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ABSTRACT 
 
Given the impact of Machine Learning (ML) on individuals and the society, understanding how harm might 

be occur throughout the ML life cycle becomes critical more than ever. By offering a framework to 

determine distinct potential sources of downstream harm in ML pipeline, the paper demonstrates the 

importance of choices throughout distinct phases of data collection, development, and deployment that 

extend far beyond just model training. Relevant mitigation techniques are also suggested for being used 

instead of merely relying on generic notions of what counts as fairness.  
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1. INTRODUCTION 
 

Artificial Intelligence (AI) refers to the art of creating machines that are able to think and act like 
human-beings; or think and act reasonably.  Every new technology brings with it questions of 

ethics and unintended consequences. Looking closely, we can see technologies like AI reflect 

humanity’s imperfections back to us. Technologies like AI can enhance, rather than reduce, the 

human experience if humanity can be added back into the digital world.  This paper provides a 
framework for understanding different sources of harm throughout the ML life cycle in order to 

offer techniques for mitigations based on an understanding of the data generation and 

development processes rather than relying on generic assumptions of what being fair means.  
 

2. EXISTING WORK 
 

An ML algorithm aims to find patterns in a (usually massive) dataset, and to apply that 

knowledge to make a prediction about new data points (e.g: photos, job applicant profiles, 
medical records etc.) (Cusumano et al., 2019; Parker, van Alstyne, & Choudary, 2016). As a 

result, problems can arise during the data collection, model development, and deployment 

processes that can lead to different harmful downstream consequences.  
 

This paper refers to the concept of “harm” or “negative consequences” caused by ML systems. 

ML (Machine Learning) can be defined as the overall process inferring in a statistical way from 
existing data in order to generalize to new, unseen data.  

 

Deep reinforcement learning—where machines learn by testing the consequences of their 

actions—combines deep neural networks with reinforcement learning, which together can be 
trained to achieve goals over many steps. Most machine learning algorithms are good at 

perceptive tasks such as recognizing a voice or a face. Yet, deep reinforcement learning can learn 
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tactical sequences of actions, things like winning a board game or delivering a package. In the 
real world, human-beings are able to very quickly parse complex scenes where simultaneously 

many aspects of common sense related to physics, psychology, language and more are at play.  

 

Basically, the machine learning process can be divided into the “training phase” and “test phase”: 
 

- During the training phase, the ML team gathers data, selects an ML architecture, and 

trains a model. In data poisoning attacks, the attacker inserts manipulated data into the 

training dataset. During training, the model tunes its parameters on the poisoned data and 
becomes sensitive to the adversarial perturbations they contain. A poisoned model will 

have erratic behavior at inference time. Backdoor attacks are a special type of data 

poisoning, in which the adversary implants visual patterns in the training data. After 
training, the attacker uses those patterns during inference time to trigger specific behavior 

in the target ML model. 

 

- In the test phase, the trained model is evaluated on examples it hasn’t seen before. Test 

phase or “inference time” attacks are the types of attacks that target the model after 
training. An attacker creates an adversarial example by starting with a normal input (e.g., 

an image) and gradually adding noise to it to skew the target model’s output toward the 

desired outcome (e.g., a specific output class or general loss of confidence). Another 
class of inference-time attacks tries to extract sensitive information from the target 

model. If the training data included sensitive information such as credit card numbers or 

passwords, these types of attacks can be very damaging. Also Having direct access to the 
model will make it easier for the attacker to create adversarial examples. 

 

Models are then built using the training data (not including the held-out validation data).  

 
As seen in Figure 1, a model is defined, and optimized on the training data. Test and benchmark 

data is used to evaluate it, and the final model is then integrated into a real-world context. This 

process is naturally cyclic, and decisions influenced by models affect the state of the world that 
exists the next time data is collected or decisions are applied. The red color indicate where in this 

pipeline different sources of downstream harm might arise. 

 

 

https://bdtechtalks.com/2020/10/07/machine-learning-data-poisoning/
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Fig. 1. Overview of ML data generation and model development 

 

2.1. Model Evaluation  
 
After the final model is chosen, the performance of the model on the test data is reported. The test 

data is not used before this step, to ensure that the model’s performance is a true representation of 

how it performs on unseen data. Aside from the test data, other available datasets — also called 
benchmark datasets — may be used to demonstrate model robustness or to enable comparison to 

other existing methods.  

