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ABSTRACT 
 
The paper attempts to analyze if the sentiment stability of financial 10-K reports over time can determine 

the company’s future mean returns. A diverse portfolio of stocks was selected to test this hypothesis. The 

proposed framework downloads 10-K reports of the companies from SEC’s EDGAR database. It passes 

them through the preprocessing pipeline to extract critical sections of the filings to perform NLP analysis. 

Using Loughran and McDonald sentiment word list, the framework generates sentiment TF-IDF from the 

10-K documents to calculate the cosine similarity between two consecutive 10-K reports and proposes to 

leverage this cosine similarity as the alpha factor. For analyzing the effectiveness of our alpha factor at 

predicting future returns, the framework uses the alphalens library to perform factor return analysis, 

turnover analysis, and for comparing the Sharpe ratio of potential alpha factors. The results show that 

there exists a strong correlation between the sentiment stability of our portfolio’s 10-K statements and its 

future mean returns. For the benefit of the research community, the code and Jupyter notebooks related to 

this paper have been open-sourced on Github1. 
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1. INTRODUCTION 
 

Natural language processing (NLP) is an intersection of computation, intelligence, and statistics 

whose primary goal is to automate the understanding of semi-structured language leveraged by 

humans. Computers have utilized NLP to use human language to generate conversational text, 

extract meaningful words, summarize long documents, build intelligent question-answering 

systems, detect spam emails, and leverage standard intelligence technologies [1]. But the scope of 

NLP has expanded beyond its use for text-generation and document summarization. There are 

multiple use-cases of NLP evolving in the financial sector and bots to provide financial advice, 

predict stock movements, personalized finance advisory through recommendation systems, and 

many more [2]. One primary application of NLP in the FinTech domain is analyzing various 

financial articles, daily reports on the stock market, and social media posts or tweets to predict a 

particular stock's future returns or an entire portfolio. 

 

A 10-K document is a comprehensive report filed annually by a publicly-traded company about 

its financial performance [20]. A typical 10-K financial document contains five distinct sections: 

business, risk factors, selected financial data, management’s discussion, analysis, financial 

statements, and supplementary data. The SEC requires this report to keep investors 

  

 

                                                           
1 https://github.com/purvasingh96/StockGram-Intelligent-Portfolio-Manager 
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aware of a company's financial condition and allow them to have enough information before they 

buy or sell shares in the corporation, or before investing in the firm’s corporate bonds [20]. 

 

Various fundamental analysts investigate all relevant information regarding the stocks that they 

follow, including financial statements required by the regulatory authorities, for example, 10-K 

documents published annually or 10-Q papers published quarterly. A quantitative analyst who 

covers approximately 30-40 stocks might have to go through a lot of paperwork for their 

respective research work. In this paper, the proposed framework targets to mitigate this pain point 

of a quantitative analyst. The framework leverages NLP techniques using which a quantitative 

analyst can quickly analyze selective sections from 10-Ks and 10-Qs reports. Automated textual 

analysis and information retrieval using NLP techniques would also help analysts process large 

volumes of financial data in less time and cost. NLP techniques can also help quantitative 

analysts extract latent information in these documents that might predict the company's future 

mean returns. 

 

To leverage text in financial statements as an input for developing trading strategies, we need to 

convert the financial 10-K reportings into quantitative data. We condense the selected 10-K 

filings into a bag of words and categorize each word using the Loughran McDonald sentiment 

word list, specially curated for performing textual analysis in finance [6]. Now to shape the 

importance of repeated observations within a single document, while reducing the impact of 

common words among a collection of documents, the framework leverages Term Frequency - 

Inverse Document Frequency (TF-IDF) [7]. TF-IDF converts our 10-K reports into a group of 

document vectors for further processing. 

 

A significant change in the financial document from one period to the next might indicate 

changes in the market or company structure. It could lead to additional risk for underlying stocks. 

Thus, it would be beneficial to compare the 10-K documents over time using similarity metrics 

[8]. This similarity metrics would convert two papers into a number representing a degree of 

similarity. In this paper, we have leveraged cosine similarity to calculate the similarity score 

between two 10-K documents over a time period and use it as an alpha factor that has the 

potential to predict future mean returns of our portfolio. The framework utilizes Alphalens, an 

open-source tool developed by the Quantopian Research Platform, to analyze alpha factors' 

predictive power [21]. Upon performing factor return analysis, turnover analysis, and comparing 

the Sharpe ratio of the potential alpha factors, the paper demonstrates that the documents that 

were expressive of a stable positive sentiment yielded maximum returns compared to forms that 

expressed negative, litigious, or constraining sentiment. 

