cubic 0.01415 0.936 2.2 e-16 
 

The best performing architectures and training-testing ratios are compared in Figure 3 with 

respect to lowest MSE and in Figure 4 with respect to highest correlation. It is clear from Figure 

3 that the lowest MSE overall is obtained using architecture 6-3-1 with a training-testing ratio of 
65% - 35%. Figure 4 shows that the highest correlation overall is obtained using cubic regression 

with a 67.25% - 32.75% training-testing ratio. A plot of the published vs. predicted CPU 

performance by the neural network with 65% - 25% training-testing ratio and 6-3-1 architecture 
is shown in Figure 5, and the best performing neural network architecture is shown in Figure 6. 
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Figure 3.  Comparison of MSE results for multiple architectures and training-testing ratios for CPU 

performance prediction. 

 
  

Figure 4.   Comparison of correlation results for multiple architectures and training-testing ratios for CPU 

performance prediction. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. Plot of the published vs. predicted CPU performance for neural network with 65% - 25% 

training-testing ratio and 6-3-1 architecture 
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Figure 6. Graphical representation of the 6-3-1 neural network architecture 

 

4.3. Analysis of Neural Network Architecture in CPU Performance Prediction 
 
From the results of the CPU performance prediction study, there appears to be no correlation 

between the number of hidden layers in the architecture of a neural network and the relative 

performance of the neural network. To further explore this result, we will perform our prediction 
method using six-input, one-output neural networks with a variety of hidden layer architectures 

at a constant 65% training – 35% testing ratio. 

 
We will select a variety of neural network architectures based on three variables: (1) the number 

of neurons in a hidden layer, (2) the number of hidden layers, and (3) the order of the hidden 

layers. Three categories of tests are run, in which one of the three variables is changed while the 

other two variables remain constant. 
 

In the first test, we construct ten neural networks where each neural network has one hidden 

layer, and the number of neurons in the hidden layer ranges from one to twenty. Specifically, the 
first neural network in this test set has architecture 6-1-1, and the last neural network has 

architecture 6-20-1. The results of the performance predictions of this test set are shown in 

Figures 7 and 8. All correlation coefficients have a significance value less than 5%, so the 
correlations between published and predicted performances are considered significant. From 

these figures, there appears to be no pattern in the change of MSE or correlation results due to 

the change in number of neurons within a hidden layer.  
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Figure 7. Plot of the number of neurons in the neural network’s hidden layer vs. the MSE of the 

performance prediction produced by the neural network 

 

 
 

Figure 8. Plot of the number of neurons in the neural network’s hidden layer vs. the correlation of the 

performance prediction produced by the neural network. 
 

For the second test, we construct nine neural networks where each neural network has the same 

number of neurons in each hidden layer, and the number of hidden layers ranges from one to 

nine. Specifically, the first neural network in this test set has architecture 6-4-1, the second neural 
network has architecture 6-4-4-1, and so forth. The results of the performance predictions of this 

test set are shown in Figures 9 and 10. All correlation coefficients have a significance value less 

than 5%, so the correlations between published and predicted performances are considered 
significant. From these figures, there appears to be no pattern in the change of MSE or 

correlation results due to the change in the number of hidden layers. 

 

 
 

Figure 9. Plot of the number of hidden layers in the neural network vs. the scaled MSE of the performance 

prediction produced by the neural network. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.4, July 2020 

11 

 
 

Figure 10. Plot of the number of hidden layers in the neural network vs. the correlation of the performance 

prediction produced by the neural network. 

 

Finally, for the last test we construct two groups of neural networks. In both groups, each neural 
network architecture contains the three hidden layers. The first group has a combination of 

hidden layers with 3, 4, and 5 neurons, and the second group has a combination of hidden layers 

with 1, 6, and 12 neurons. Each neural network has a unique ordering of the hidden layers. The 
architectures and performance prediction results are shown in Table 6. All correlation coefficients 

have a significance value less than 5%, so the correlations between published and predicted 

performances are considered significant. The 6-4-5-3-1 architecture has the lowest MSE and 

highest correlation in the first group, and the 6-12-6-1 architecture has the lowest MSE and 
highest correlation in the second group. There does not appear to be a pattern in the change of 

MSE or correlation results due to the change in the order of the hidden layers. 

