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ABSTRACT 
We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking 
neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs 
implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this 
STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular 
SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls 
under our long-term investigation of STDP and chaos theory. 
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1. INTRODUCTION 
Spiking Neural Networks (SNNs) [1] are gaining much attention in the scientific literature, 
specifically neuromorphic engineering [2], due to their low energy consumption when 
implemented on electronic circuits; compared to artificial neural networks using conventional 
neuron models [2]. For instance, deep classical artificial neural networks, using gate activation 
functions as neurons, consume great amount of power in their training when implemented on 
Field Programmable Gate Arrays (FPGAs) [2]. On the contrary, spiking neurons implemented 
on Very Large Scale Integration (VLSI) chips consume way less energy [2]. The reason behind 
this difference is that spiking neurons are event driven systems [2]. Furthermore, SNNs are 
considered the third generation of neural networks because, as their name imply, they use 
spiking neuron models, where the first generation is based on perceptrons using threshold gates, 
and the second started with Hopfield nets using activation functions [3]. On the other side, 
Hebbian learning is the binding phenomenon that takes place between neurons after continuous 
stimulation they make upon each other [4]. Spike Timing Dependent Plasticity (STDP) 
incorporates exact timing of stimulations as a condition for the binding to occur [5]. In this work 
we will study STDP in the context of SNNs where STDP governs the connections weights 
inside the SNN. The SNN considered here (Fig. 1.a) is composed from spiking neurons that are 
recurrently connected to each other via time-delayed connections. Neurons have no self-
feedback connections. The time delay is fixed and same for all the connections in the network. 
Connections have weights, too. When neurons connect and update their connections’ weights 
via STDP, then they synchronize their activity to a same repetitive spiking pattern (Fig. 1.b). 
The latter is considered the network’s state. In simple terms, this state is a synchronized spiking 
output pattern of all the neurons composing the network. In this paper, we are going to study the 
number of these states for a recurrent SNN composed from chaotic spiking neurons and a 
recurrent SNN composed from regular spiking neurons while both networks are implementing 
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same STDP rule. We will give experimental evidence that a chaotic recurrent SNN has indeed 
more states than a regular recurrent SNN while both are incorporating same STDP rule. But, we 
should emphasize that such claim and the results are exclusive to this specific STDP rule only. 
This research is part from our investigation of STDP and chaos theory, especially chaotic 
spiking neurons, which started in early 2006-2007 [6], spanned many years [7, 8, 9, 10] and 
continues to date. 

The paper is divided as follows: In section 2 (Methods), we sketch the neural network 
architecture and explain the neuron model used. Also, we introduce our synaptic plasticity 
model based on STDP. In section 3 (Results), we provide a comparable study of the number of 
states that can be stabilized in network of chaotic spiking neurons implementing STDP versus 
the number of states that can be stabilized in a network of regular spiking neurons implementing 
the same STDP. Section 4 is a discussion of the results and section 5 concludes the paper. 

2. METHODS 
The neural network architecture that will be used in this paper is composed of n spiking neurons 
that are recurrently connected to one another, hence a recurrent spiking neural network. We use 
the Adaptive Exponential (AdEx) integrate and fire neuron model [11], as the elementary 
component of the network, because it is a neuron model that can simulate regular spiking or 
chaotic spiking by changing its parameters [12]. Each connection, between any two neurons in 
the network, has a fixed time delay and an adjustable weight. The time delays are kept fixed 
because the network will synchronize its spiking activity in a window period equal to the time 
delay. The weights are adjusted using synaptic plasticity, as we will see next. The network 
architecture is illustrated in Figure 1.a. 

	(a)        (b) 

	

	

Figure 1.  a. Neural Network Architecture: n AdEx Neurons (A1, …, An) are recurrently 
connected. Every connection has a varying weight “ω” and a fixed time delay “τ”. Note that “τ” 

is identical for all connections. b. Synchronized spikes Output: When the network stabilizes, 
then all the neurons synchronize their output to a same repetitive spiking pattern of length “τ”. 
In this example, “τ” is equal to 300 and the repetitive pattern is composed from three spikes. 

Time resolution is in ms. Time steps from 10000 to 14500.  
Pattern Blocks: (10000-10299, 10300-10599, 10600-10899…).  