 

The organization of the rest of the article is as follows. Section II gives an overview of empirical 

models that have leveraged financial reporting documents for performing textual analysis to 

generate trading strategies and documents that utilize sentiment analysis for predicting future 

mean returns of the stock portfolio. Literature Survey summarizes the general forms of the model 

and their advantages and disadvantages. Section III delineates basic terminologioes related to this 

paper and Section IV describes the problem statement, which this paper aims to mitigate. The 

proposed framework uses a specific dataset as its input, described in Section V, 

  

followed by Section VI, defining the framework’s methodology. Section VII evaluates our 

hypothesis by conducting factor return analysis, turnover analysis, and comparing the Sharpe 

ratio of potential alpha factors. Section VIII provides the final summary and essential findings of 

the paper. It also provides suggestions for improving the framework’s performance and future 

directions. 
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2. LITERATURE SURVEY 
 

Textual analysis is blooming in the field of finance. This section briefly performs a literature 

survey on content analysis models that leverage the most popular methods and discuss papers on 

sentiment analysis relevant to our study. The most commonly leveraged approach for performing 

textual analysis on financial reports consists of two steps. The first step is to categorize each word 

in the preprocessed financial statements into positive or negative sentiment [12]. Colm Kearney 

and Sha Liu (2013) have conducted an extensive survey on literature that leverages textual 

analysis to extract sentiment from sources such as social media, corporate disclosures, and media 

articles. They have also reviewed how each source of data and the chosen linguistic method has 

idiosyncratic advantages and disadvantages that drive research focus [10]. Tetlock et al. (2008) 

have leveraged Harvard Psychosociological Dictionary to classify financial words as positive or 

negative [13]. However, Loughran and McDonald (2016) have published a detailed review of 

textual analysis, where they have introduced five new word lists that recognizes the tone of a 

financial document. This word list is better than the widely used Harvard Dictionary, which 

categorized more than three-fourth of the words as negative that were typically not considered 

negative in the economic context [6]. Feng Li, Russell Lundholm, and Michael Minnis (2013) 

leverage financial 10-K reports to measure a firm's competitive environment by counting the term 

competition's frequency in its financial reporting document [11]. 

 

The second step in the textual analysis is to allocate appropriate weights present in the chosen 

sentiment word list, enabling the quantitative algorithm to convert textual content from these 

financial reports into a quantitative score. Jegadeesh and Wu (2013) proposed a novel approach 

to leverage market reactions to 10-K filings to determine each word's term weights and tone. 

Their system does not depend on word list choice as they recorded similar results after omitting 

half of the words in word lists [12]. Loughran and McDonald (2011) have shown that term-

weighting schemes that assign different weights on terms in a document can improve the model’s 

fitment [6]. 

 

Performing sentiment analysis on financial statements has seen a surge in its usage to extract 

information related to stock prices, firm fundamentals, and overall stock price movement [14]. 

Smailović et al. utilized supervised machine learning to create a sentiment classifier to categorize 

financial tweets from the Twitter platform into three categories: positive, negative, and neutral. 

They leveraged public opinions on the stock market made online on the Twitter platform to 

analyze the correlation between positive sentiment movements and the corresponding closing 

price of the stock [15]. Tushar Rao et al. have leveraged the Naive Bayes classifier to categorize 

tweets related to financial data into positive and negative sentiments. They analyze the 

correlation between a stock’s short-term performance and a broad set of public 

  

opinions on financial data available on Twitter [16]. Pagolu et al. have leveraged Word2Vec 

representations of public opinion expressed related to financial news on the Twitter platform and 

combined those representations with Random Forest Classifier for creating their sentiment 

analysis engine. Their experiments have shown a strong correlation between the movement of 

stock prices and public opinion of that stock expressed through tweets [17]. 

 

3. BASIC TERMINOLOGIES 
 

This section deliniates the basic terminologies that will be used further in the paper to explain the 

methodology and evaluation results. 
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3.1. Factors and Alpha Factors 
 

Individual investors employ various trading strategies such as momentum trading strategy, mean-

reversion strategy, signals from social media, etc to test their hypothesis in predicting the stock 

price movement. Factors are the data that can provide predictive information about the future 

movement of stocks [3]. In other words, factors are signals that help us suggest where to invest in 

a portfolio of stocks and tell the relative magnitude of those investments [4]. Factors that are 

significantly predictive of the mean of the return distribution are called alpha factors. 