 

2.2. Model Post-processing  
 

Once a model has been trained, there are various post-processing steps that may needed. For 
example, if the output of a model performing binary classification is a probability, but the desired 

output to display to users is a categorical answer, there remains a choice of what threshold(s) to 

use to round the probability to a hard classification. 

 

2.3. Model Deployment  
 

There are many steps that arise in deploying a model to a real-world setting. For example, the 
model may need to be changed based on requirements for explainability or apparent consistency 

of results, or there may need to be built-in mechanisms to integrate real-time feedback. 

Importantly, there is no guarantee that the population a model sees as input after it is deployed 
(here, we will refer to this as the use population) looks the same as the population in the 

development sample. 

 
The algorithms used to parse and analyze those data become commercial black boxes. Barocas et 

al. [4] provide a useful framework for thinking about how these consequences actually manifest, 
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splitting them into allocative harms (when opportunities or resources are withheld from certain 
people or groups) and representational harms (when certain people or groups are stigmatized or 

stereotyped). For example, algorithms that determine whether someone is offered a loan or a job 

[12, 36] risk inflicting allocative harm. We, human-beings are fallible in making unbiased 

decisions ourselves and algorithms can actually help us detect human-generated (and socially 
reinforced) discrimination (Kleinberg et al., 2020; Mullainathan, 2019). 

 

In order for an ML model to work well, the following simple steps can be implemented: 
 

1. Train a classifier on labeled data. 

2. The bigger classifier model then infers pseudo-labels on a much larger unlabeled dataset. 
3. Then, it trains a larger classifier on the combined labeled and pseudo-labeled data, while 

also adding noise. 

4. (Optional) Going back to step 2, the smaller model may be used a new classifier. 

 
One can view this as a form of self-training, because the model generates pseudo-labels with 

which it retrains itself to improve performance. One underpinning hypothesis is that the noise 

added during training not only helps with the learning, but also makes the model more robust. 
This approach is similar to knowledge distillation, which is a process of transferring knowledge 

from a large model to a smaller model. The goal of distillation is to improve speed in order to 

build a model that is fast to run in production without sacrificing much in quality compared to the 
bigger model.  

 

 
 

Fig. 2. Simple illustrations of the model and knowledge distillation. 

 
Knowledge distillation does not add noise during training (e.g., data augmentation or model 

regularization) and typically involves a smaller inference model. In contrast, one can think of it as 

the process of “knowledge expansion”. One strategy for training production models is to apply 
training twice (Fig. 2):  

 

- first to get a larger inference model T’ and then  
- to derive a smaller model S.  

 

In some cases, the training may need data augmentation, yet, in certain applications, e.g., natural 

language processing, such types of input noise are not readily available. For those applications, 
the training model can be simplified to have no noise. In that case, the above two-stage process 

becomes a simpler method:  

 
- First, the bigger model infers pseudo-labels on the unlabeled dataset from which is a new 

model (T’) that is of equal-or-larger size than the original model being trained.  

- The self-training phase is then followed by knowledge distillation to produce a smaller 
model for production. 

https://onlinelibrary.wiley.com/doi/10.1002/poi3.263#poi3263-bib-0054
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3. SOURCES OF HARM IN ML 
 
This section explores each potential source of harm in-depth. Each subsection will detail where 

and how in the ML pipeline problems might arise, as well as a characteristic example. These 

categories are not mutually exclusive; however, identifying and characterizing each one as 

distinct makes them less confusing and easier to tackle.  
 

3.1. Historical Bias  
 

Historical bias arises even if data is perfectly measured and sampled, if the world as it is or was 

leads to a model that produces harmful outcomes. Such a system, even if it reflects the world 

accurately, can still inflict harm on a population. Considerations of historical bias often involve 
evaluating the representational harm (such as reinforcing a stereotype) to a particular group. 

 

3.2. Representation Bias  
 

Representation bias occurs when the development sample under-represents some part of the 

population, and subsequently fails to generalize well for a subset of the use population. 
Representation bias can arise in several ways:  

 

(1) When defining the target population, if it does not reflect the use population. Data that is 
representative of Boston, for example, may not be representative if used to analyze the 

population of Indianapolis.  