Spikes: (10002, 10074, 10298, 10302, 10374, 10598, 10602, 10674, 10898…).  
This repetitive pattern is considered as the network state. 
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As we can see in Figure 1.a, we have a neural network of n AdEx Neurons (e.g., A1 to An) where 
the subscript “i” is the index of an AdEx Neuron “A”. Each neuron has n-1 connections 
because there are no self-feedback connections. A connection from neuron Aj to neuron Ai has a 
time delay “τi,j” and a weight “ωi,j”.  
 
We rewrite the AdEx Neuron equations [12] in their Euler form:  

𝑉! 𝑡 = 𝑉! 𝑡 − 1 +
𝑑𝑡 −𝑔! 𝑉! 𝑡 − 1 − 𝐸! + 𝑔! ∆! exp

𝑉! 𝑡 − 1 − 𝑉!
∆!

+ 𝐼𝑐 − 𝜓!(𝑡 − 1)

𝐶
	

(1) 

𝜓! 𝑡 = 𝜓! 𝑡 − 1 +  
𝑑𝑡 𝑎 𝑉!(𝑡 − 1) − 𝐸! − 𝜓!(𝑡 − 1)

τ!
	

Where Vi(t) is the neuron’s voltage at time t and Ψi(t) is its adaptation variable. The subscript 
“i” indicates the neuron’s index inside the network as we mentioned earlier. dt is the Euler time 
step which is set to 0.1 ms for good precision. The parameters of the AdEx Neuron for both 
regular and chaotic firing are retrieved from [12] and are shown in Table 1, next.  
 

Table 1.  Configuration of the AdEx Neuron parameters for regular and chaotic firing modes 
[12]. 

Mode \ 
Parameters C gL EL VT ΔT a τw b Vr Ic θ 
Regular  200 10 -70 -50 2 2 30 0 -58 500 0 
Chaotic 100 12 -60 -50 2 -11 130 30 -48 160 0 

 

C is membrane capacitance in pF, gL is leak conductance in nS, EL is leak reversal in mV, VT is 
threshold potential in mV, ΔT is rise slope factor in mV, a is 'sub-threshold' adaptation 
conductance in nS, τw is adaptation time constant in ms, b is spike trigger adaptation current 
increment in pA, Vr is reset potential in mV, Ic is input current in pA and θ is reset threshold in 
mV [12]. 

The neuron initial conditions are: 

Vi(0) = Vr 

ψi(0) =  0 

Ici = LIc + (UIc - LIc) * Ri	

(2) 

Where, 

Ri is a random decimal between 0 and 1. 

LIc is the lower bound of the default input current (Ic). 

UIc is the upper bound of the default input current (Ic). 

We note that LIc and UIc are set according to the firing mode (i.e. regular or chaotic) requested. 
For instance, if we want regular firing, we can set LIc to 400 and UIc to 600, which are in fact 
100 units away from their mean Ic which is 500. As for chaotic firing, we can set LIc to 150 and 
UIc to 170, which are 10 units away from their mean Ic that is 160. Note that in the case of 
chaotic firing, it was observed in [12] that the neuron’s chaotic firing is sensitive to the input 
current 160 (e.g. Ic = 160 pA) and values far away from 160 would ruin the chaotic behaviour 
of the neuron.  In fact, we need the neurons of the network to have slight variations in their 
initial conditions (i.e. initial value of the Input current Ic) so their output will be different from 
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one another; which will offer great opportunity to the synaptic plasticity model that depends on 
the firing time of the neurons, to operate properly as we will see next.  
 
When the neuron’s voltage passes its threshold (i.e. Vi > θ), then the neuron fires a spike that is 
represented by γi:  

γ i (t) =
1,Vi (t) >θ

0,Vi (t) ≤θ

⎧

⎨
⎪

⎩
⎪

	 (3) 

The neuron receives time-delayed spikes from other neurons through its incoming connections, 
which are scaled by each connection’s weight ωi,j and summed up as a total input Si(t) which 
would be added to the neuron’s voltage Vi(t).  
 
But, before evaluating Si(t) and adding it to Vi(t), the weights of the connections should be 
updated where the weight change Δωi,j is calculated and added to ωi,j. 
 