 

One example of a former alpha factor is the market cap of a stock, i.e., small-cap stocks are more 

inclined to produce higher returns than large-cap stocks [5]. In this paper, we will be leveraging 

the sentiment stability of a financial 10-K report over time as an alpha factor. A significant 

change in the financial document from one period to the next might indicate changes in the 

market or company structure. It could lead to additional risk for underlying stocks. Thus, it would 

be beneficial to compare the 10-K documents over time using similarity metrics. In this paper, we 

predict that the company that endures minimal change in its 10-K reports will eventually generate 

the highest one-year forward returns. Our hypothesis is keeping a track of how the sentiment of 

10-K document is changing from one period to the next. 

 

For example, if company A’s 10-K report for the year 2019 is very similar (indicated by high 

cosine similarity) to its 10-K report published in 2018, then company A is expected to have 

higher future mean returns as compared to company B that indicates a low cosine similarity 

between its consecutive 10-K reports. In order to generate this alpha factor, we calculate the 

cosine similarity between two consecutive 10-K statements in time. The reason for chosing 

sentiment words from Loughran and McDonald word dictionary is because instead of using a 

very large vocabulary, we are limiting ourselves to words which are meant to carry a specific 

sentiment in the particular domain of financial markets. 

 

3.2. Alphalens 
 

Alphalens, an open-source tool developed by the Quantopian Research Platform, to analyze alpha 

factors' predictive power [21]. Alphalens gives us a spectrum of analytics features from returns, 

information analysis to turnover analysis, which provides us with a sense of predictive power of 

an individual factor [21]. Using Alphalens, we calculate and analyze the potential returns of our 

alpha factors (factor returns) and also the factors’ stability over time (factor rank autocorrelation) 

[4]. Both these quantities combined give us a sense of how often an individual factor value 

switches up. 

 

3.3. Factor Return Analysis 
 

Alphalens gives us a full battery of tests from future returns, information analysis to turnover 

analysis that provides us with a sense of the predictive power of an individual factor [21]. One 

useful parameter is the return of our factor, which is called the factor return. In other words, 

factor returns are a way to directly measure the returns of our portfolio if their weights were 

determined purely by the alpha factor [4]. Alphalens requires two mandatory arguments to 

predict future mean returns: factors and prices. In this paper, we consider cosine similarity 

between two consecutive 10-K documents as the factor data and year-end adjusted closing prices 

of the stocks in our portfolio as pricing data to run against our factor data. 

 

After generating the factor data frame and setting the pricing data, we pass both the arguments in 

the alphalens’ method called ‘get_clean_factor_and_forward_returns’, which accepts factor data, 

pricing data, quantiles, bins, and periods [21]. This function generates a multi-indexed merged 
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data frame that is indexed by date at level 0 and followed by stock/asset at level 1. This data 

frame contains the values for a single alpha factor, forward returns for each period, and 

quantile/bin in which the signal belongs. [21]. Finally, we pass the generated dataframe to 

alphalens’ function ‘factor_returns’which generates period-wise factor returns. 

 

3.4. Turnover Analysis 
 

Since liquidity and transaction costs are dependent upon market conditions at the time of the 

trade, it is challenging to simulate actual transaction costs when evaluating an Alpha factor. So a 

useful proxy for these real-world constraints is to measure the turnover [4]. The turnover analysis 

estimates the fraction of the portfolio's total value getting traded in a period [3]. One of the ways 

to measure turnover is factor rank autocorrelation. Factor rank autocorrelation is a way to 

measure how stable are the ranked alpha factors. In this case, stability refers to the fact that alpha 

ranks do not change much from period to period. Since trading is costly, we would always prefer 

other factors to be the same, i.e., the alpha factor’s ranks do not change significantly per period 

[21]. 

 

A high factor rank autocorrelation is an indication that the turnover is lower. A low or even a 

negative autocorrelation is a proxy to indicate a higher turnover. If two alpha factors have similar 

quintile performance and similar factor returns, we would prefer the one with lower turnover [4]. 

