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ABSTRACT 
 

Core periphery structures exist naturally in many complex networks in the real-world like social, 

economic, biological and metabolic networks. Most of the existing research efforts focus on the 

identification of a meso scale structure called community structure. Core periphery structures are another 

equally important meso scale property in a graph that can help to gain deeper insights about the 

relationships between different nodes. In this paper, we provide a definition of core periphery structures 

suitable for weighted graphs. We further score and categorize these relationships into different types based 

upon the density difference between the core and periphery nodes. Next, we propose an algorithm called 

CP-MKNN (Core Periphery-Mutual K Nearest Neighbors) to extract core periphery structures from 
weighted graphs using a heuristic node affinity measure called Mutual K-nearest neighbors (MKNN). 

Using synthetic and real-world social and biological networks, we illustrate the effectiveness of developed 

core periphery structures. 
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1. INTRODUCTION 
 
Weighted complex networks have non-trivial topological properties as well as non-homogeneous 

edge weights [1]. Meso-scale structures help in studying the features of complex networks which 
are not easily evident at the local or global scale, e.g., community structure. Most algorithms for 
finding community structure in graphs result in disjoint subsets or clusters. However, in many 
complex networks, nodes play more than one role in the network, for example multi-functional 
proteins in protein-protein interaction (PPI) networks and people belonging to multiple social 
groups in a social network. Overlapping or fuzzy clustering algorithms result in multiple cluster 
assignments to nodes thereby helping to study relationships among clusters in the network. For 

e.g., in a co-authorship network, overlapping communities would represent authors who 
collaborate in multiple groups. Many overlapping clustering algorithms exist in literature that 
work for complex networks [2], [3], [4], [5], [6], [7], [8]. 
 
Another meso-scale structure called core periphery is also important in understanding complex 
networks. However, its research literature is not as wide spread as that exists for community 
structure. In [9], the authors illustrated that overlapping clusters naturally lead to the existence of 

dense cores surrounded by sparse peripheries in many complex networks. In [10], the authors use 
real world Twitter data to provide empirical evidence that community structure is always 
accompanied by a core periphery structure in a social network.  

http://www.airccse.org/journal/ijaia/current2021.html
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The analysis of core periphery structures can be very useful in developing insights in many real-
world networks. For example, in a social network, a dense core group of close friends is usually 
surrounded by a sparsely connected group of periphery acquaintances. A study of core periphery 
structures in such a network can help in identifying how trends spread across the network of 

friends. Similarly, in a protein-protein interaction (PPI) network, a dense core could be seen as a 
cohesively connected set of proteins surrounded by a loosely connected set of periphery proteins 
which dynamically connect to more than one core set depending upon their function.  
 
Borgatti and Everett were the first to describe a core periphery structure as a dense and 
cohesively connected core which is surrounded by a less dense periphery with loose connections 
to it. [11]. Traditionally, the notion of core periphery structures has been used in diverse fields 
such as world systems [12], economics [13], organization studies [14] and social networks [15], 

[16]. Core periphery structures have been employed for the analysis of biological networks such 
as protein-protein interaction networks [17] and work groups [18]. With the accumulation of Big 
data in various real-world domains, the usefulness of core periphery structures has increased even 
more. In a recent paper [19], the authors perform an analysis of cores in a series of big crime data 
so as to characterize the modus operandi of criminals across the crime series.  
 
In weighted graphs, both, the topological structure of nodes as well as non-trivial edge weight 

properties in the graph contribute towards density. Thus, a core periphery structure in a weighted 
graph can have a dense core as determined by high edge weight density or high structural density 
or both. We call this measure of density as SE-density. In figure 1, we demonstrate regions of 
varying density in a weighted graph. The subset of nodes (R,S,T,U,V) form a clique and is 
structurally very dense with low edge weight density (or low mean of edge similarities). On the 
other hand, the subset of nodes (A, B, C, D, E, F, G) form a subset with high edge weight density 
amongst each other with low structural density. 

 

 
 

Figure 1.  Synthetic Dataset 1 

 

In this paper, we formally define core periphery structures that exist in weighted graphs. Next, we 
build a graph algorithm called Core Periphery-MKNN (CP-MKNN) which identifies core 
periphery structures in a weighted graph using a density based heuristic measure called MKNN 
(Mutual K-nearest neighbors). We further score and categorize the peripheries based upon the 
strength of their connection to the cores. The algorithm also identifies sibling relations between 
core-periphery structures which are connected together by loose periphery-periphery connections. 
We provide a comparison of the properties of core peripheries identified by CP-MKNN with 
another recently developed core periphery algorithm called ClusterONE-CP [20]. Through the 

use of synthetic and real world weighted social and PPI networks, we illustrate that CP-MKNN is 
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able to find denser cores than ClusterONE-CP as per structure or edge weight density. Lastly, we 
use a motivating real-world example in protein-protein interaction networks to express the 
usefulness of found core-periphery structures.  
 

Next, we provide an outline of the paper. In section 2, we discuss the related work in the field of 
core periphery structures. We present our definition of core periphery structures in weighted 
graphs along with other relevant terms in section 3. We provide our methodology to find core 
periphery structures for a weighted graph in section 4. In section 5, we present an extensive 
experimental evaluation of our algorithm on two synthetic and real world social and PPI 
networks. In section 6, we conclude our findings. 
 

