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ABSTRACT 
 

This paper presents a batch classifier that splits a dataset into tree branches depending on the category 

type. It has been improved from the earlier version and fixed a mistake in the earlier paper. Two important 

changes have been made. The first is to represent each category with a separate classifier. Each classifier 

then classifies its own subset of data rows, using batch input values to create the centroid and also 

represent the category itself. If the classifier contains data from more than one category however, it needs 

to create new classifiers for the incorrect data. The second change therefore is to allow the classifier to 

branch to new layers when there is a split in the data, and create new classifiers there for the data rows 

that are incorrectly classified. Each layer can therefore branch like a tree - not for distinguishing features, 

but for distinguishing categories. The paper then suggests a further innovation, which is to represent some 

data columns with fixed value ranges, or bands. When considering features, it is shown that some of the 

data can be classified directly through fixed value ranges, while the rest must be classified using a 

classifier technique and the idea allows the paper to discuss a biological analogy with neurons and neuron 

links. Tests show that the method can successfully classify a diverse set of benchmark datasets to better 

than the state-of-the-art. 
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1. INTRODUCTION 
 

This paper presents a batch classifier that splits a dataset into tree branches depending on the 

category type. It has been improved from the earlier version and fixed a mistake in the earlier 

paper. Two important changes have been made. The first is to represent each category with a 

separate classifier. Each classifier then classifies its own subset of data rows, using batch input 

values to create the centroid and also represent the category itself. This means that for each 

category, a data column will try to map to a single distinct value and it is the summed difference 

between those column mappings that determines the output error. If the classifier contains data 

from more than one category however, it needs to create new classifiers for the incorrect data. 

The second change therefore is to allow the classifier to branch to new layers when there is a split 

in the data, and create new classifiers there for the data rows that are incorrectly classified. Each 

layer can therefore branch like a tree - not for distinguishing features, but for distinguishing 

categories. This is different to traditional tree solutions that typically branch on some feature 

value and so the new classifier is being called Category Trees.  

 

The paper then suggests a further innovation, which is to represent some data columns with fixed 

value ranges, or bands. When considering features, it is shown that some of the data can be 

classified directly through fixed value ranges, while the rest must be classified using a classifier 

technique. An earlier version added branches [17] to an oscillating error technique [18]. That 

technique allowed the error update to be independent for each data column, meaning that it could 
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oscillate around the desired output, independent of the other columns. Because that classifier 

worked off averaged values, it may be the case that some data can be classified directly, without 

weight adjustments. The averaged value is simply a single value for a whole range of inputs and 

so maybe a value band can represent that range as a fixed set of boundaries. This is still a 

secondary consideration, but it may also be possible to construct these fixed boundaries for single 

dimensions, to represent individual features. This determination is pre-classifier if you like and 

would remove categories that can therefore be recognised from distinct features. After categories 

and related data rows are removed using fixed data bands, the rest of the data can be used to train 

the classifier. For example, when using fixed bands for classification, if the input data row does 

not fall into one of the bands, it can be run through the classifier instead. Tests show that the 

method can successfully classify a diverse set of benchmark datasets to better than the state-of-

the-art. 

 

The rest of this paper is organised as follows: section 2 introduces some related work. Section 3 

reviews the earlier work on the classifier, while sections 4 and 5 describe the two improvements. 

Section 6 describes the possibility of using fixed bands and section 7 re-runs the test set to verify 

the classifier’s accuracy. Finally, section 8 gives a discussion and some conclusions to the work. 