The reason for choosing alpha factor with lower turnover is that it makes it possible for us to 

execute trades if we have liquid stocks and reduce transaction costs. Excessive turnover could 

imply that our Alpha factor is only catching noise [3]. 

 

3.5. Sharpe Ratio 
 

The Sharpe Ratio or risk-adjusted return is a critical metric in evaluating alpha factors. It is the 

measure of excess portfolio return over the risk-free rate relative to its standard deviation. 

 

                              (4) 

 

Sharpe ratio helps us to compare the relative performance of alpha factors. One important thing 

to note is that the Sharpe ratio is the key and not the magnitude of factor returns [4]. 

 

4. PROBLEM STATEMENT 
 

The growth of unstructured corporate data has been exponential. This plethora of information 

masks itself as a burden on quantitative analysts as an information overload [22]. There are high 

chances that even the best analysts could overlook the latent information. The financial 

information available is so comprehensive that the feasibility of promptly analyzing such detailed 

documents is doubtable. The proposed framework leverages NLP analysis that mitigates the issue 

of information overload. Automated textual analysis and information retrieval would help 

analysts process large volumes of financial data in less time and cost. NLP analysis also helps to 

filter out relevant sections based on our use-case from 10-K documents. 

 

Individual analysts might study the small parts of financial documents in isolation due to which 

they might overlook latent data and patterns in large datasets [22]. NLP analysis in the proposed 

framework helps extract such hidden patterns that could be present in unstructured financial 

reports, which might indicate future returns. 
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The existing papers that have performed sentiment analysis on financial statements have relied on 

methods such as word counts. The extant pieces have leveraged textual feed from social media 

platforms for performing sentiment analysis, which is not a rich source of financial textual data. 

For a better NLP analysis, the proposed framework uses of corporate reports filed by the 

companies with the SEC, containing detailed textual information of the company's financial state 

compared to social media feed. Apart from this, existing papers have categorized financial tweets 

into a maximum of three categories: positive, negative, and neutral. The proposed framework 

leverages Loughran and McDonald’s word list specially curated to recognize financial sentiment 

and categorizes financial data into seven different views: positive, negative, uncertainty, litigious, 

constraining, superfluous, and modal. 

 

5. DATASET 
 

The proposed framework leverages the Loughran and McDonald Financial Sentiment Dictionary 

of Loughran and McDonald [6] to perform NLP analysis. The framework uses the following 

subset of sentiments mentioned in this dictionary: 

 

1. Negative 

2. Positive 

3. Litigious 

4. Constraining 

  

There are two main reasons for choosing this particular word list. The extant pieces have 

leveraged textual feed from social media platforms for performing sentiment analysis, which is 

not a rich source of financial textual data. The second reason for choosing this dictionary was its 

level of comprehensiveness. Loughran and McDonald’s word list consists of 2355 negative 

words and 354 positive words, making the most effective sentiment list for our use-case [18]. 

 
Table I: Portfolio details 

 

S. No. Company Name Ticker CIK Number Sector 

1. Amazon.com Inc. AMZN 0001018724 E-commerce 

2. Eli Lilly and Company LLY 0000059478 Pharmaceuticals 

3. Center Point Energy Inc. CNP 0001130310 Energy 

4. Exxon Mobil Corporation XOM 0000034088 Energy 

5. Nike Inc. NKE 0000320187 Apparels/Footwears 

6. Federal Realty Investment Trust FRT 0000034903 Real estate investments 

7. Boeing Co. BA 0000012927 Aerospace 

 

The proposed framework creates a portfolio of 7 stocks, from diverse sectors, to perform NLP 

analysis on their respective 10-K statements. With the help of NLP, we can extract information 

that can be useful for trading. The SEC has created a website called Electronic Data Gathering 

Analysis Retrieval (EDGAR) that gives us straightforward access to all the available financial 

statements and is leveraged by the proposed framework to extract 10-K reports of the selected 

stocks [23]. 

 

The framework leverages a python package called Alphalens, which requires two mandatory 

arguments to predict future mean returns: factor data and pricing data [21]. Factor data are the 

numerical values, one for each stock per period, potentially predictive of the chosen stocks' future 

returns. We note the stock price at the time of computing factor values, which we use as the 

pricing data. Since we are considering financial 10-K statements for NLP analysis that companies 
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file annually, we will consider the year-end adjusted closing price of stocks to run against our 

factor data. To obtain this stock price, we have used the End of Day US Stock Prices database by 

sourcing from Quotemedia through Quandl’s premium subscription [19]. We have chosen an 

annual adjusted close price because it is this price that reflects the actual value of the company 

and accounts for all corporate actions such as stock splits, distributions, and dividends [3]. 