2. RELATED WORK 
 
While the notion of core-periphery structures has been in use for quite a while, it was Borgatti 
and Everett, who formalized the first model for finding core-periphery structures in a network in 

the late nineties [11]. They proposed a quality function comparing the network to an ideal model 
of core-periphery structures where nodes are connected to each other only if they have core 
membership. This algorithm is limited to the division of the whole graph into one core and one 
periphery. This model was extended by the authors in their following paper to identify more than 
one core and periphery structure. [21]. Another algorithm [22] based on the same idea was built 
using a more flexible model to assign a core score to each node.  
 

A Kernighan-Lin algorithm-based methodology was proposed by Boyd et al. [23] to find core 
periphery structures in a social network. An enhanced version of this algorithm was built by Luo 
et al. [17] to identify k-plex cores in PPI networks. The idea of random walks has been used in 
[24] to assign a coreness score to nodes in a network as a centrality measure. An overlapping 
tiles-based model was developed by Yang and Leskovec [9] to identify overlapping communities 
and core periphery structures in a network. In [25], Bruckner et al. developed a core periphery 
identification technique for PPI networks using graph modification. Sardana et al. [20] proposed 

a core periphery algorithm called ClusterONE-CP based on a greedy growth based overlapping 
graph clustering algorithm called ClusterONE. de Jeude et al. [26] developed a p-value based 
method using multinomial hypergeometric distribution to assign a surprise like score to network 
partitions and categorize them into cores and peripheries. Three methodologies for find core 
periphery structures in directed graphs were described in [27]. Two of them are based upon the 
well know link analysis algorithm called Hyperlink-Induced Topic Search (HITS) [28] and one of 
them is based upon the concept of likelihood maximization. 
 

The concept of MKNN heuristic was first coined in for use in data clustering in [29]. Sardana et 
al. utilized this heuristic for finding density-based clusters in a weighted graph [30]. In this paper, 
we use this heuristic measure to find core periphery structures in weighted graphs. Further, the 
work in this publication is a part of this paper’s first author’s PhD dissertation [31]. 
 

3. BACKGROUND 
 
In a weighted graph, we formalize a core periphery structure as a dense, cohesive core set C, 
surrounded by a loosely connected periphery set P. The nodes in a core periphery structure are 

identified by the union (C ∪ P). The core set C is denser than the periphery set P as per structural 
density or edge weight density. We further categorize the peripheries into two types: 1 and 2 
depending upon the nature of density difference between the core and periphery. These two types 

of peripheries are defined in detail next.  
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1) Periphery Type 1: A periphery of type 1 is less dense than its core as per structure density 
measured using a term called Cohesion as defined below.  
 
Definition 3.1. [Cohesion, η] For a set S, cohesion empirically captures the degree of intensity by 

which the nodes are structurally connected to each other. Mathematically, we define cohesion as 
follows. 
 

 
 
Here Insim(S) corresponds to the sum of internal similarity weights for the set S, and Cut(S) 
represents the sum of edge weights connecting S with rest of the clusters. Formally, we define 

periphery P to be of type 1 for its core C if Cohesion(C) > Cohesion (C ∪ E ∪ P) where E is the 
edge set connecting C and P. Figure 2 demonstrates a core periphery structure of type 1 with a 
core of blue nodes having a higher structural density than its type 1 periphery of red nodes. 
 
2) Periphery Type 2: A periphery type 2 is less dense than its core set as per edge weight density 
measured using the mean of edge weights (μ) of the edges belonging to a cluster. In other words, 

a periphery P connected to its core C using edge set E is labeled as type 2 if μ(Edge weights 
belonging to C) − μ(Edge weights belonging to (P U E)) > m (MEAN OFFSET). Here m or 
MEAN OFFSET is a user defined parameter with a default value of 0.2. Figure 2 demonstrates a 
core periphery structure of type 2 with a center core of blue nodes having a higher edge weight 
density than its type 2 periphery represented by green nodes. Note that the width of the edges has 
been drawn proportional to their edge weights. 
 

 
 

Figure 2.  Example of two types of Core Periphery Structures in a weighted graph. The center blue core has 

two peripheries: Red (Type 1) and Green (Type 2). 

 
We further assign a score or a distance to each core periphery structure based upon the density 
difference between its core and periphery constituents. On similar lines, a score based upon 
domain knowledge can also be constructed to make the core periphery relationships more 

meaningful. We construct an example core periphery score, called CPScore and an example core 
periphery distance called CPDistance as defined below. Let E be the edge set connecting the core 
and periphery sets.  
 
Definition 3.2. [CPScore] CPScore for a core periphery structure is defined as the number of 

actual edges in the set C ∪ E ∪ P divided by the number of all possible edges in the set C ∪ E ∪ 
P. Intuitively, this score captures the structural density of the hypothetical cluster formed by 
merging the core C and its periphery P. A higher value of CP score is an indicator of high 
structural density between core and periphery. Formally, we calculate CPScore is as below. 
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Definition 3.3. [CPDistance] CPDistance is defined as the number of standard deviations () that 

the periphery edges are away from the mean () of core edges. It gives a measure of edge weight 
density difference between the core and periphery. A lower value of CPDistance indicates a 
strong edge weight density similarity between the core and periphery. Formally, we calculate 
CPDistance as below. 
 