 

2. RELATED WORK 
 

This research is based specifically on two earlier papers that introduced an oscillating error 

technique [17][18]. The idea of using batch values came from the idea of using the input shape 

over distinct point values [20]. The input would produce a best fit wave shape between its points, 

but then it was discovered that the order of the rows could be changed, thereby changing the 

shape and the averaged shape value would remain the same. It was also decided that the averaged 

wave shape and the average data point values were essentially the same and so batch data point 

values were preferred instead. The earlier classifier was used to classify categorical data, or data 

rows grouped into categories. It used averaged values for each category and an oscillating error 

technique that decided whether to add or subtract the error from each cell value, to minimise the 

total error. The first paper [18] actually had a mistake in its evaluation, that was corrected by the 

branching mechanism suggested in [17]. The paper [17] is now replaced by this one, which has 

extended the work further. The idea of batch processing or averaged values is not new and has 

been used in some of the earlier neural network models, for example [15][23]. The research of 

this paper also considers classifying each data column, or dimension, separately and this has also 

been looked at previously, usually in relation to nearest neighbour or kNN classifiers [2], for 

example. The oscillating error technique was a simple rule that introduced the idea of using 

cellular automata [8][22] as the neural unit, where the small add or subtract decision gave the 

classifier an added dimension of flexibility. The paper [8] presents a proof that dynamic cellular 

automata are flexible enough to simulate arbitrary computations, for example, which means 

algorithms in general. They describe that this has been put in the context of state machines, where 

classical algorithms were axiomatized and generalised by Gurevich [22].  

 

Deep Learning Networks [10][28], Decision [21] and Regression Trees have made tremendous 

advances in a lot of areas, but they are still not universal classifiers. Some recent papers 

[10][28][34] show that they can still have problems with these benchmark datasets. The paper 

[34] compares classifiers with linear or convex ‘hulls’ and concludes that the linear hull is prone 

to overfitting and does not work as well. That is interesting, because while this classifier appears 

to be linear, it performs well with non-linear data, but has that dimension of flexibility. They note 

that the convex hull is more constrained and each classifier in this new model is definitely 

bounded. These established classifiers also tend to require a lot more training and configuring; 

but the classifier of this paper, probably because of its simplicity, also has clear drawbacks. There 

is clearly a problem with the design that prevents it being a universal classifier. The new 
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classifier may also be of interest with respect to biological models of the human brain, which will 

be elaborated on later, but papers that note the importance of neuron links in the brain for 

communication processes include [19][36]. Some of the health datasets have been tested, where a 

summary of the current state there can be found in [26]. 

 

3. OSCILLATING ERROR CLASSIFIER REVIEW 
 

This section summarises the earlier oscillating error classifier, used to classify data into 

categories. Essentially, the classifier works off averaged numerical values and does not 

incrementally update values for each data row. It would create a classifier for each output 

category and group all of the input data that belonged to the category together. The classifier for 

that category would then learn to adjust its input, which would be the averaged data row value for 

the whole data group, to the desired output, which could be set to a value like 1 or 0.5, because 

each category was separate. The idea would be simply to have a weight value, to adjust the input 

with, to move it to the desired output value. The premise for this is the fact that there can only be 

one weight value for all of the inputs and so learning the averaged value looks reasonable. The 

oscillating error method added or subtracted the difference between the actual and the desired 

value from each data column separately. So, for example, the difference could be subtracted from 

the value in column 1, but added to the value in column 2 and this was a change from a neural 

network neuron to an automaton. This was repeated until a minimum error or a maximum 

number of iterations was achieved. The data was also normalised, to be in the range 0 to 1, so that 

each adjustment was equal.  

 

This oscillating error process was still not sufficiently accurate however, where lots of data rows 

would be associated with the wrong classifier. Each classifier would therefore branch to a new 

level when it contained data rows from more than 1 category, see section 5. Any new level would 

create a new set of classifiers, one for each associated category and repeat the process in exactly 

the same way as for the parent level. This new level however would have a less complicated 

problem to solve, because it would only have to solve a subset of the whole dataset. It has since 

been discovered that the oscillating error technique is not required for a model that uses a 

separate classifier for each category and a single adjustment from the averaged value to the 

desired output value can be used instead. This is the basis for section 4, where the adjustment can 

still be an addition or subtraction however, and made independently for each column. 