 

6. METHODOLOGY 
 

6.1. Fetching 10-K Financial Reports 
  

When companies file their 10-K reports to the SEC, it is gathered in the EDGAR database and is 

publicly available for investors to download [6]. To search for company-wise filing reports, we 

need to submit an HTTPS request to the following REST Url: 

 

https://www.sec.gov/cgi-bin/browse-edgar 

 

To specify the details of the report in which we are specifically interested in, we need to pass the 

following query parameters [24]: 

 

1. CIK number (CIK): a unique numerical identifier assigned by the EDGAR system. 

2. Report type (type): type of financial report that we wish to query. Example 10-K, 10-Q, 14-

K. 

3. Prior-to date (dateb): EDGAR accepts a prior-to date that identifies the latest date in which 

we are interested. 

4. The number of reports (count): this quantity describes the number of filings up to the prior-

to date. 

5. Ownership (owner): The SEC requires filings from individuals who own significant 

amounts of the company’s stock. Setting the owner parameter to exclude, EDGAR won’t 

provide reports related to its director or officer ownership [24]. 

 

As an example, to download Nike’s annual report before 2020, where Nike’s CIK number 

(fetched from Table 1) is 0000320187, and 10-K denotes the type of annual reports, we would 

form the EDGAR Url as follows : 

 

https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany  

&CIK=0000320187&type=10-K&dateb=20200101&count=60&owner=exclude 

 

Hitting the EDGAR REST Url that we formed above would redirect us to a web page that 

contains tabular data related to the company’s type of filing document, document description, 

filing date, and file number. Figure 1 shows the EDGAR’s search result dashboard after hitting 

the REST Url formed above. 
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Figure 1: EDGAR search results for Nike’s 10-K documents prior-to 2020-01-01. 

 

After fetching the web page as a response, we can perform web scraping with Python by 

leveraging the BeautifulSoup library and access the links that would help us download the 10-K 

filing reports [25]. These document links will help us download the pure HTML version of the 

desired 10-K document, which we store in a dictionary against the corresponding stock’s CIK 

number, as depicted in Figure 2. 

 

 
 

Figure 2: Storing HTML version of 10-K filing reports in a list. 

 

6.2. Preprocessing 10-K Filing Reports 
 

From Figure 2, we can see that the HTML version of 10-K documents stored in the list is very 

messy. We need to preprocess this data before we can leverage it for performing NLP analysis. 

Preprocessing of 10-K filing reports is done in the following steps: 
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1. Remove HTML tags and convert textual data into lower-case. 

2. Distill the verbs in 10-K documents by returning the base form of the words using 

lemmatization. 

3. Finally, filter out the stop-words from 10-K reportings. 

 

 
 

Figure 3: Preprocessed 10-K filings. 

 

6.3. Computing TF-IDF and Cosine Similarity 
 

Once we have our 10-K documents ready in a clean and normalized form, we need to transform 

them into features for modeling purposes. In section 5.2, we converted the HTML version of 10-

K reportings into a preprocessed set of words. But separating these sets of terms is very 

inefficient as they are of different sizes, contain varied words, and are hard to compare. Instead, 

we can collect all the words present in both 10-K filings as well as the Loughran McDonald 

sentiment word list to form the vocabulary [6]. To compensate for the words that frequently 

occur within a corpus, we can compute the document frequency by counting the number of 

documents in which each word in the column appears. We then divide the term frequencies in the 

data frame by document frequency of that term [26]. This metric is known as Term Frequency - 

Inverse Document Frequency (TF-IDF), and Equation 1 represents the mathematical version of 

the TF-IDF metric. 

 

              (1) 

 

Using the Loughran McDonald sentiment word list, we will select only those words from 10-K 

documents present in the sentiment word list and then generate sentiment TF-IDF from the 10-K 

documents. Now, using the calculated TF-IDF, we will calculate the cosine similarity between 

consective financial 10-K reports. Equation 3 calculates the cosine similarity between two 

vectors. 
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Figure 4: Cosine similarity between consecutive 10-K statements against time for each  

stock in our portfolio. 