 
 
In the above formula, win corresponds to the edge weights of edges inside the cluster. The core 

periphery types and scores as defined above can be very useful in real-world networks to rank the 
strength of connection from cores to peripheries. For e.g., in a co-authorship network the 
CPScore and CPDistance can be used to prioritize potential co-authors for a core group based 
upon the quantity and quality of shared publications with its periphery group of authors. 
 

4. METHODOLOGY 
 
Consider an undirected, weighted graph, G = (V, E) with V as the vertex set and E as the edge 
set. The edge weights are represented by a similarity matrix (SM). Each element of SM contains 
a non-negative real number representing similarity between two vertices between 0 and 1. The 

CP-MKNN algorithm is performed in three phases as described next. 
 

4.1. Initialization Phase 
 
The initialization phase involves two steps. First, it expands G to form an augmented graph Ga 
where secondary similarities are defined between all nodes up to four hops away. This is done by 

applying Dijkstra’s algorithm in the four-hop neighborhood of each node. Second, a Mutual K-
nearest neighbor (MKNN) matrix is generated using the similarities in Ga. MKNN is a node 
affinity measure as defined in [28] for use in graph clustering. As opposed to the classic KNN 
algorithm, MKNN is based on a two-sided relationship between vertices. We explain the concept 
of MKNN for K=4 using figure 3. Node G has 4 KNNs, namely, nodes A, B, D and E. However, 
nodes A, B, D and E already have found K=4 KNNs amongst the red nodes. MKNN defines a 
mutual relationship between two nodes, therefore, G forms an MKNN relationship with the next 
available node F with less than K=4 neighbors. Intuitively, for relatively low values of K, MKNN 

is able to capture set of nodes at approximately the same level of edge-weight based density. We 
use this heuristic to guide our core periphery formation algorithm. 
 

 
 

Figure 3.  Example of Mutual K-nearest neighbors in a weighted graph 
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4.2. Phase 1 (Preliminary Phase) 
 
The preliminary phase involves growing small sized dense subgraphs by merging some seed 

nodes with their MKNN neighbors. In this phase we call each node as an i-node. The i-nodes are 
ranked in a non-increasing order of density around them using a term called radius defined next. 
Given an i-node ini with similarities to its p MKNNs being (sm1, sm2...smp). Let the degrees of 
MKNN nodes be (d1, d2, ...dp). We define radius, σ for ini as follows. 
 

 
The average degree of a graph’s i-nodes corresponds to davg. Based upon this formulation, i-nodes 
having a higher radius have denser surroundings and get a chance to merge with their MKNNs 
earlier than other i-nodes. We call this merging order defined by radius as the merge initiator 
order.  
 

In phase 1, i-nodes merge with their MKNN neighbors in the merge initiator order. If in this 
process, some neighbors are found to already belong to some other subgroup, then this neighbor 
is merged with the initiator where it leads to the least increase in standard deviation of edges 
inside the subgroup. This process continues until all initiators are exhausted. Figure 4 illustrates 
the small subsets formed after phase 1 for synthetic dataset 1. The pseudocode for this phase is 
given in algorithm 1. 
 

4.3. Phase 2 (Merge and Boundary Formation Phase) 
 

In the preliminary phase, i-nodes merge with their MKNNs to generate small subgroups, which 
we denote as a c-node in phase 2. In the merge phase, (1) pairs of c-nodes with high level of 
similarity between them are merged with each other, and (2) boundary c-node sets are generated 
for each c-node which will later help in the formation of core-periphery structures. A connectivity 
matrix (CM) is constructed to define a notion of similarity among pair of c-nodes. We formulate 
it as below. 
 

 
Here linkage (cni, cnj) is calculated as the sum of primary similarities of edges that link cni’s i-
nodes and cnj’s i-nodes. Further, cut(cni) is used to capture the primary similarity summation 
 

 
 

Figure 4.  Dense subsets formed after Phase 1 for Synthetic Dataset 1 
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between cni’s i-nodes and i-nodes belonging to other graph c-nodes. Intuitively, CM captures the 
relative strength of connection between two c-nodes as compared to their connections with all 
other graph c-nodes. Next, using CM values as a measure of similarity, MKNN relationships are 
defined among c-nodes. This helps to avoid considering every pair of c-nodes in CM for possible 

merging. For example, in figure 4, the core (C, D, E, F, G) forms MKNN neighbors as (A, B), 
(AN, AP) and (J, H). However, all c-nodes which are MKNN are not best to merge with each 
other. Before two c-nodes are merged, we ensure that they both are synchronized in terms of 
structural density and edge-weight density. This is done by using the two checks below for 
validating every merge. 
 

1) Check for structural density: Two c-nodes pass the structural similarity check if the 
Cohesion of the prospective merged c-node is greater than the Cohesion of the initiator c-
node.  
 

2) Check for edge-weight density: Two c-nodes pass the edge weight density check if the 
mean difference of their edge weights is within a user defined parameter called MEAN 
OFFSET, m. This ensures that the two c-nodes are homogeneous in terms of edge 
weights and the variance of the merged cluster remains low. 

 

The following rules are established to decide about merging and boundary set formation.  
 

1) If c-nodei and its MKNN c-nodej satisfy both constraint A and B, then the two c-nodes 
 

 merge with each other to form a bigger sized core if they are cores, or are peripheries 

belonging to the same set of cores. Otherwise, the two c-nodes  
 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021 

8 

 form a weak periphery-periphery relationship. In this case, c-nodej is put in boundary 
node set pp (periphery-periphery) of c-nodei 

 

2)  If c-nodei and its MKNN c-nodej satisfy only the structural density constraint A, c-nodej is put 
in boundary nodeset low of c-nodei.  
 

