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ABSTRACT 
 
This paper proposes a novel parameter for transfer reinforcement learning to avoid over-fitting when an 

agent uses a transferred policy from a source task. Learning robot systems have recently been studied for 

many applications, such as home robots, communication robots, and warehouse robots. However, if the 

agent reuses the knowledge that has been sufficiently learned in the source task, deadlock may occur and 

appropriate transfer learning may not be realized. In the previous work, a parameter called transfer rate 
was proposed to adjust the ratio of transfer, and its contribution include avoiding dead lock in the target 

task. However, adjusting the parameter depends on human intuition and experiences. Furthermore, the 

method for deciding transfer rate has not discussed. Therefore, an automatic method for adjusting the 

transfer rate is proposed in this paper using a sigmoid function. Further, computer simulations are used to 

evaluate the effectiveness of the proposed method to improve the environmental adaptation performance in 

a target task, which refers to the situation of reusing knowledge. 
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1. INTRODUCTION 
 

Machine learning systems and intelligent robot systems are increasingly being deployed to solve 

practical problems, such as house cleaning and conveyance systems in warehouses [1] [2]. The 
reinforcement learning framework has been widely discussed in applications of machine learning, 

such as deep Q-networks [3] [4]. Basic reinforcement learning techniques are usually time 

consuming. Thus, they are disadvantageous for implementation in actual applications, such as 
robot systems. To address this problem, transfer learning has been proposed for reinforcement 

learning [5-8]. Transfer learning theory allows the application of prior knowledge to another 

similar task. In reinforcement learning, a learning agent is used to draw and transfer policies from 
previous tasks (source task) to current tasks (target task). Advantages of transfer learning in 

reinforcement learning include: improved learning speed, fast adaptation to environments, and 

exploration of more effective performances. Agent systems, including transfer learning, have 

been successful in some cases. However, transfer learning is not successful in all applications, 
and in most cases, it is necessary to adjust learning conditions and avoid negative transfer 

situations, such as deadlock. In the previous years, adjusting the ratio of reusing policy had been 

proposed as a method to increase the environmental adaptation performance in the target task. 
The method of adjusting the transfer rate is a mechanism that determines the action value of the 
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reusing policy, and then uses it in the target task [9] [10]. However, the transfer rate decision 
depends on human intuition and experience, and the method to determine the transfer rate has not 

been discussed. In addition, the transfer rate is a fixed value, and it is desirable to adjust it 

adaptively according to the environment and behavioral conditions. Therefore, an adjusting 

method of transfer rate using a sigmoid function is proposed in this paper. The proposed method 
automatically adjusts the transfer rate, and the method adjusting the value has to be discounted 

when triggered by a bad situation of learning in a target task owing to the reuse of knowledge, 

such as collision with an obstacle. Computer simulation is used to confirm whether the proposed 
method for transfer learning in reinforcement learning can adjust the transfer rate. The knowledge 

obtained is not reused in the case of a negative transfer situation, such as a deadlock; however, it 

can be reused in other cases. In particular, in recent years, transfer in reinforcement learning in 
multi-agent systems and human robot teams has been discussed, and it is considered essential to 

avoid deadlock, that is, negative transfer by transfer learning [11-13]. 
 

The remainder of this paper is organized as follows. Section 2 provides an overview of the 
reinforcement learning and transfer learning method, and discusses the previous method. It 

adjusts the transferring ratio of reusing knowledge. Section 3 discusses the adjusting method for 

transferring ratio with the sigmoid function as the proposed method. Section 4 presents the 

computer simulation experiments and results to evaluate the performance of the proposed method 
compared with previous methods. Section 5 presents the concluding remarks. 

 

2. PREVIOUS WORKS 
 

2.1. Reinforcement Learning 
 

Reinforcement learning is a machine learning algorithm [3]. The reinforcement learning agent 

explores the optimal solution via trial-and-error and creates its own knowledge as policy. Thus, 
reinforcement learning does not require training datasets, unlike supervised learning. Many types 

of reinforcement learning algorithms have been developed in the past decades. In this study, Q-

learning was adopted as the learning algorithm [14]. The Q-learning is defined by  
 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 {𝑟𝑡+1 + 𝛾 max
𝑎∈𝐴

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)},                   (1) 

 

where 𝑠 ∈ 𝑺 is the state of environments in a state space, 𝑎 ∈ 𝑨 is the action of agent in an action 

space, 𝛼 is the learning rate (0 < 𝛼 ≤ 1), 𝛾 is the discount rate (0 < 𝛾 ≤ 1), and r denotes the 

reward. 𝑄(𝑠, 𝑎), also known as Q-table, contains all states of the environment and each action 

value pair. 
 