 

When using the classifier then: if it had branches, they were always passed the input data and 

asked to return their evaluation. If there was only 1 classifier with no branches, it would return its 

own result, which would be the difference between the weight-adjusted input value and the 

category value. Therefore, each base classifier would return some category evaluation and error 

result and the classifier with the smallest error would be selected as the best match. Logically this 

could lead to a classifier learning a single data row and that might be expected to be 100% 

accurate. This does not appear to be the case and overfitting of the data is an obvious problem 

with it. Overlapping regions in the data values probably lead to some confusion as well.  

 

4. MAP TO THE CENTROID VALUE 
 

The first improvement to the classifier is to map directly to the centroid value, to represent the 

category. Each category is assigned a separate classifier, where the desired category output value 

can be anything, such as 1 or 0.5, or in some cases a graded value through all of the categories. 

The value is not as important as the weight adjustment to it and so the classifier can in fact be 

simplified from that model by using the category centroid as the desired category output and 

subsequent weight adjustment. This also helps to add non-linearity, through a curved output line, 
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for example. Each new input data row can be compared to the centroid directly and the total 

absolute difference in the row values taken to be the error. The following example explains how 

it works: Consider a dataset with 2 categories A and B. These datasets have the following rows, 

shown in Figure 1, assigned to them. A new data row has the values ‘4, 3, 2’ and comparing to 

the centroids gives the error values, also shown in Figure 1. Therefore, the new data row belongs 

to category A. 

 

 

Category A 

Data row: 1, 2, 1 

Data row: 1, 2, 3 

Data row: 3, 2, 1 

Centroid row: 1.66, 2, 1.66 

Difference = 2.34+1+0.34 = 3.68. 

Category B 

Data row: 5, 6, 5 

Data row: 5, 6, 7 

Data row: 7, 6, 5 

Centroid row: 5.66, 6, 5.66 

Difference = 1.66+3+3.66 = 8.32 
 

 

Figure 1. Data rows, centroid and error difference with data row ‘4, 3, 2’, for 2 categories. 

 

5. EXTENDING THE CLASSIFIER WITH BRANCHING 
 

This section is repeated from the paper [17] and describes the second improvement. The dataset 

is initially split into groups, where there are x classifiers in the first level, one for each category. 

Each classifier learns the centroid value for its data subset. The whole dataset is then passed 

through all of the classifiers again and each produces an error for each data row, as described in 

Figure 1. After this training phase, there is a list of data rows for each classifier that it has 

produced the closest match to. Most of the rows would be for the correct category, but some 

would be matched more closely with other classifiers. The branching extension therefore adds a 

new level to the classifier, to refine it with respect to the incorrectly classified data rows. The 

schematic of Figure 2 shows the classification process, where a new layer has been added to 

classifier A, so that it can correctly re-classify the category A and B sub-groups that belong to it. 

The second level uses a subset of the whole dataset that is specifically only the data rows 

assigned to the classifier at the parent level. For the classifier’s own category, this is the same as 

for the first level, but then other categories are represented by new classifiers in the new level.  

 

5.1. Mathematical Proof 
 

There is some mathematical justification for why centroid values can be used for the output 

category values. Because averaged values are used, the problem is to map as closely as possible 

to these and that is a bit like finding a best fit line. In this case, the best fit line is known and 

would be the centroid values. Therefore, it makes sense to try to map to this and make it the 

desired output value as well. The classifier then needs to converge when data rows are incorrectly 

classified. When training, if the classifier moves to its next layer, it only needs to consider the 

dataset rows related with its current layer. So, when these are adjusted for incorrect categories, 

the consideration is for that subset only, which is an easier problem to solve. This is a fairly basic 

argument for why the classifier should work. 
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Figure 2. Schematic of the classifier in action. Phase 1 realises that classifier A also classifies part of 

category B better. Phase 2 then adds a new layer to classifier A, to re-classify this subset only. 