 

If two documents are to be represented in their vectorized format as follows: 

 

          (2) 

 

Here,    indicates the frequency of each term inside a document. Now to 

calculate the cosine resemblance between the two documents, the proposed framework leverages 

Equation 3. 

 

                         (3) 

 

To analyze the pattern of cosine similarity between each tick in time for the selected companies 

in our portfolio, Figure 4 plots the cosine similarity between consecutive 10-K documents for 

each company against time. The cosine similarity plots indicate the stability of individual 

sentiments conveyed by our portfolio with respect to time. Here, we have to analyze, which 

sentiment is maintaining the highest cosine similarity for all the stocks in our portfolio. It is this 

sentiment, which has the highest stability and therefore, according to our hypothesis, will yield 

the maximum returns. 
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7. RESULTS AND EVALUATIONS 
 

7.1. Factor Returns 
 

Figure 5 shows a plot between 1 year factor returns and time. Here, the alphalens library 

generates one-year forward returns as our input data was yearly adjusted close price of the stocks 

in our portfolio. As we can see from the graph, 10-K financial reports expressing a positive 

sentiment, yield the maximum returns. On the other hand, the forms that convey constraining, 

negative, and litigious resulted in the lowest returns. The following observation proves the 

existence of a strong correlation between the stability of the sentiment indicated by our portfolio 

and its future mean returns. 

 

 
 

Figure 5: Factor returns of our portfolio over time 

 

7.2. Turnover Analysis 
 

A high factor rank autocorrelation is an indication that the turnover is lower. A low or even a 

negative autocorrelation is a proxy to indicate a higher turnover. If two alpha factors have similar 

quintile performance and similar factor returns, we would prefer the one with lower turnover [4].  

The reason for choosing alpha factor with lower turnover is that it makes it 

  

Possible for us to execute trades if we have liquid stocks and reduce transaction costs. Excessive 

turnover could imply that our Alpha factor is only catching noise [3]. 

 

 
 

Figure 6: Factor rank autocorrelation against time 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.5/6, November 2020 

24 

7.3. Sharpe Ratio 
 

Table 2 shows the Sharpe ratio of our alpha factors. Usually, a ratio under 1.0 is considered sub-

optimal. Sharpe ratio greater than 1.0 is acceptable to good by investors. A Sharpe ratio higher 

than 2.0 is good, and investors deem a 3.0 or higher Sharpe ratio excellent [3]. Looking at the 

Sharpe ratio of our alpha factors, we can see that the 10-K filing reports that convey the the most 

stable positive sentiment achieves the highest Sharpe ratio of 1.02. 

 
Table 2: Factors and their corresponding Sharpe ratio 

 

Factors Sharpe Ratio 

Positive 1.02000000 

Litigious 0.89000000 

Negative -0.24000000 

Constraining -2.98000000 

 

8. CONCLUSION AND FUTURE WORK 
 

This paper has proposed a framework that leverages the Loughran McDonald's word list to 

perform NLP analysis on financial 10-K reportings of 7 companies belonging to diverse sectors 

ranging from e-commerce, pharmaceuticals, energy, footwears, and aerospace. The framework 

extracts and downloads HTML versions of 10-K filings from the SEC's EDGAR database and 

preprocesses them for further NLP analysis. After cleaning and normalizing the 10-K documents, 

the proposed framework converts the filings into their corresponding numeric vector 

representations using TF-IDF that indicate the frequency of each Loughran McDonald 

 

Sentiment word present in that 10-K document. The framework then calculates cosine similaity 

between consecutive 10-K reports using TF-IDF values. This cosine similarity is used as the 

alpha factor to calculate 1-year future mean returns using the alphalens library. Upon evaluation, 

we found that 10-K documents indicating positive sentiment, that had maintained the highest 

cosine similarity against time, had the highest factor return. In conclusion, our extensive analysis 

shows that the sentiment stability of financial 10-K reports over time could be a potential alpha 

factor for predicting future mean returns. 

 

We can leverage even more categories of sentiment for future work and analyze their correlation 

with future mean returns. We can also create a separate portfolio to include data from other 

companies that can further validate our hypothesis. We can also test our hypothesis for a non-

diversified portfolio. In future, this work could further be validated by performing back-testing. 

 

REFERENCES 
 
[1] Ranjan, N., Mundada, K., Phaltane, K., and Ahmad, S., 2016. A Survey on Techniques in NLP. 

International Journal of Computer Applications, 134(8), pp.6-9. 