To select action by the agent, an action selection method was employed in previous 

reinforcement learning research. In this study, the Boltzmann distribution model is adopted as an 

action selection function [3]. The action selection probability adopted from the Boltzmann 
distribution is defined by  

 

P(𝑎𝑖|𝑠𝑡) =  
exp {

𝑄(𝑠𝑡 , 𝑎𝑖)
𝑇⁄ }

∑ exp {
𝑄(𝑠𝑡 , 𝑎)

𝑇⁄ }𝑎∈𝐴

 ,                                            (2) 

 

where T is a parameter that determines the randomness of action selection. The following 

discussion is based on Watkins’s Q-learning and action selection function is derived from the 
Boltzmann distribution model. 
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2.2. Policy Copy in Transfer Learning 
 

For traditional transfer learning in reinforcement learning, Tyalor et al. defined a method for 

transferring the learned action-value function [5] [6]. This method is referred to as policy copy in 
transfer learning, and is defined as follows: 

 
𝑄𝑡(𝑠, 𝑎) ← 𝑄𝑡(𝑠, 𝑎) + 𝑄𝑠(𝑠, 𝑎).                                                    (3) 

 

Here, 𝑄𝑡(𝑠, 𝑎) is the policy that includes the initial value in the target task. It is used for learning 

and action selection. 𝑄𝑠(𝑠, 𝑎) is reusing policy from the source task. Reusing policy has state-

action values obtained from the source task. In Taylor’s method, the agent in the initial state of 

the target task sums the initial value of 𝑄𝑡(𝑠, 𝑎) and transferring policy 𝑄𝑠(𝑠, 𝑎). The agent is 

learned using the assimilated policy 𝑄𝑡(𝑠, 𝑎) in the target task. Simply, the agent is reusing the 

transferred policy and overwriting the policy through trial-and-error simultaneously. 

 
Originally, Taylor’s method includes inter-task mapping, which defines the mapping between the 

agent’s observable environmental state S and the executable action A. Inter-task mapping is not 

mentioned in this paper owing to the description of simplicity. 
 

In Taylor’s method, if the transferred policy is sufficiently learned in the source task, it will 

behave according to the policy when used in different environments, and deadlock, such as 

collision with obstacles, may occur. This phenomenon is called over-fitting and over learning. 
The agent can overwrite the policy through behavior in the target task, and some learning time is 

required. 

 

2.3. Adjusting of Transfer Ratio 
 

Takano et al. proposed a method to adjust the action value of the transferred policy [9] by using 

parameters ζ in the policy assimilation equation. One of the methods in Takano’s study is defined 

by 

𝑄𝑐(𝑠, 𝑎) ←
1

2
(1 − 𝜁) 𝑄𝑡(𝑠, 𝑎) + 𝜁𝑄𝑠(𝑠, 𝑎),                                           (4) 

 

Where ζ is the adjusting parameter (0 < 𝜁 < 1). 𝑄𝑐(𝑠, 𝑎) is the assimilation policy, and is used 

for action selection. Learning in the target task is used as a policy 𝑄𝑡(𝑠, 𝑎). This method 

discounts 𝑄𝑠(𝑠, 𝑎) by ζ , and conversely uses 𝑄𝑡(𝑠, 𝑎) by the amount of 1 − 𝜁. Thus, it is possible 

to reduce the effect on the target ask even if a policy 𝑄𝑠(𝑠, 𝑎)with a high action value is reused. 

However, Takano’s method requires the value of 𝜁 to be determined before operation and 

depends on human intuition and experience. Furthermore, the policy 𝑄𝑡(𝑠, 𝑎)that should be 
trusted is discounted. 

 

2.4. Transfer Rate 
 

Kono et al. proposed the transfer rate to adjust the ratio of transferring the obtained policy [10]. 

The method is based on Takano’s method, and it is similar and simpler than Takano’s method. 
Transferring method with transfer rate can be defined as 

 
𝑄𝑐(𝑠, 𝑎) ←  𝑄𝑡(𝑠, 𝑎) +  𝜏𝑄𝑠(𝑠, 𝑎),                                                  (5) 

 

where 𝜏, (0 < 𝜏 ≤ 1) is transfer rate, and 𝑄𝑐(𝑠, 𝑎) is an assimilated policy, which is used for 

action selection in the target task. 𝑄𝑡(𝑠, 𝑎) is the policy in the target task., and is used for learning 

in the target task. 𝑄𝑠(𝑠, 𝑎) is a reusing policy that was learned in the source task. Kono’s method 
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is also used to determine the parameters 𝜏 before the learning operation, and the value setting 
depends on human intuition and experience. In this paper, apart from Taylor’s method, Kono’s 

and Takano’s methods are collectively called Takano’s method. 