So, in order to update the weights of the connections of the network then we implement a 
competitive scenario of STDP that is similar to the approach made by Song et al, in 2000 [13], 
in their work on Competitive Hebbian learning based on STDP [13]. Our implementation of a 
competitive STDP protocol uses nearest neighbour spikes and is described as: 

𝐼𝑓    𝑡 − 𝜏!,! − 𝑡!"# ! ≥  𝑡!"#$ ! − (𝑡 − 𝜏!,!)  &  𝑉! 𝑡 > 𝜃     𝑡ℎ𝑒𝑛     Δ𝑤!,! = Δ𝑤!	
𝐼𝑓    𝑡 − 𝜏!,! − 𝑡!"# ! <  𝑡!"#$ ! − (𝑡 − 𝜏!,!)                              𝑡ℎ𝑒𝑛     Δ𝑤!,! = Δ𝑤!	

(4) 

Where,  
 
tpre(j)   is the time of the spike, of input neuron j, that occurred before t – τi,j. 
tpost(j)  is the time of the spike, of input neuron j, that occurred after t – τi,j. 
Δω–  is the negative decrease of the weight change and equal to: 

Δ𝑤! =  𝐴! ∗ 𝑒
!!!!,!!!!"#$(!)

!!,!  	 (5) 

Δω+  is the positive increase of the weight change, equal to: 

Δ𝑤! =  𝐴! ∗ 𝑒
!
!!!!,!!!!"#(!)

!!,!  	 (6) 

A–, A+ are the lower and upper boundaries, of the negative and positive weight change, 
respectively, which are defined as the following: 

𝐴! = 𝑉! ∗  𝜇!	 (7) 

And, 

𝐴! = 𝜃 − 𝑉! − 𝑤!,! ∗  𝜇!	 (8) 

Where,  
 
µ–, µ+ constants that are experimentally set to 0.01 and 0.1, respectively. We noticed that setting 
µ– to 0.01 then the neuron’s voltage wouldn’t decrease to very low values during start of STDP 
phase. 
  
The reason behind this choice in defining A– and A+ is supported by the fact that these 
parameters should be voltage dependent as suggested in [14]. Furthermore, by setting A– = Vr * 
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µ– then we are sure that this parameter is always negative, which is a must for Long Term 
Depression (LTD) to take place in the STDP protocol. Second, by setting A+ = [(θ – Vr) – ωi,j] * 
µ+, then we are sure that Long Term Potentiation (LTP) will settle down once the weight of a 
connection has reached a maximal value equal to θ – Vr.  
 
Last but not least, the weight of every connection is updated according to the following: 

𝑤!,! 𝑡 = 𝑤!,! 𝑡 − 1 + Δ𝑤!,! 	 (9) 

Afterwards, the Input to neuron i is calculated according to the following: 

𝑆! 𝑡 = 𝑤!,! 𝑡 ∗ 𝛾!(𝑡(!"#,!"#$)(!))
!

!!!,!!!

	 (10) 

Where, 

𝑡(!"#,!"#$)(!) =
𝑡!"# !   𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 Δ𝑤!

𝑡!"#$ !  𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 Δ𝑤!

𝑡 − 𝜏!,!  𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝛥𝑤!
	 (11) 

Δω0  is the case of Δω = 0, which occurs when the neurons had synchronized their neural 
states over a period τ. This means there is no more change in the weights that is necessary.  
 
After calculating the input Si(t) to the neuron, then it is added to the neuron’s voltage Vi(t): 

𝑉! 𝑡 = 𝑉! 𝑡 + 𝑆! 𝑡 	 (12) 

When the neuron’s voltage crosses its threshold θ, it is reset to its reset value Vr and its 
adaptation variable is set to the current value of the latter plus the adaptation reset parameter b 
(spike trigger adaptation current increment): 

𝐼𝑓 𝑉! 𝑡 > 𝜃 𝑡ℎ𝑒𝑛 𝑉! 𝑡 = 𝑉!  𝑎𝑛𝑑 𝜓!(𝑡) = 𝜓!(𝑡) + 𝑏	 (13) 

The weights of all the connections are initially set to 0, so the neurons inside the network run in 
isolation and evolve their dynamics. Then, synaptic plasticity starts to operate by updating the 
connection weights of every neuron. For instance, in the following experiments, the neurons run 
in isolation for 5000 time steps before their connections weights start to get updated.  