3) If c-nodei and its MKNN c-nodej satisfy only the edge weight density constraint B, c-nodej is 
put in boundary nodeset inrange of c-nodei. 
 

4) If c-nodei and its MKNN c-nodej do not satisfy any of the constraint A or B, c-nodej is put in 
boundary nodeset low of c-nodei if its mean is lower than the mean of c-nodei, or else in 
boundary nodeset high of c-nodei.  
 

As an example, in figure 4, the red core (C, D, E, F, G) merges with its MKNN neighbor (A, B), 
whereas, it puts its MKNN subsets (AP, AN) and (J, H) in its boundary sets. The subsets (AP, 
AN) and (J, H) further merge with their own MKNN neighbors to grow in size. The pseudocode 

for phase 2 is given in algorithm 2. 
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4.4. Phase 3 (Core Periphery Structure Formation Phase) 
 
After the merge phase completes, it leads to the formation of dense c-nodes and their 

corresponding boundary c-node sets, low, inrange, high and pp. The boundary sets vary in terms 
of density difference from the core. In this phase, all c-nodes are traversed in the order of their 
density measure Cohesion to explore their boundary c-node sets for the possibility of formation 
of core periphery and periphery periphery relationships. Further, each relationship is assigned a 
type as described below. 
 
1) Core with Type 1 periphery: This type of periphery has a lower structural density than its 

core. c-nodes lying in boundary c-nodesets in-range of the core c-node are made as type 1 
peripheries of the core.  
 
2) Core with Type 2 periphery: This type of periphery has a lower edge weight density than its 
core. c-nodes lying in boundary c-nodesets low of the core c-node are put in type 2 periphery of 
the core. If the core c-node lies in boundary c-nodeset high of the periphery c-node, then this 
periphery is also made a type 2 periphery of the core. 

 
3) Periphery-Periphery: This type of relationship is formed between two peripheries which do 
not share the same set of cores, but still have a weak connection between the two c-nodes lying in 
boundary c-nodeset pp are candidates for this relationship. These relationships seem to weakly 
connect two core periphery structures in a sibling relationship.  
 
All the extracted relationships are next assigned with CPDistance and CPScore as defined before 
in the background section. A resultant core periphery structure of type 2 formed for Synthetic 

dataset 1 is shown in figure 5. Figure 6 shows an example of a core periphery structure with 
periphery type 1 for synthetic dataset 1. Further, the red core in figure 5 and the green core in 
figure 6 share a periphery (H, J, K, L, M, N, P, Q, Z), thereby forming a sibling relationship 
between the two cores. All the steps for identifying core periphery relationships are described in 
algorithm 3. 
 

5. EXPERIMENTAL EVALUATION 
 
We demonstrate the effectiveness of core periphery structures identified by CP-MKNN using two 
synthetic and two real protein-protein interaction network-based graph datasets. We further 

compare and contrast them with core-periphery structures generated by another algorithm called 
ClusterONE-CP. Both CP-MKNN and ClusterONE-CP allow a cluster to be both a core or a 
periphery or both and find core-periphery as well as well as periphery-periphery relationships. 
For running ClusterONE-CP, we set node penalty equal to 2 and overlap threshold equal to 0.5. 
 

5.1. Results for Synthetic Datasets 
 
We generated two weighted graphs to use as synthetic datasets: The first synthetic dataset has 39 
vertices and 74 weighted edges (figure 1). The synthetic dataset 2 has 49 vertices and 97 
weighted edges (figure 7) We use these synthetic datasets to illustrate the comparison of core 
periphery results obtained by CP-MKNN with those by ClusterONE-CP. In synthetic dataset 1, 
we embedded two edge weight dense cores, namely, core 1 with nodes A, B, C, D, E, F, G, H and 
core 2 with nodes AA, AB, AC, AD, AE, AF, AG. Further, there is one structurally core, core 3 
with nodes R, S, T, U, V. The cores embedded in synthetic dataset 2 are Core 1 with nodes A, B, 

C, D, E, F, G, H; Core 2 with nodes J, K, L, M, N, P, Q and Core 3 with nodes R, S, T, U, V, W. 
All the cores are connected through peripheries. We use a measure called structural density 
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(graph density) [32] to measure the structural cohesiveness of clusters (both cores and 
peripheries). It is formally defined as 
 

 
Further, we use average variance of the weighted edges inside a core or periphery to determine 

how homogeneous are the edge weights inside the subset. 
 

 
 

5.1.1. Comparison of CP-MKNN vs. ClusterONE-CP for Synthetic datasets 

 
In table 1, a comparison of properties of cores and peripheries is provided between CP-MKNN 
and ClusterONE- CP. It can be noted that both the datasets and both the algorithms, cores are 
denser than the peripheries as per structural density or edge weight density denoted by mean of 
edges, For CP-MKNN, in both the datasets, we see that all cores, core-peripheries and peripheries 
obtain a low variance of edge weights. This signifies homogeneous edge weights. For 

ClusterONE-CP, the variance results of synthetic dataset 2 indicate that the clusters are less 
homogeneous as per edge weights. 
 