 

3. PROPOSED METHOD 
 

In previous study, transferring policy method overwrote transferred policy and fixed discount 

parameters. An automatic method for adjusting the parameters is proposed in this section. When 

considering the situation of negative transfer, the action of the agent that can be originally 
executed cannot be executed by the target task because the policy is reused, and thus, a collision 

with an obstacle occurs. Therefore, to avoid the above situation, if the agent becomes unable to 

act, the transfer rate value should be lowered. To lower the value of the transfer rate, the value is 

adjusted using a sigmoid function according to the number of times that the agent cannot act. The 
sigmoid function is defined as: 

 
1

1 + 𝑒−𝜎𝑔
,                                                                       (6) 

 

where 𝑔 is the gain value, which is determined by an arbitrary value, and 𝜎 is the input value of 

the sigmoid function. The transfer method is reformulated using the sigmoid function as defined 

by 
 

𝑄𝑐(𝑠, 𝑎) ←  𝑄𝑡(𝑠, 𝑎) +  
1

1 + 𝑒−𝜎𝑔
𝑄𝑠(𝑠, 𝑎),                                         (7) 

 

𝜎 is the increment or decrement with state 𝑠𝑡 = 𝑠𝑡+1 and 𝑠𝑡 ≠ 𝑠𝑡+1, respectively. The inability of 

the agent to act means that the current environmental state 𝑠𝑡  and the next environmental state 

𝑠𝑡+1 are the same; thus, 𝜎 is subtracted by an arbitrary constant value 𝒹. Conversely, if the action 

is performed by reusing the policy, only an arbitrary constant 𝒹 is added for each action. This 
mechanism is defined as follows:  

 

σ =  {
𝜎 −  𝒹  (𝑠𝑡 = 𝑠𝑡+1)

𝜎 +  𝒹  (𝑠𝑡 ≠ 𝑠𝑡+1)
 .                                                        (8) 

 

The above function is calculated for each action, such as a step of the agent. It is possible to 

adjust the rate of reuse of the observes by comparing the environmental condition at each time 
step in a generalized form, regardless of actual situations, such as collisions with obstacles. 

 

4. EVALUATION WITH COMPUTER SIMULATION 
 

4.1. Experimental Setup 
 

This experiment aims to confirm the performance of an agent’s environmental adaptation using 
the proposed method. Furthermore, the shortest path problem is adopted in this study as the basic 

evaluation with a single agent. The learning environment is shown in Figure 1 in the computer 

simulation. Figures 1 (a) and (b) show the source task environment and target task environment, 
respectively. In this environment, if the agent achieves the goal, the agent can obtain a reward 

𝑟 = 1 from the environment. An agent can observe self-localization. The reinforcement learning 

parameter is set as α = 0.1 and  γ = 0.99. The parameter T of the Boltzmann distribution model 

is set as 𝑇 = 0.01. These parameters are common to all conditions. In each experiment, 300 
episodes were conducted for the source and target tasks. The agent can move to 1 grid in each 
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step, and there are four directions that can be moved: front, right, back, and left. The time when 
the agent reaches the goal from the start is referred to as a single 1episode. 

 

                    
 

(a) Source task                                      (b) Target task. 

 
Figure 1.  Grid world of shortest path problem. Circle mark is agent and initial position in each simulation. 

Green square is set as goal position. In each sub-figure, red is shortest path between start position and goal 
position with reinforcement learning. 

 

For experimental conditions, the learning results are compared using Taylor, Takano, and the 

proposed methods. In Taylor’s method, reinforcement learning is executed, as shown in Figure 1 
(a), and the acquired policy is transferred to the agent in Figure 1 (b) for transfer learning. In 

Takano’s method, Kono’s method was adopted for the implementation of this experiment. It is 

clear that Takano’s method is overfitting, and it assumes a considerable amount of time to learn 

with the target task. Therefore, the agent is set up to obtain a negative reward 𝑟 = −1 in the event 

of a collision with a wall. In addition, it was confirmed in advance that the transfer learning was 

possible, and the transfer rate was set to 𝜏 = 0.1. In the proposed method, the parameter 𝒹 is set 

to 0.1, and the gain 𝑔 is set to 9.0.  
 