3. RESULTS 
We studied the number of different states, depicted by synchronous repetitive firing patterns 
(e.g., Figure 1.b), that can be stabilized in a recurrent SNN (as in Figure 1.a) composed from P 
spiking neurons, such that P is an arbitrary positive integer that dictates the network’s 
cardinality (i.e., the size of the network), where STDP is managing the connections weights 
between the neurons, as we explained in the previous section. We compared the number of 
stabilized states of a P size recurrent SNN composed from P chaotic spiking neurons and 
another P size recurrent SNN composed from P regular spiking neurons according to the 
settings of Table 1. For simplicity, the recurrent SNN composed from chaotic spiking neurons is 
referred as chaotic SNN and the recurrent SNN composed from regular spiking neurons is 
referred as regular SNN. The number of neurons that constitute both the network of chaotic 
spiking neurons and the network of regular spiking neurons will be between 10 and 50: 

𝑃 ∈ {10, 20, 30, 40, 50}	 (14) 
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We aim to find out that the capacity of the chaotic SNN is larger than the capacity of a regular 
SNN (i.e., The number of stabilized states inside recurrent SNN of chaotic spiking neurons is 
superior than the number of stabilized states inside recurrent SNN of regular spiking neurons). 
To do this, we run twice, five sets of one hundred random experiments each (Random in the 
sense that an experiment starts with random initial conditions as mentioned in the previous 
section – Equation 2). The total will be 2 * 5 * 100 = 1000 experiments. Each experiment is 
composed of a recurrent SNN of P Neurons while increasing P by 10 for each set, starting from 
P = 10 to P = 50. The first five sets of experiments will be executed on recurrent SNN 
composed of chaotic spiking neurons, while the second five sets of experiments will be 
executed on recurrent SNN composed of regular spiking neurons. The results of the two ‘five 
sets’ of experiments are illustrated in a bar graph in Figure 4.c. Also, we show neurons activity 
(e.g., voltage outputs), evolution of connections weights and STDP windows for two runs of 
both networks (Figures 2.a, 2.b, 3.a, 3.b, 4.a and 4.b, respectively). 

(a) 

	

(b) 

	
Figure 2.  (a) and (b) show Voltage activity for a chaotic and regular Spiking Neural Network 

(SNN), respectively, composed of 10 neurons each. Neurons start synchronizing after time step 
5000. Time resolution is 1ms. 

(a) 

	

(b) 

	
Figure 3.  (a) and (b) show average of all connections weights inside a chaotic and regular 
Spiking Neural Network (SNN), respectively. Each network is composed from 10 neurons. 
Neurons start synchronizing after time step 5000. Weights stabilization is fast and reaches a 

steady value. Time resolution is 1ms. 
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(a) 

	

(b) 

	
(c) 

	
Figure 4.  (a) and (b) show STDP windows for a chaotic and regular Spiking Neural Network 
(SNN), respectively. (c) is a comparison of the number of different stabilized neural states for 

both types of networks through 1000 total experiments (each network runs a set of 100 
experiments with increasing number of neurons for each set). 

By analysing the graph of Figure 4.c, we observe that the number of different stabilized states of 
recurrent SNN composed from chaotic spiking neurons is always superior to the number of 
different stabilized states of recurrent SNN composed from regular spiking neurons for any 
number of neurons composing the network.  

4. DISCUSSION 
We should note that the number of states that can be reached within this type of network (Figure 
1.a) is theoretically infinite because it increases by increasing the time delay of the neural 
network connections. In our experiments, the time delay was fixed (τi,j is equal to 300). We 
notice (Figure 4.c) that by increasing the number of neurons then the number of states, in both 
types (e.g., chaotic and regular) of networks, decreases. This is true, because for a fixed time 
delay, increasing the number of neurons, that compose the network, causes more saturation of 
spikes that eventually reduces the number of unique patterns. Also, we noticed very high 
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excitation in both networks; this is because Δω+ (Equation 4) is always active. Thus, the 
synchronized output of the network can be assigned to a “Not” logic gate, this way the spikes 
pattern generated by the network is reversed, as shown in Figure 1.b.  