 
 

Figure 5.  Core Periphery Structure with peripheries of Type 2 (Core: Red nodes, Peripheries: Brown and 

Pink nodes) for Synthetic Dataset 1 
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Figure 6.  Core Periphery Structure with periphery Type 1(Core: Green nodes, Periphery: Brown nodes) for 

Synthetic Dataset 1 

 

Table 1.  Core Periphery Structures by CP-MKNN and ClusterONE-CP for Synthetic datasets 

 

 No. Avg. Mean Avg. Standard 

Deviation 

Avg. Structural 

Density 

CP-MKNN for Synthetic Dataset 1 

Cores 3 0.71 0.043 0.56 

Peripheries 3 0.39 0.061 0.45 

Core Peripheries 0 0 0 0 

ClusterONE-CP for Synthetic Dataset 1 

Cores 2 0.87 0.046 0.4 

Peripheries 2 0.37 0.069 0.58 

Core Peripheries 3 0.52 0.078 0.65 

CP-MKNN for Synthetic Dataset 2 

Cores 3 0.88 0.025 0.48 

Peripheries 2 0.43 0.068 0.64 

Core Peripheries 2 0.65 0.089 0.38 

ClusterONE-CP for Synthetic Dataset 2 

Cores 2 0.85 0.088 0.46 

Peripheries 2 0.45 0.083 0.5 

Core Peripheries 4 0.59 0.11 0.57 
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Figure 7.  Synthetic Dataset 2 

 

5.2. Results for Movie Co-Appearance Dataset 
 
Using synthetic datasets, we demonstrated that CP-MKNN obtains cores which are denser than 
the core-peripheries and peripheries. In this section we demonstrate the difference between CP-
MKNN and ClusterONE-CP using a movie co-appearance dataset called Les Miserables [33]. 
This dataset is network of interaction amongst 77 characters in a movie based on Victor Hugo’s 
novel called Les Miserables. The clustering coefficient of this dataset is 0.57. Figure 8 illustrates 
a core found by CP-MKNN (blue nodes), K=2 and a core found by ClusterONE-CP (red and blue 
nodes combined). The blue nodes correspond to a very dense core comprising of the novel’s 

actor, Maurius (MA); actress, Cosette (CO) and the actress’s father, Jean Valjean (JV). The red 
nodes comprise other important characters in the novel. CP-MKNN separates the most important 
characters of the novel because it uses both structure and edge weight density constraints in 
constructing core periphery structures. 
 

 
 

Figure 8.  A dense core by CP-MKNN (K=2) (blue nodes) and ClusterONE-CP (blue and red nodes) on 

Les Miserables, a movie co-appearance dataset 

 

5.3. Results for Real Social Network Dataset 
 
We use a well-known social network dataset called Zachary’s Karate Club Network, frequently 
used in the research community for evaluating community structures in graphs. Zachary’s dataset 

is based on associations in a karate club among 34 people as its members, collected at a US 
university of a total of three years [34]. We represent each member of the club by its number 
from 1 to 34. The club’s instructor represented by node 1 had a disagreement with his president, 
node 34 and the club got disintegrated into two factions. The first group mainly consisted of 
supporters of the president (node 34), and the second group represented people who supported the 
instructor (node 1). We use a weighted version of the network here. The edge weights are based 
upon the number of common activities that the club members took part in.  

 
Figure 9 represents core periphery structures obtained by CP-MKNN on the Karate Club dataset 
and figure 10 displays core periphery structures obtained by ClusterONE-CP on the same dataset. 
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The size of nodes has been drawn proportional to their degree and the width of edges has been 
drawn proportional to the edge weights. CP-MKNN is able to identify the two factions correctly 
around the two nodes 1 and 34. ClusterONE-CP further splits one of the factions into two parts. 
Further, CP-MKNN identifies nodes 10, 20 and 29 as peripheries for both the factions. It 

indicates that perhaps, these three nodes have relationships with both the cores and suggest a 
relationship between the cores. Further, CP-MKNN provides a core periphery association of type 
1 between node 1’s core and node 34’s core with a low value of CPDistance (0.11) and CPScore 
(0.17). This indicates that the two factions are similar to each other in terms of edge weight 
density even if they are separated in terms of structural density. Thus, CP-MKNN not only 
divides the network into cores and peripheries, but we are also able to derive insights about how 
the members of different cores might be associated with each other. This information can be very 
useful for understanding the flow of information in social network analysis. 

 

 
 

Figure 9.  Core Periphery structures obtained by CP-MKNN on Karate Club dataset (Faction1 (Core1): Red 

nodes, Faction (Core 2): Green nodes, Shared periphery: Yellow nodes) 

 

 
 

Figure 10.  Core Periphery structures obtained by ClusterONE-CP on Karate Club dataset (Faction 1 (Split 

into two cores): Red and Blue nodes, Faction 2 (Core3): Green nodes) 

 

5.4. Results for Real PPI Network Dataset 
 
We use two widely used PPI datasets in the research community for the evaluation of core 
periphery structures generated by CP-MKNN. These datasets are named Gavin (1855 proteins 
with 7669 edges) [35] and Krogan (2708 proteins with 7123 edges) [36]. Further, we use the 
MIPS catalog of gold standard complexes [37] as a validation dataset. In this dataset, there are a 
total of 203 protein complexes and 1189 proteins. We use accuracy as defined by Brohee and 
Helden [38] for assessing the quality of core periphery structures. This measure is formulated as 

the geometric mean of sensitivity (Sn) and positive predicted value (PPV). Sn and PPV are 
mathematically formulated as below. 
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Here n is the count of clusters predicted by the algorithm and n is the number of protein 
complexes in the gold standard database. mi corresponds to the protein count in complex i. T is 
the contingency table of protein complexes with two dimensions, actual and predicted. 
 