 
Table 6. The MSE and predicted-published performance correlation for CPU performance prediction with 

65% - 35% training-testing ratio and varying hidden layer ordering. 
 

Training-Testing Group Architecture Scaled MSE Correlation Significance 

 

 

65% - 35% 

 

1 

6 – 5 – 4 – 3 – 1 0.00253 0.941 2.2 e-16 

6 – 5 – 3 – 4 – 1 0.00227 0.945 2.2 e-16 

6 – 4 – 5 – 3 – 1  0.00214 0.949 2.2 e-16 

6 – 4 – 3 – 5 – 1 0.00232 0.945 2.2 e-16 

6 – 3 – 5 – 4 – 1 0.00302 0.927 2.2 e-16 

6 – 3 – 4 – 5 – 1  0.00229 0.945 2.2 e-16 

 

2 

6 – 12 – 6 – 1 – 1 0.00206 0.951 2.2 e-16 

6 – 12 – 1 – 6 – 1 0.00212 0.949 2.2 e-16 

6 – 6 – 12 – 1 – 1  0.00289 0.929 2.2 e-16 

6 – 6 – 1 – 12 – 1 0.00282 0.931 2.2 e-16 

6 – 1 – 12 – 6 – 1 0.00262 0.941 2.2 e-16 

6 – 1 – 6 – 12 – 1  0.00275 0.938 2.2 e-16 

 

In all three tests, there is not a clear pattern of how the number of neurons, the number of hidden 

layers, or the order of hidden layers affect the predicting capabilities of the neural networks. 
Therefore, we are unable to conclude from these tests which multilayered, feedforward neural 

network architectures predict CPU performance with highest accuracy. 

 

5. CONCLUSION 
 
In this paper, both classification and prediction tasks are performed to analyze the performance 

of CPUs documented in the test dataset. The classification study shows that 30 vendors can be 

successfully classified into 5 performance zones. Each zone provides information about the 
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relative performance capabilities of the vendors’ hardware. Then, performance prediction is 
generated using neural networks and regression analysis, both of which accommodate the 

random, nonlinear relationship between the input and output variables. Among all prediction 

results, the neural network with 65% training - 35% testing ratio and 6-3-1 architecture performs 

the best in terms of having the lowest scaled MSE. However, the performance of cubic regression 
with 67.25% training - 32.75% testing ratio is found to be best in terms of the highest correlation. 

The numerous experiments with varying architectures and training-testing ratios show that the 

obtained results are robust. The results from our Pearson correlation analysis show that the 
correlations between the predicted and published performance values are significant. 

 

The results from our performance prediction study show that neural networks can be used to 
obtain lower prediction error and often higher significant correlation between predicted and 

published values. However, cubic regression may have better predicting capabilities than a neural 

network when a higher percentage of the data is used for training rather than testing. This does 

reiterate our initial observation that there is no perfect or absolute method of predicting CPU 
performance.  

 

The performance prediction study is briefly expanded to analyze how hidden layers in the 
architecture of the tested neural networks affect their predicting capabilities. The prediction 

method is used in three tests to determine how the number of neurons in a hidden layer, the 

number of hidden layers, and the order of the hidden layers of a neural network affect the MSE 
and correlation of the performance predictions. The results show that none of these three 

variables seem to have a pattern of effect on the neural network’s performance prediction results.  

More analysis of how the architecture of the neural network affects the performance prediction 

can be done, specifically through testing a wider range of architectures and performance data and 
changing the training-testing ratio. The prediction method can be also used on current hardware 

performance data to determine how neural networks perform in comparison to regression 

analysis for a more robust range of experimental structures. 

 
Our classification result shows that other than Zone V, a given required performance can be 

obtained by more than one vendor. While this result does show that suitable replacement 
hardware can be found using this method, it also implies that hardware configuration can be 

copied or tampered with while still having nearly the same performance as the original 

configuration. To alleviate this drawback, the work will be extended to detect counterfeit 
hardware by a more thorough analysis and comparison of computer hardware performance. 
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