 

6. EXTENDING THE CLASSIFIER WITH FIXED BANDS  
 

If the classifier deals with averaged values, then it does not try to learn too much outside of that 

and so one question might be if ranges of input values can be used instead. It would certainly be 

the case if the data was linearly separable, because the separating line would allow a clear 

distinction to be determined, but there is still a problem when data from different categories 

overlap. If trying to separate the input data then, multi-dimensional hypercubes would be the first 

choice, but this looks like a very difficult problem to solve. Therefore, another option might be to 

try to separate on each dimension, or feature only and the test results show that this can be quite 

successful. The process is as follows: The data can be read, one column at a time, as it is 

organised in the data file. The category that each row belongs to is also retrieved and if there is a 

change in category, the previous set of values can be placed into a band. The only problem is 

when categories overlap in a single dimension, which would mean that they have the same value. 

The band then continues to the next value and category change. For example, consider the 

following values for a column and related categories, shown in Figure 3. 

 

Column Value Category 

0.1 A 

0.2 A 

0.3 A 

0.4 B 

0.5 B 

0.5 C 

0.6 C 
 

 

Figure 3. Example of Data column values with related categories, placed into bands: Band 1 - 0.1 to 0.3 

and Band2 - 0.4 to 0.6. 
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The program would therefore firstly sort the data column values into order. It would then read 

down the column until there is a change in the category. In this case, the first change is at the 

value 0.4. The value range 0.1 to 0.3 all belongs to a single category and so a band can be made 

from that. Then process continues and the next break would be at the value 0.5, but there is an 

overlap with this value as both categories B and C use it. Therefore, the process must continue to 

the end value, when both of those categories are placed in a single value range of 0.4 to 0.6. The 

process is repeated for each column, to produce a set of bands for the column. It is also important 

to link the bands from one dimension to the next depending on the exact values in each data row. 

As an example, if there are 3 columns in a dataset and each column has 5 bands; then if a data 

row relates to bands 1, 2 and 4, these bands will have links added between them. Then the band 1 

relating to column or dimension 1 can only move to band 2 in the next dimension, and so on.  

 

Figure 4 shows the bands and links created for the Iris Plants dataset [11]. When presented with a 

new data row to evaluate, the procedure traces through the band links, to check if any represent a 

single category only. If that is the case, then the fixed band ranges can be used to classify the 

input data directly. Because of the overlap however, there are lots of cases where a band 

represents more than 1 category. It would be interesting to train the classifiers for those cases 

only, but for a first test, the classifier system with branching was also trained and used if the 

bands did not return a result. The bands can help with this a bit however, because if they can 

classify any data rows directly, those rows do not need to be considered by the classifiers and so 

this was also checked for and those data rows removed from the training dataset. The bands may 

therefore be able to make a contribution to the classification process. For example, Figure 4 

shows bands, where category 1 is linearly separable and can be identified completely from using 

the band ranges. Categories 2 and 3 would need a classifier to be separated. Also, for category 1, 

the classification is clear from column 3 and so column 4 is probably not required. In effect, 

column 3 provides a unique feature for category 1. 

 

 
 

 

Figure 4. Bands created for the Iris Plants dataset [11]. 

 

7. TEST RESULTS 
 

This paper repeats the set of tests carried out in the earlier paper [18], to verify the classifier 

accuracy and also includes some new datasets. A test program has been written in the C# .Net 

language. It can read a file of data, normalise it, generate the classifier from it and measure how 
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many categories it subsequently evaluates correctly. Two types of result were measured. The first 

was an average error for each row in the dataset, after the classifier was trained. This was 

calculated as the average difference between the input vector and the output centroid vector. This 

is only a minor result and the second more important measurement was how many categories 

were correctly classified. For these tests, the error ‘margin’ used in the original tests was not 

required, where the errors of each output classifier could be compared directly and the smallest 

one selected.  

 

7.1. Benchmark Datasets with Train Versions Only 
 

The classifier was first tested on several datasets from the UCI Machine Learning Repository 

[39]. These included the Wine Recognition [12], Iris Plants [11] and the Zoo [41] databases. 