5.4.1. Comparison of CP-MKNN vs. ClusterONE-CP for Real PPI datasets 
 

We present an accuracy comparison between CP-MKNN and ClusterONE-CP in table 2. It can 
be noted that accuracy value obtained for both the algorithms is very similar in the case of both 
the PPI datasets. This suggests that clusters obtained by CP-MKNN are meaningful and match 
well to the gold standard complexes similar to ClusterONE-CP. Further, the clusters obtained for 

CP-MKNN tend to have a higher average mean of edge weights indicating that CP- MKNN is 
able to separate very dense cores from their sparser peripheries.  
 

Next, we present a comparison of the properties of cores and peripheries as obtained by CP-
MKNN and ClusterONE-CP on the real PPI datasets in table 3. Both the algorithms identify the 
clusters as being core, periphery or core-periphery (both core and periphery). We notice that for 
both CP-MKNN and ClusterONE-CP, cores obtain a higher average mean and average structural 
density over the peripheries. This difference is statistically significant as per Student’s t-test with 
α = 0.05. Further, both the algorithms find core-peripheries to have a statistically significantly 
higher average mean than peripheries for both the datasets. The difference in structural density of 
core-peripheries and peripheries is not found to be statistically significant. The table also displays 

the difference in the essentiality values of cores vs peripheries. Essential proteins are those that 
are thought be critical for the survival of the organism. It has been studied that the essentiality of 
proteins in a PPI network could be related to their structural characteristics in the network [39] 
[17]. We use an essential proteins database [40] to determine the essentiality of proteins. For both 
the datasets, we find that cores obtained by CP-MKNN have a higher average essentiality over 
the peripheries as per t-test with α = 0.05. This is in alignment with the existing studies that the 
essentiality of proteins could be related to their structural properties in the PPI network For 

ClusterONE-CP, this trend is supported only for the Gavin dataset. 
 

Table 2.  Accuracy comparison for CP-KNN vs ClusterONE-CP for PPI datasets 

 

Algorithm No. of Clusters (size>2) Sn PPV Accuracy Avg. Mean 

Gavin Dataset 

CP-MKNN 233 0.44 0.41 0.43 0.41 

ClusterONE-CP 245 0.56 0.39 0.47 0.38 

Krogan Dataset 

CP-MKNN 293 0.42 0.46 0.44 0.75 

ClusterONE-CP 332 0.49 0.44 0.46 0.71 
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5.4.2. Comparison of relationship types identified by CP-MKNN for Real PPI datasets 
 

We provide a comparative study of different types of relationships (core-periphery (type 1 and 
type 2) and periphery- periphery) for CP-MKNN in table 4 for Gavin dataset. The table displays 
the number of relations for each type, along with the average CPDistance and the average 
CPScore of the peripheries in each type. As described before, CPDistance is a measure of edge 
weight distance between core and periphery, whereas CPScore is a measure of structural 

similarity between core and periphery. A smaller value of CPDistance signifies that core and 
periphery are closer as per edge weight density. A higher value of CPScore suggests that the core 
and periphery are closer to each other as per structural density. As evident from table 4, type 1 
peripheries are closer their cores than type 2 peripheries as per edge weight density (lower value 
of average CPDistance). On the other hand, type 2 peripheries are closer to their cores than type 1 
peripheries as per structural density (higher value of average CPScore). These results are in line 
with our construction of peripheries of different types. 
 

Table 3.  Core Periphery Structures by CP-MKNN and ClusterONE-CP for PPI datasets 

 

 No. Avg. Mean Avg. Stand. 

Dev. 

Avg. Struct. 

Density 

Avg. 

Essentiality 

CP-MKNN for Gavin Dataset 

Cores 67 0.56 0.14 0.84 0.38 

Peripheries 45 0.28 0.024 0.52 0.28 

Core Peripheries 101 0.35 0.083 0.49 0.33 

ClusterONE-CP for Gavin Dataset 

Cores 22 0.52 0.15 0.91 0.37 

Peripheries 52 0.32 0.06 0.58 0.16 

Core Peripheries 149 0.38 0.12 0.57 0.34 

CP-MKNN for Krogan Dataset 

Cores 88 0.89 0.093 0.58 0.37 

Peripheries 60 0.51 0.096 0.52 0.16 

Core Peripheries 112 0.77 0.095 0.41 0.32 

ClusterONE-CP for Krogan Dataset 

Cores 14 0.93 0.059 0.70 0.23 

Peripheries 55 0.48 0.079 0.54 0.22 

Core Peripheries 247 0.77 0.13 0.45 0.29 
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Table 4.  Comparison of relationships types obtained for CP-KNN (K=4) for Gavin dataset 

 

Relationship Type # Relationships Avg. Mean Difference Avg. Cohesion Difference 

CP-Type 1 214 0.85 0.20 

CP-Type 2 194 3.04 0.32 

Periphery-Periphery 109 4.9 0.22 

 

Next, we provide a motivating example of a real core- periphery and periphery-periphery 
relationship obtained by CP-MKNN on the Krogan PPI dataset in figure 11. For each core or 
periphery subunit, we also note down the MIPS gold standard complex it mapped on to. CP-
MKNN finds a protein subset which maps to Exosome complex as a core for a periphery subset 
which maps to RNA-polymerase-III com- plex. Further, CP-MKNN finds a periphery-periphery 
relationship between this RNA-polymerase-III complex periphery and another periphery that 

maps to RNA-polymerase-II complex. It has been researched that exosome complex is a central 
factor in processing stable RNA species produced by RNA polymerases I, II, and III [41]. This 
suggests that both the core-periphery and periphery-periphery relations identified by CP-MKNN 
are meaningful and can be used to gain insights into the nature of complex networks.  
 