 

(2) When defining the target population, if contains under-represented groups. Say the target 
population for a particular medical dataset is defined to be adults aged 18-40. There are 

minority groups within this population: for example, people who are pregnant may make 

up only 5% of the target population.  
 

(3) When sampling from the target population, if the sampling method is limited or uneven. 

For example, the target population for modeling an infectious disease might be all adults, 
but medical data may be available only for the sample of people who were considered 

serious enough to bring in for further screening. As a result, the development sample will 

represent a skewed subset of the target population. In statistics, this is typically referred 

to as sampling bias. 
 

3.3. Measurement Bias  
 

Measurement bias occurs when choosing, collecting, or computing features and labels to use in a 

prediction problem. For example, “creditworthiness” is an abstract construct that is often 

operationalized with a measureable proxy like a credit score. Proxies become problematic when 
they are poor reflections or the target construct and/or are generated differently across groups, 

which can happen when:  

 
(1) The proxy is an oversimplification of a more complex construct. Consider the prediction 

problem of deciding whether a student will be successful (e.g., in a college admissions 

context). Algorithm designers may resort to a single available label such as “GPA” [28], 

which ignores different indicators of success present in different parts of the population.  
 

(2) The method of measurement varies across groups. For example, consider factory workers 

at several different locations who are monitored to count the number of errors that occur 
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(i.e., observed number of errors is being used as a proxy for work quality). This can also 
lead to a feedback loop wherein the group is subject to further monitoring because of the 

apparent higher rate of mistakes [5, 17].  

 

(3) The accuracy of measurement varies across groups. For example, in medical 
applications, “diagnosed with condition X” is often used as a proxy for “has condition 

X.” However, structural discrimination can lead to systematically higher rates of 

misdiagnosis or underdiagnosis in certain groups [23, 32, 35]. 
 

3.4. Aggregation Bias  
 
A particular dataset might represent people or groups with different backgrounds, cultures or 

norms, and a given variable can mean something quite different across them. Aggregation bias 

can lead to a model that is not optimal for any group, or a model that is fit to the dominant 
population (e.g., if there is also representation bias). 

 

3.5. Learning Bias  
 

Learning bias arises when modelling choices amplify performance disparities across different 

examples in the data [24]. For example, an important modelling choice is the objective function 
that an ML algorithm learns to optimize during training. Typically, these functions encode some 

measure of accuracy on the task (e.g., cross-entropy loss for classification problems or mean 

squared error for regression problems).  
 

3.6. Evaluation Bias  

 
Evaluation bias occurs when the benchmark data used for a particular task does not represent the 

use population. Evaluation bias ultimately arises because of a desire to quantitatively compare 

models against each other. Such generalizations are often not statistically valid [38], and can lead 
to overfitting to a particular benchmark.  

 

3.7. Deployment Bias  
 

Deployment bias arises when there is a mismatch between the problem a model is intended to 

solve and the way in which it is actually used. This often occurs when a system is built and 
evaluated as if it were fully autonomous, while in reality, it operates in a complicated socio-

technical system moderated by institutional structures and human decision-makers (Selbst et al. 

[39] refers to this as the “framing trap”).  
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4. SUGGESTED MODEL AS A MITIGATION TECHNIQUE 
 

 
 

Fig. 3. Recommended Model 

 
Figure 3 provides an overview of the suggested mitigation technique. As shown in Figure 3., the 

data transformation sequence can be abstracted into a general process 𝐴. Let 𝑋 and 𝑌 be the 

underlying feature and label constructs we wish to capture where 𝑠 : 𝑋𝑁 → 𝑋𝑛 is the sampling 

function. 𝑋 ′ and 𝑌 ′ are the measured feature and label proxies that are chosen to build a model, 

where 𝑟 and 𝑡 are the projections from constructs to proxies, i.e., 𝑋 → 𝑋 ′ and 𝑌 → 𝑌 ′.  

 

The function 𝑓ideal : 𝑋 → 𝑌 is the target function—learned using the ideal constructs from the 

target population—but 𝑓actual : 𝑋 ′ → 𝑌 ′ is the actual function that is learned using proxies 

measured from the development sample. Then, the function 𝑘 computes some evaluation 

metric(s) 𝐸 for 𝑓actual on data 𝑋 ′𝑚, 𝑌 ′𝑚 (possibly generated by a different process, e.g., 𝐴eval in 

Figure 2).  
 