[2] Musto, C., Semeraro, G., Lops, P., De Gemmis, M., and Lekkas, G., 2015. Personalized finance 

advisory through case-based recommender systems and diversification strategies. Decision Support 

Systems, 77, pp.100-111. 

[3] Investopedia documentations, https://www.investopedia.com 

[4] AI for Trading, Nanodegree Course by Udacity 

[5] Rompotis, G., 2019. Large-cap vs. small-cap portfolio performance: new empirical evidence from 

ETFs. Review of Accounting and Finance. 

[6] Loughran, T., and McDonald, B., 2011. When is a liability not a liability? Textual analysis, 

dictionaries, and 10-Ks. The Journal of Finance, 66(1), pp.35-65. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.5/6, November 2020 

25 

[7] Ramos, J., 2003, December. Using TF-IDF to determine word relevance in document queries. In 

Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142). 

[8] Viswanathan, K., 2010. Text-based similarity metrics and delta for semantic web graphs. 

[9] Azimi, M., and Agrawal, A., 2019. Is positive sentiment in corporate annual reports informative? 

Evidence from deep learning. Evidence from Deep Learning (July 2019). 

[10] Kearney, C., and Liu, S., 2014. Textual sentiment in finance: A survey of methods and models. 

International Review of Financial Analysis, 33, pp.171-185. 

[11] Li, F., Lundholm, R., and Minnis, M., 2013. A measure of competition based on 10-K filings. Journal 

of Accounting Research, 51(2), pp.399-436. 

[12] Jegadeesh, N., and Wu, D., 2013. Word power: A new approach to content analysis. Journal of 

financial economics, 110(3), pp.712-729. 

[13] Tetlock, P.C., Saar-Tsechansky, M., and Macskassy, S., 2008. More than words: Quantifying 

language to measure firms' fundamentals. The Journal of Finance, 63(3), pp.1437-1467. 

[14] Azimi, M., and Agrawal, A., 2019. Is positive sentiment in corporate annual reports informative? 

Evidence from deep learning. Evidence from Deep Learning (July 2019). 

[15] Smailović, J., Grčar, M., Lavrač, N., and Žnidaršič, M., 2013, July. Predictive sentiment analysis of 

tweets: A stock market application. In International Workshop on Human-Computer Interaction and 

Knowledge Discovery in Complex, Unstructured, Big Data (pp. 77-88). Springer, Berlin, Heidelberg. 

[16] Rao, T., and Srivastava, S., 2012. Analyzing stock market movements using Twitter sentiment 

analysis.  

[17] Pagolu, V.S., Reddy, K.N., Panda, G., and Majhi, B., 2016, October. Sentiment analysis of Twitter 

data for predicting stock market movements. In 2016 international conference on signal processing, 

communication, power, and embedded system (SCOPES) (pp. 1345-1350). IEEE. 

[18] Kandrup, J., Johansen, T.R., Mølhave, J.C. and Plenborg, T., 2018. Sentiment Analysis of 10-K 

Filings. 

[19] Quandl end of day US Stock Prices database, Accessed: 2020-10 https://www.quandl.com/data/EOD-

End-of-Day-US-Stock-Prices/documentation/product-overview. 

[20] 10-K document by Investopedia. https://www.investopedia.com/terms/1/10-k.asp 

[21] Alphalens official documentation, https://quantopian.github.io/alphalens/ 

[22] Lewis, C, and Young, S., 2019. Fad or future? Automated analysis of financial text and its 

implications for corporate reporting. Accounting and Business Research, 49(5), pp.587-615. 

[23] The U.S. Securities and Exchange Commission website, 

https://www.sec.gov/edgar/searchedgar/companysearch.html 

[24] Accessing EDGAR data via SEC API, https://www.sec.gov/edgar/searchedgar/accessing-edgar-

data.htm 

[25] Beautiful Soup: Build a Web Scraper With Python, https://realpython.com/beautiful-soup-web-

scraper-python/ 

[26] TF-IDF Python Example, Medium article by Cory Maklin, 

https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-

e8b9d00e7e76 

 

AUTHOR 
 

Purva Singh has completed her B.Tech in Computer Science and Engineering from 

Vellore Institute of Technology, Vellore. She has been exploring the field of Artificial 

Intelligence and Deep Learning for the  past two years. She is passionate about Natural 

Language Processing, Deep Reinforcement Learning, and Big Data Analytics.  