 
 

Figure 11.  An example Core-Periphery and Periphery-Periphery relationship obtained by CP- MKNN on 

Krogan PPI dataset 

 

6. CONCLUSIONS 
 
To summarize, we developed a core periphery structure identification algorithm in weighted and 
undirected graphs using a heuristic measure called MKNN. We provide with a definition of core 
periphery structures suited for weighted graphs. We illustrated the usefulness of core periphery 

structures generated by CP-MKNN using synthetically generated datasets as well as real world 
social networks and biological PPI networks. We also provided a comparative analysis of core 
periphery results by CP-MKNN with those obtained by another core periphery algorithm called 
ClusterONE-CP. We demonstrate that CP-MKNN finds denser cores than ClusterONE-CP as per 
structure or edge weight density. We further scored and categorized the obtained core periphery 
structures and provided with comparative examples. We demonstrated that CP-MKNN is able to 
separate very dense cores as per structural density and edge weight density constraints from their 
peripheries in weighted graphs. These relationships can be very useful to gain insights about the 

nature of complex networks. This paper is a proof of concept of the algorithm for identifying core 
periphery structures in weighted graphs. As a future direction of work, there is scope for making 
the algorithm scalable for large graphs. Further, the core periphery structures defined in this 
paper can be applied to graphs which vary over time to see how the relationships and the core 
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periphery scores evolve over time. This can be helpful in studying how trends change over time 
in complex networks represented as weighted graphs. 
 

REFERENCES 
 

[1] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex 

weighted networks,” in Proc. Nat. Acad. of Sci. of the USA, 2004, vol. 101, no. 11, pp. 3747- 3752.  

[2] Y.-Y. Ahn, J. P. Bagrow, and A. Lehmann, “Link communities reveal multi-scale complexity in 
networks,” Nature, vol. 466, pp. 761–764, 2010.  

[3] E.M. Airoldi, D.M. Blei, S.E. Fienberg, and E.P. Xing, “Mixed membership stochastic block 

models,” J. Mach. Learn. Res., vol. 9, pp. 1981–2014, 2007.  

[4] M. Sales-Pardo, R. Guimera, A. Moreira, and L.A.N Amaral, “Extracting the hierarchical 

organization of complex systems,” in Proc. Nat. Acad. of Sci. of the USA, 2007, vol. 104, pp. 18 

874–18 874.  

[5] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, “Overlapping community detection using 

Bayesian non-negative matrix factorization,” Phys. Rev. E, vol. 83, 2011.  

[6] G. Palla, I. Derenyi, I. Farkas and T. Vicsek, “Uncovering the overlapping community structure of 

complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005.  

[7] T.S. Evans, and R. Lambiotte, “Line graphs, link partitions, and overlapping communities,” Phys. 

Rev. E, vol. 80, Art. ID. 016105, 2009.  

[8] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein complexes in protein-protein 

interaction networks,” Nature Methods, vol. 9, pp. 471-472, 2012.  

[9] J. Yang, and J. Leskovec, “Overlapping Communities Explain Core–Periphery Organization of 

Networks,” in Proc. of the IEEE, 2014, vol. 12, pp. 1892-1902.  

[10] J. Yang, M. Zhang, K.N. Shen, X. Ju, and G. Xitong, “Structural correlation between communities 
and core-periphery structures in social networks, Evidence from twitter data,” Expert Systems with 

Applications, vol. 111, pp. 91-99, 2018.  

[11] S.P. Borgatti, and M.G. Everett, “Models of Core/Periphery structures,” Social Networks, vol. 21, pp. 

375–395, 1999.  

[12] D. Smith, and D. White, “Structure and dynamics of the global economy: network analysis of 

international trade 1965–1980,” Social Forces, vol. 70, pp. 857–893, 1992.  

[13] P. Krugman, The Self-Organizing Economy. Blackwell, United King- dom: Oxford, 1996.  

[14] R.R. Faulkner, Music on Demand: Composers and Careers in the Hollywood Film Industry. New 

Brunskwick, NJ, USA: Transaction Publishers, 1987.  

[15] E.O. Laumann, and F.U. Pappi, Networks of Collective Action: A Perspective on Community 

Influence Systems. New York, USA: Academic Press, 1976.  

[16] P. Doreian, “Structural equivalence in a psychology journal net- work,” American Society for 

Information Science, vol. 36, no. 6, pp. 411–417, 1985.  

[17] F. Luo, B. Li, X. Wan, and R. Scheuermann, “Core and periphery structures in protein interaction 

networks,” BMC Bioinformatics, vol. 10, pp. S8, 2009.  