Wine Recognition and Iris Plants have 3 categories, while the Zoo database has 7. These do not 

have a separate training dataset and are benchmark tests for classifiers. In fact, the classifier trains 

in a single step and so it does not require a stopping criterion, but it could be prone to over-

training if layers are continually added. For the Wine dataset, the UCI [39] web page states that 

the classes are separable, but only RDA [14] has achieved 100% correct classification. Other 

datasets included the Abalone shellfish dataset [1], the Hayes-Roth concept learning dataset [24] 

and the BUPA Liver dataset [32]. Then the Cleveland Heart Disease [9] and the Breast Cancer 

[25] datasets were also tested. While the Heart Disease dataset was originally tested for presence 

(cats 1-4) or absence (cat 0), this test matched with the output category exactly, resulting in 5 

output categories.  

 

Another web site [5] lists other datasets, where tested here was the Sonar [16][40] and Wheat 

Seeds [6] datasets, with previous benchmark results of 100% and 92% respectively. The Car 

[3][35] and Wine Quality [7] datasets were also tested. As shown in Table 1, the new classifier 

produces a remarkable result of 100% accuracy over all of these datasets. The Wine dataset also 

produced a 100% accuracy over a 45-row test set and a 133-row train set, for example. The 

column ‘Other Best %’ lists a result found by other researchers, but may be slightly out of date 

due to the recent advances. The final column indicates if feature bands could be used and if they 

were better. For these tests, using bands was not particularly useful and improved the result in 

only the Hayes-Roth case.  

 
Table 1. Classifier Test results. Average output error and number of correct classifications. All datasets 

points normalised to be in the range 0 to 1. 
 

Dataset Av Error Number Correct % Correct Other Best % Use Bands 

Wine 0.1 178 from 178 100 100 Either 

Iris 0.07 150 from 150 100 97 Either 

Zoo 0.1 101 from 101 100 94.5 Either 

Abalone 0.01 4177 from 4177 100 73 Either 

Hayes-Roth 0 132 from 132 100 50 Yes 

Liver 0.08 345 from 345 100 74 Either 

Cleveland 0.15 303 from 303 100 77 Either 

Breast 0.08 569 from 569 100 98.5 Either 

Sonar 0.15 208 from 208 100 100 Either 

Wheat 0.09 210 from 210 100 92 Either 

Car 0.28 1728 from 1728 100 97 Either 

Wine Quality 0.06 1599 from 1599 100 89 Either 
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7.2. Separate Train and Test Datasets 
 

There is an important question about generalisation properties when averaged values and bands 

are used, and the fact that batch data rows can be reduced to a size of 1. A slightly better test 

would therefore be to have different train and test datasets and this section gives the results for 

those tests, shown in Table 2. The training time would be instantaneous for something like the 

Iris Plants dataset, but for the Letter Recognition dataset in this section, it took much longer. But 

the system is very low on resource usage and the process is completely deterministic, meaning 

that it should give exactly the same result each time. There is no fine tuning either.  

 
Table 2. Classifier Test results. The same criteria as for Table 1,  

but a separate test dataset to the train dataset. 

 

Dataset Av Error Number Correct % Correct Other Best % Use Bands 

UM 0.17 144 from 145 99.9 98 No 

Bank 0.15 100 from 100 100 61 No 

SPECT 0.14 187 from 187 100 84 No 

Letters 0.07 3623 from 4000 90 82 No 

Monks-1 0.35 432 from 432 100 100 Either 

Solar 0.05 1017 from 1066 95 84 Yes 

Diabetes 0.12 368 from 368 100 77 No 

Ionosphere 0.15 150 from 150 100 96 Either 

 

This other set of test results, using separate train and test datasets, was as follows: The first set of 

datasets were User Modelling [27], Bank Notes [33], SPECT images heart classification [30], 

Letter recognition [13], the first Monks dataset [38] and Solar flares [4][31]. Then two other 

datasets were artificially split into train and test sets. The Pima Indians Diabetes dataset [29] was 

split into a train set of 400 rows and a test set of 368 rows. The Ionosphere dataset [37] was 

divided into a train set of 201 rows and a test set of 150 rows. Both of these performed equally 

well on the whole dataset. It can be seen that for these tests the classifiers preferred not to use 

fixed bands and so the generalising properties of the bands is less than for the classifier itself. 