Given the learned function 𝑓actual, a new input example 𝑥, and any external, environmental 

information 𝑧, a function ℎ governs the real-world decision 𝑑 that will be made (e.g., a human 

decision-maker taking a model’s prediction and making a final decision). 
 

Historical bias is defined by inherent problems with the distribution of 𝑋 and/or 𝑌 across the 

entire population. Therefore, solutions that try to adjust 𝑠 by collecting more data (that then 

undergoes the same transformation to 𝑋 ′ ) will likely be ineffective for either of these issues. 

However, it may be possible to combat historical bias by designing 𝑠 to systematically over- or 

under-sample 𝑋 and 𝑌, leading to a development sample with a different distribution that does not 

reflect the same undesirable historical biases.  
 

In contrast, representation bias stems either from the target population definition (𝑋𝑁 , 𝑌𝑁 ) or the 

sampling function (𝑠). In this case, methods that adjust 𝑟 or 𝑡 (e.g., choosing different features or 

labels) or 𝑔 (e.g., changing the objective function) may be misguided. Importantly, solutions that 

do address representation bias by adjusting 𝑠 implicitly assume that 𝑟 and 𝑡 are acceptable and 

that therefore, improving 𝑠 will mitigate the harm.  
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Learning bias is an issue with the way 𝑓 is optimized, and mitigations should target the defined 
objective(s) and learning process [24]. In addition, some sources of harm are connected: e.g., 

learning bias can exacerbate performance disparities on under-represented groups, so changing 𝑠 

to more equally represent different groups/examples could also help prevent it.  

 

Deployment bias arises when ℎ introduces unexpected behaviour affecting the final decision 𝑑. 

Dealing with deployment bias is challenging since the function ℎ is usually determined by 

complex real-world institutions or human decision-makers. Mitigating deployment bias might 
involve instituting a system of checks and balances in which users balance their faith in model 

predictions with other information and judgements [26]. This might be facilitated by choosing an 

𝑓 that is human-interpretable, or by developing interfaces that help users understand model 

uncertainty and how predictions should be used.  
 

Finally, there is a risk of exploitation by bad actors. Those who intentionally and willfully post 

misleading or dangerous material will not be deterred by an algorithmic warning. Instead, they 
could use the warnings to help them craft harmful posts that fall just below the threshold of 

algorithmic detection.  

 

5. RECOMMENDATIONS 
 
Here is an overview of some challenges and potential solutions regarding the development and 

deployment of AI model. 

 

5.1. Simple Models are Effective 
 

If an application only requires detecting the difference between a few different objects with high 
certainty, even simple detectors can do the task. Users can benefit greatly once they realize that 

their applications can be solved for a fraction of the computational complexity with much simpler 

models than what’s on the forefront of research.  
 

5.2. Leverage Existing Models 
 
As existing models already exist for almost every application, rather than reinventing the wheel, 

it’s often much easier to start with a network based on one of these architectures. Moreover, 

starting with a known model will reduce the amount of time, data, and effort to train a model, 
since it’s possible to retrain existing models in a process called ‘transfer learning.’   

 

5.3. Integrate Quantization Early 
 

Quantizing a model down from multi-byte precisions to a single-byte can multiply inference 

speed with little to no degradation in accuracy. For example, frameworks such as PyTorch expose 
their own methods for quantizing models, but they’re not always compatible with each other. 

Regardless of the approach taken, the aim should be to quantize from the outset of developing the 

model in a consistent way. 

 

6. CONCLUSION  
 

This paper provides a framework for understanding the sources of downstream harm caused by 

ML systems to facilitate productive communication around potential issues. By framing sources 
of downstream harm through the data generation, model building, evaluation, and deployment 

processes, we encourage application-appropriate solutions rather than relying on broad notions of 
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what is fair. Fairness is not one-size-fits-all; knowledge of an application and engagement with its 
stakeholders should inform the identification of these sources.  

 

In practice, ML is an iterative process with a long and complicated feedback loop. This paper 

highlighted problems that manifest through this loop, from historical context to the process of 
benchmarking models to their final integration into real-world processes. 
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