[18] J.N. Cummings, and R. Cross, “Structural properties of work groups and their consequences for 

performance,” Social Networks, vol. 25, no. 3, pp. 197–210, 2003.  
[19] T. Wang, C. Rudin, D. Wagner, and R. Sevieri, “Finding Patterns with a Rotten Core: Data Mining 

for Crime Series with Cores.” Big Data, vol. 3, no. 1, pp. 3-21, 2015.  

[20] D. Sardana and R. Bhatnagar, “Core Periphery structures in weighted graphs using greedy growth,” 

in IEEE/WIC/ACM International Conference on Web Intelligence, 2016, pp. 1-8.  

[21] M.G. Everett, and S.P. Borgatti, “Peripheries of cohesive subsets,” Social Networks, vol. 21, pp. 397, 

1999.  

[22] M.P. Rombach, M.A. Porter, J.H. Fowler, and P.J. Mucha, “Core-periphery structure in networks,” 

SIAM Journal on Applied Mathematics, vol. 74, no. 1, pp. 167-190, 2014.  

[23] J.P. Boyd, W.J. Fitzgerald, and R.J. Beck, “Computing core/periphery structures and permutation 

tests for social relations data,” Social Networks, vol. 28, pp. 166-178, 2006.  

[24] F.D. Rossa, D. Fabio, and C. Piccardi, “Profiling core-periphery network structure by random 

walkers,” Scientific Reports vol. 3, no. 1, pp. 1-8, 2013.  

[25] S. Bruckner, F. Huffner, and C. Komusiewicz, “A graph modification approach for finding core–

periphery structures in protein interaction networks,” Algorithms for Molecular Biology, vol. 10, no. 

1, pp. 16, 2015.  



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.1, January 2021 

18 

[26] J.V.L. de Jeude, G. Caldarelli, and T. Squartini, “Detecting core- periphery structures by surprise,” 

EPL (Europhysics Letters), vol. 125, no. 6, 2019.  

[27] A. Elliott, A. Chiu, M. Bazzi, G. Reinert, and M. Cucuringu, "Core–periphery structure in directed 

networks," in Proc. Royal Society A, 2020, vol. 476, no. 2241. 

[28] J.M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of ACM, vol. 46, pp. 

604-632, 1999.  

[29] Z. Hu, and R. Bhatnagar, “Clustering algorithm based on mutual K-nearest neighbor relationships,” 

Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 5, no. 2, pp. 100-113, 
2012.  

[30] D. Sardana, and R. Bhatnagar, “Graph Clustering Using Mutual K- Nearest Neighbors,” in Active 

Media Technology, 2014, pp. 35-48.  

[31] D. Sardana, “Analysis of Meso-scale Structures in Weighted Graphs,” PhD diss., University of 

Cincinnati, 2017. 

[32] J. Nešetřil, and P.O. De Mendez, “Sparsity: graphs, structures, and algorithms”, Springer Science & 

Business Media, vol. 28, 2012. 

[33] D.E. Knuth, “The Stanford Graphbase: A platform for combinatorial computing,” New York: ACM 

Press, pp. 74-87, 1993.  

[34] W. Zachary, “An information flow model for conflict and fission in small groups,” Journal of 

Anthropological Research, vol. 33, pp. 452-473, 1977.  

[35] A.C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. 

Michon, C.M. Cruciat, and M. Remor, “Functional organization of the yeast proteome by systematic 

analysis of protein complexes,” Nature, vol. 415, no. 6868, pp. 141-147, 2002. 

[36] N.J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A.P. 

Tikuisis, and T. Punna, “Global landscape of protein complexes in the yeast Saccharomyces 

cerevisiae,” Nature, vol. 440, no. 7084, pp. 637–643, 2006.  
[37] H.W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. 

Münsterkötter, S. Rudd, and B. Weil, “MIPS: A database for genomes and protein sequences,” 

Nucleic Acids Res, vol. 30, pp. 31-34, 2002.  

[38] S. Brohee, and J.V. Helden, “Evaluation of clustering algorithms for protein-protein interaction 

networks,” BMC bioinformatics, vol. 7, no. 1, pp. 1, 2006.  

[39] H. Jeong, S.P. Mason, A.L. Barabasi, “Lethality and centrality in protein networks,” Nature, vol. 411, 

no. 6833, pp. 41-42, 2001.  

[40] W.H. Chen, P. Minguez, M.J. Lercher, and P. Bork, “OGEE: an online gene essentiality database,” 

Nucleic acids research, vol. 40, no. D1, pp. D901-D906, 2012.  

[41] C. Kilchert, S. Wittmann, and L. Vasiljeva, “The regulation and functions of the nuclear RNA 

exosome complex,” Nature Reviews Molecular Cell Biology, 2016. 

 

AUTHORS 
 
Divya Sardana: Dr. Divya Sardana is a Senior Data Scientist at Teradata Corp., Santa 

Clara, CA, USA. She has a PhD in Computer Science from the University of Cincinnati, 

OH US. Her research targets development of scalable machine learning and graph 

algorithms for the analysis of complex datasets in interdisciplinary domains of data 

science. 

 
Raj Bhatnagar: Dr. Raj Bhatnagar is a Professor at the department of EECS at 

University of Cincinnati, Cincinnati, OH, USA. His research interests encompass 

developing algorithms for data mining and pattern recognition problems in various 

domains including Bioinformatics, Geographic Information Systems, Manufacturing, 

and Business. 

 