4.2. Results 
 

In this section, the experimental results under the three conditions are presented. The obtained 

learning curves are shown in Figure 2. The learning curve represents the performance related to 

the learning progress, whereby the horizontal axis is the number of learning episodes and the 
vertical axis is the number of steps required from the start to the goal. Each learning curve had 10 

trial averages. In Figure 2, the learning curve of reinforcement learning that does not reuse the 

policy in the target task is the standard for performance evaluation. The black line in Figure 2 
represents the learning curve of reinforcement learning. 

 

4.2.1. Result of Taylor’s Method 

 

Taylor’s method is believed to have a high number of steps in the early stage of learning, and it is 

considered that an overfitting state emerges. However, because the target task is relearned, the 

optimal solution, i.e., the convergence to the shortest path, appears from the learning curve of 
reinforcement learning. 

 

4.2.2. Result of Takano’s Method 

 

The learning curve of Tekano has a relatively small number of steps from the early state of 

learning compared with the learning curve of reinforcement learning, and its convergence is 

considered to be equivalent to the learning curve of reinforcement learning. High performance in 
the early stages of the learning curve is called the jump start, and is one of the basic profits of 

transfer reinforcement learning. It has been confirmed that relearning in the target task is not 
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possible when the transfer rate 𝜏 = 1.0 because if the learning in the target task progresses, the 
value of the update is small and it is time-consuming to cancel the action value of the transferred 

policy. 

 

 
 

Figure 2.  Learning curves 

 

4.2.3. Result of the Proposed Method 

 

The learning curve of the proposed method also has jumpstarted. The speed of convergence is 

slower than that of Takano’s method and is close to the learning curve of reinforcement learning.  
From the figure, it can be observed that the proposed method performs better than reinforcement 

learning. In the initial state, the proposed method is equivalent to the transfer rate 𝜏 = 1.0 of 

Takano’s method, which normally requires time for learning. However, to adaptively change the 

transfer rate, the performance of the proposed method is verified by Takano’s method with a 

transfer rate 𝜏 = 0.1. 

 

4.2.4. Discussion 

 

The transfer ratio was used to quantitatively compare the performance. The transfer ratio can be 

evaluated by improving the learning time compared with the basic learning curve, such as 

reinforcement learning. Transfer ratio 𝑟 can be defined as follows:  
 

𝑟 =  
∑ 𝐿𝑡(𝑡) − ∑ 𝐿𝑤𝑡(𝑡)

∑ 𝐿𝑤𝑡 (𝑡)
,                                                         (9) 

 

where 𝐿𝑡(𝑡) is the learning curve with transfer and 𝑡 is the number of episodes. Therefore, 
∑ 𝐿𝑡(𝑡)is calculated as the learning curve area. In addition, 𝐿𝑤𝑡 (𝑡) is the learning curve without 

transfer, which indicates reinforcement learning in the target task. ∑ 𝐿𝑤𝑡(𝑡) is the calculated 

learning curve area of without transfer. Table 1 presents the transfer ratios in Taylor, Takano, and 

the proposed methods after evaluation. 
 

Table 1.  Comparison of transfer ratio in each conditions 
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In Table 1, it can be observed that only Taylor’s method increases the learning time by 
approximately 1.41 times. Takano’s method and the proposed method decrease learning time. 

Figure 3 shows the transition of the output value of the sigmoid function at the beginning and end 

of learning. In the early stage of learning, the value corresponding to the transfer rate is adjusted 

by interaction with the environment. Sometimes, the transferred policy is used by the agent 
moving to the goal. At the end of learning, the reusing policy may not be used once. It time-

consuming to use the policy at the end of learning than in the early stages of learning because the 

agent learns a new policy and obtains a high action value; therefore, it becomes possible to reach 
the goal without being affected by the reusing policy. However, if the agent obtains sufficient 

policy, there is no need to adjust the ratio of reusing policy. The learning curve of the proposed 

method does not converge because the ratio is still adjusted, even at the end of learning. 
 

Therefore, compared to Takano’s method, the result suggested that the proposed method allows 

the agent to interact with the environment to automatically adjust the ratio of reuse of the policy 

without manual adjustment or determining the transfer rate. Moreover, compared with the 
previous method, it was shown that the agent can improve the environmental adaptability while 

maintaining the characteristic of not overwriting the reusing policy from the source task. 