5. CONCLUSIONS 
Experimental simulations were conducted in the aim of comparing the number of different 
stabilized states (i.e., synchronized firing activity of repetitive spiking patterns) through a 
network of chaotic spiking neurons vs. a network of regular spiking neurons whilst the 
connections between the neurons inside both networks followed same competitive nearest 
neighbour STDP rule that we created. We tested networks composed of 10, 20, 30, 40 and 50 
neurons. The results of the experiments confirmed that this STDP rule favours chaotic spiking 
over regular spiking of neurons because the numbers of different stabilized states within 
networks of chaotic spiking neurons were shown to be way larger than the numbers of different 
stabilized states within the networks of regular spiking neurons. We have to note that this 
behaviour is not general but restricted to this STDP rule only. 

REFERENCES 
[1] Maass, Wolfgang, and Christopher M. Bishop, eds. Pulsed neural networks. MIT press, 2001. 

[2] Greengard, Samuel. "Neuromorphic chips take shape." Communications of the ACM 63, no. 8 
(2020): 9-11. 

[3] Maass, Wolfgang. "Networks of spiking neurons: the third generation of neural network 
models." Neural networks 10, no. 9 (1997): 1659-1671. 

[4] Hebb, Donald Olding. The organization of behavior: A neuropsychological theory. Psychology 
Press, 2005. 

[5] Markram, Henry, Wulfram Gerstner, and Per Jesper Sjöström. "Spike-timing-dependent 
plasticity: a comprehensive overview." Frontiers in synaptic neuroscience 4 (2012): 2. 

[6] Aoun, Mario Antoine. Temporal difference method with hebbian plasticity rule as a learning 
algorithm in networks of chaotic spiking neurons. [Master’s Thesis], Notre Dame University, 
Louaize, Lebanon, 2007. 

[7] Aoun, Mario Antoine. "Stdp within nds neurons." In International Symposium on Neural 
Networks, pp. 33-43. Springer, Berlin, Heidelberg, 2010. 

[8] Aoun, Mario Antoine, and Mounir Boukadoum. "Learning algorithm and neurocomputing 
architecture for NDS Neurons." In 2014 IEEE 13th International Conference on Cognitive 
Informatics and Cognitive Computing, pp. 126-132. IEEE, 2014. 

[9] Aoun, Mario Antoine, and Mounir Boukadoum. "Chaotic liquid state machine." International 
Journal of Cognitive Informatics and Natural Intelligence (IJCINI) 9, no. 4 (2015): 1-20. 

[10] Aoun, Mario Antoine. Learning and memory within chaotic neurons. [Phd Thesis], University of 
Quebec in Montreal, Canada, 2019. 

[11] Brette, Romain, and Wulfram Gerstner. "Adaptive exponential integrate-and-fire model as an 
effective description of neuronal activity." Journal of neurophysiology 94, no. 5 (2005): 3637-
3642. 

[12] Naud, Richard, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner. "Firing patterns in the 
adaptive exponential integrate-and-fire model." Biological cybernetics 99, no. 4 (2008): 335-347. 

[13] Song, Sen, Kenneth D. Miller, and Larry F. Abbott. "Competitive Hebbian learning through 
spike-timing-dependent synaptic plasticity." Nature neuroscience 3, no. 9 (2000): 919-926. 

[14] Clopath, Claudia, and Wulfram Gerstner. "Voltage and spike timing interact in STDP–a unified 
model." Frontiers in synaptic neuroscience 2 (2010): 25. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.12, No.3, May 2021 

 33 

 

AUTHOR  

Mario Antoine Aoun has Phd. in Cognitive Informatics from 
UQAM. His research interests are:  
Theoretical Computer Science, Cognitive Computing, Cognitive 
Informatics, Machine Learning, Mathematical Modelling, 
Evolutionary Algorithms, Genetic Algorithms, Spiking Neurons, 
Chaotic Spiking Neural Networks, Deep Learning, Deep Neural 
Network, Recurrent Neural Network, Cognitive Neurodynamics,  
Neuro-economics, Synaptic Plasticity, Spike Timing Dependent  
Plasticity, Nonlinear Dynamics, Chaotic Neurodynamics,  
Computational Neuroscience, Neural Computing Architectures,  
Synchronization, Quantum Computing, Relativistic Computing,  
Reservoir Computing, Chaos Theory, Chaos Control and Hyper- 
computation. His email address is: mario@live.ca 
 

 