 

7.3. Test Conclusions 
 

The new version that includes bands is certainly worth considering, even if the earlier version can 

produce better results in most cases. Both versions are very easy to train and use. The size of the 

whole structure is quite large, but it is also very simple and the same each time. For example, for 

the Abalone dataset, 2700 classifiers were created and the Letters dataset produced 12600 

classifiers, where most of that would be branching to next levels. In real time, it might then have 

to test the input across that number of classifiers as well, which is quite a lot for a relatively small 

dataset. While using bands should reduce the number of data rows that a classifier needs to learn, 

it typically resulted in even more classifiers, which is a surprise and so there may be a coherence 

factor as the data gets split. They were also shown not to be as useful on previously unseen data 

and so their generalisation properties are not as good. However, for a couple of datasets, they 

provided better results. While each classifier solves only a small part of the larger problem, it is 

not the case that each classifier has been given a few rows of data to classify. The system has 

generated the classifiers and row sets for itself. It should also be possible to update the system 

dynamically.  
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7.3.1. Dataset Normalisation 

 

The results in Table 1 are very impressive, but maybe not the whole story. The Wine Quality 

dataset [7] illustrates another point. For one test, it was divided into a train set of 1100 data rows 

and a separate test set of 499 rows. Normalising the data was then done in one of two ways. The 

first way would be to normalise over each dataset separately. This would potentially create 

different minimum and maximum values for each dataset. The other way would be to normalise 

over both datasets together and use the same minimum and maximum value to normalise either 

with. This could potentially change the result of the classification for a previously unseen dataset. 

In the case of the wine quality data, if the train and test sets were normalised separately, the test 

set would be recognised at only 86.5% accuracy (431 correct from 499). If the datasets were 

normalised together, then the test set was recognised at 90% accuracy (451 correct from 499), 

which is on a par with the other selected best value. This is therefore another factor to consider 

and could lead to better results if the correct option is chosen. 

 

8. CONCLUSIONS 
 

This paper has extended the work reported in [17][18], with two improvements. These are to use 

the centroid as the matching criterion for the output category and to branch the classifier when 

some data rows are incorrectly classified. As the structure is now a tree, the classifier can be 

called Category Trees. The idea of fixed bands is also introduced, where these bands can be used 

to classify some input data directly, simply by using value ranges. The bands and the classifiers 

are currently trained separately and are not linked-up, but the bands can remove some data rows 

for the training of the classifiers. The test results show that it can out-perform a lot of other 

classifiers and is probably easier to use. The exact nature of the classifier is now a lot clearer. It 

simply maps to the averaged values through a linear adjustment, but non-linearities can benefit 

from the distributed and unrelated nature of the weight-adjustment values. These non-linearities 

however, can be built-up systematically and holistically, which explains why it can classify 

something like the Abalone shellfish dataset [1] better. It is not helped by other methods, for 

overfitting for example, but the results are such that it would take something unusual to improve 

it further. 

 

8.1. Biological Discussion 
 

Comparing the classifier with something like PCA, feature selection and biological systems can 

lead to some logical conclusions. If a data object has a unique feature (data column) then a data 

band can use that to classify it directly. Maybe in effect, it could be passed down a unique 

channel relating to that band. If the data object does not have a unique feature, then the current 

system takes all of the features together and compares that with an averaged value of the features 

present in each category. The data object is then allocated the category that it is a closest match 

to. The comparison with neurons and links between them is clear. There is biological evidence 

that the links between neurons play an important role in the actual signal interpretation and 

understanding in the human brain [36]. The bands would therefore be an analogy to the neuron 

links. If the signal fits inside of the band boundaries, it can be classified as whatever the band 

represents without a neuron interpreting it further. If there is any discrepancy, then a classifier is 

required to sort that out and so this is analogous to a neuron being created to process a more 

mixed signal. If the neuron behaves like a filter, then the process might be to convert the mixed 

signal back into more singular parts again.  
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