 

     
 

         (a) Early stage of learning (1 episode)                    (b) End of learning (300 episodes) 

 

Figure 3. Transition of the value output from the sigmoid function 

 

5. CONCLUSIONS 
 

This paper proposed a novel parameter for transfer reinforcement learning to avoid over-fitting in 

the relearning process of the target task. In the proposed method, the ratio of reusing policy from 

the source task is adjusted by the sigmoid function and input value, such as collision with 
obstacle. Basic experiments were performed with the shortest path problem with transfer 

reinforcement learning based on Taylor’s method without inter-task mapping. The result suggests 

that the learning agent can be adapted to the environment. Moreover, compared with the previous 

method, it was shown that the agent can improve the environmental adaptability while 
maintaining the characteristic of not overwriting the reuse policy from the source task. This result 

suggests that it can be applied to reusing policy selection in future applications of reinforcement 

learning agents. 
 

Our proposed method does not show convergence in the target task compared with the previous 

method. For future work, it is necessary to discuss the adjusting method of reusing the ratio of 

transferring policy at the end of learning. In the proposed method, the ratio of reuse was adjusted 
adaptively. The effect of the transferring policy cannot be ignored even at the end of learning. 
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Moreover, the proposed method is evaluated in a simple task and environment in this study. The 
computer simulation environment is a Markov decision process (MDP), which is different from 

the real-world environment. To demonstrate the effectiveness of the proposed method, it is 

necessary to carry out various types of more complex experiments and evaluations. In addition, 

the proposed method should be evaluated not only in various environments but also in non-MDP 
environments, such as multi-agent systems. 
 

ACKNOWLEDGEMENTS 
 

This study was partially supported by JSPS KAKENHI Grant number JP18K18133, and 

SUZUKI Foundation. This work was founded by The Japan Atomic Energy Agency (JAEA) 
FY2020 Center of World Intelligence Project for Nuclear Science/Technology and Human 

Resource Development (Grant no. R02I015). 
 

REFERENCES 
 

[1] B. Ramalingam, A. K. Lakshmanan, M. Ilyas, A. V. Le, and M. R. Elara (2018). “Cascaded Machine-

Learning Technique for Debris Classification in Floor-Cleaning Robot Application.” Applied 

Sciences 8(12): 1-19. 

[2] R. D. Andrea (2012). “Guest Editorial: A Revolution in the Warehouse: A Retrospective on Kiva 

Systems and the Grand Challenges Ahead.”IEEE Transactions on Automation Science and 

Engineering 9(4): 638-639. 

[3] R. S. Sutton and A. G. Barto (1998). “Reinforcement learning: An introduction.” MIT press. 

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.Bellemare, A. Graves, M. 
Riedmiller, A. K. Fidjeland, G. Ostrovski, S.Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, 

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis (2015). “Human-level control through deep 

reinforcement learning.” Nature 518: 529-533. 

[5] M. E. Taylor and P. Stone (2009). “Transfer learning for reinforcement learning domains: A survey.” 

Journal of Machine Learning Research 10(Jul): 1633-1685. 

[6] M. E. Taylor (2009). “Transfer in Reinforcement Learning Domains.”Studies in Computational 

Intelligence 216: Springer. 

[7] A. Lazaric (2012). “Transfer in Reinforcement Learning: A Framework and a Survey. Reinforcement 

Learning. Adaptation, Learning, and Optimization.” Berlin, Heidelberg, Springer. 12: 143-173. 

[8] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan (2020) “Transfer learning.”Cambridge University Press. 

[9] T. Takano, H. Takase, H. Kawanaka, H. Kita, T. Hayashi and S. Tsuruoka (2011). “Transfer Learning 

based on Forbidden Rule Set in Actor-Critic Method.” International Journal of Innovative 
Computing, Information and Control 7(5(B)). 

[10] H. Kono, A. Kamimura, K. Tomita, Y. Murata, and T. Suzuki (2014) “Transfer Learning Method 

Using Ontology for Heterogeneous Multi-agent Reinforcement Learning.” International Journal of 

Advanced Computer Science and Application 5(10): pp.156-164. 

[11] R. Ramakrishnan, C. Zhang, and J. Shah (2017). “Perturbation Training for Human-Robot Teams.” 

Journal of Artificial Intelligence Research 59: pp.495-541. 

[12] F. L. Da Silva and A. H. R. Costa (2019). “A Survey on Transfer Learning for Multiagent 

Reinforcement Learning Systems.” Journal of Artificial Intelligence Research 69: pp.645-703. 

[13] F. L. Da Silva, G. Warnell, A.H.R.Costa, and P. Stone (2020). “Agents teaching agents: a survey on 

inter-agent transfer learning.”Autonomous Agents and Multi-Agent Systems 34 (9). 

[14] C. J. C. H. Watkins and P. Dayan (1992). “Q-Learning.” Machine Learning 8: pp.279-292 


