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ABSTRACT

Deep Learning (DL) algorithms have shown impressive performance in diverse domains. Among

them, audio has attracted many researchers over the last couple of decades due to some interesting

patterns–particularly in classification of audio data. For better performance of audio classification,

feature selection and combination play a key role as they have the potential to make or break the

performance of any DL model. To investigate this role, we conduct an extensive evaluation of the

performance of several cutting-edge DL models (i.e., Convolutional Neural Network, EfficientNet,

MobileNet, Supper Vector Machine and Multi-Perceptron) with various state-of-the-art audio fea-

tures (i.e., Mel Spectrogram, Mel Frequency Cepstral Coefficients, and Zero Crossing Rate) either

independently or as a combination (i.e., through ensembling) on three different datasets (i.e., Free

Spoken Digits Dataset, Audio Urdu Digits Dataset, and Audio Gujarati Digits Dataset). Over-

all, results suggest feature selection depends on both the dataset and the model. However, feature

combinations should be restricted to the only features that already achieve good performances when

used individually (i.e., mostly Mel Spectrogram, Mel Frequency Cepstral Coefficients). Such feature

combination/ensembling enabled us to outperform the previous state-of-the-art results irrespective

of our choice of DL model.
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1. Introduction

Audio data has been around us for a long time and is becoming an integral part of
several cutting-edge computing and multimedia applications in several fields, e.g., security,
healthcare monitoring, and context-aware services. The success of such applications stands
on their capability to effectively store such data [4] and perform audio related tasks such as
classifying or retrieving audio files/signals (e.g., speech, music, environment sound/noise
and other audio signals) based on their sound properties/content [6].

While it has been, and it still is, a challenge for machines to accurately perform such
audio related tasks, we are continuously devising better content-based classification and
retrieval of audio databases to help machines perform these tasks [6, 43]–some of which
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are emerging as commercial products (e.g., findsounds.com and midomi.com) or part of
larger applications (e.g., Google Hum to Search or voice recognition in virtual assistants).

Deep learning has been successful in audio classification [6] with a tremendous amount
of applications ranging from speech recognition [22], to music classification [19], and en-
vironmental sound classification [25, 26]. While earlier works have previously attempted
to train Neural Networks using original audio data (e.g., raw audio signals, and standard
low-level signal parameters) [12], more recent works have since observed that they could
achieve significantly better performances by training the neural networks on extracted
features that are tailored to the audio data at hand [23].

There have been many studies on audio content analysis, using different features and
different methods [13, 23, 37]. Despite the significant gains obtained by using extracted
features, there is still a gap in terms of efficiency, reliability, and accuracy as most of
existing methods use a single-modality along with the feature extraction.

Previous works demonstrated that the features fed to neural networks influence signifi-
cantly the accuracy of the classification results. For instance, in the context of image clas-
sification, Wang et al. [42] have shown that combining both spatial and spectral features
improved greatly the classification accuracy. In our work, we seek to do the same for audio
data, i.e., we would like to identify what combinations of features would enable different
types of neural network models to achieve the best accuracy in audio classification. We
particularly investigate the combination of three audio features (i.e., Mel Spectrogram [2],
Mel Frequency Cepstral Coefficients (MFCC [17]), and Zero Crossing Rate (ZCR [7])),
when used as ensembling with different deep learning models (i.e., Convolutional Neural
Network (CNN), EfficientNet and MobileNet) on three benchmark speech classification
datasets.

In this paper, we make the following contributions:

• We explore different features and their ensembling for audio digit classification.
• We investigate the best combination of features through a wide range of experiments
using different models, on various datasets.

• Our experiments suggest that our the proposed approach is effective in terms of both
time and accuracy.

• Finally, we release our source code and trained models for the research community
to carry out the future research.

The rest of this paper is organised as follows. First, we present the context of our work, and
in particular, we describe the related work and background of audio features (Section 2),
then, we describe features ensembling approaches (Section 3), next, present the design of
our experiments (Section 4), present evaluation (Section 5) and finally, we conclude this
paper (Section 6).

2. Background and Related Work

Audio classification has been a focus of a large number of works [8,26,35,43] each leveraging
different features including Mel Spectrogram (MS [2]), Mel Frequency Cepstral Coefficients
(MFCC [17]) and Zero Crossing Rate (ZCR [7]) or a combination of any two features as
an ensemble.

2.1. Mel Spectrogram (MS)

Audio signals are one dimensional, i.e., a time series of varying amplitudes. Since neural
networks require fix dimensional inputs, it is necessary to convert/adapt audio signals
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into better formats which neural networks are able to process efficiently. One such format
could be obtained by transforming audio signals into Mel Spectrogram [2, 40] which have
the advantage of providing the same information that the humans perceive. Spectrograms
also provide a visual understanding of audio signals. Furthermore, Mel Scale is used to
make the signal linear–matching with the human auditory system. Mathematically, it is
formulated as in Equation 1:

m = 2595 log10

(
1 +

f

700

)
(1)

Where m and f represent Mel Spectrogram and frequency in Hz, respectively. Previ-
ously, many researchers have used Mel Spectrogram as feature for classification [18,24,35].
Sakashita and Aono [35] compute Mel Spectrogram from different audio channels (i.e.
Binaural, Mono, Harmonicpercussive source separation). Then, they segment the spectro-
gram into different flavours, and finally they train and ensemble many neural networks.
McKinney and Breebaart [18] use features that incorporate Low-Level Signal Properties,
Mel-Frequency Spectral Coefficients, and two other sets. Park et al. [24] apply three kinds
of Log Mel Spectrograms including time wrapping, a deformation of the time series in
the time direction, and the frequency masking. In their approach, the authors proposed a
simple data augmentation method for speech recognition which is applied to listen, attend
and spell networks for end-to-end speech recognition tasks.

2.2. Mel Frequency Cepstral Coefficients (MFCC)

The MFCC feature has been popular due to compressed representation of the signal [14,17].
The computation of MFCC feature starts by segmenting audio signals into frames before
taking discrete Fourier Transform and logs of amplitude spectrum. Then, it performs Mel
scaling and smoothing. Next, it takes a discrete cosine transform of the previous step
to finally get the MFCC features. A detailed description of the features is provided by
Logan [14]. Like MS, many researchers used MFCC due to its compressed representation
for audio classification (e.g., [10,11,26]) in two ways: (i) extract MFCC then train different
neural networks [10, 26] or (ii) extract both MFCC and MS and use them to train two
networks that are later ensembled [11].

2.3. Zero Crossing Rate (ZCR)

ZCR measures how signals change from positive to negative via zero or vice-versa [7].
It helps to distinguish between highly correlated and uncorrelated features. Due to its
correlation property, it is used by many researchers and it shows massive gain in perfor-
mance [15, 26]. Lu and Hankinson [15] use zero-crossing rate (ZCR) and its various com-
binations for the automatic audio indexing and retrieval systems. Whereas Piczak [26]
provide a baseline performance using MFCC and ZCR as features. Both of these features
drastically improved accuracy.

2.4. Feature Ensembling

Many works also tried ensemble features and networks [11,19,20,25,44]. Nanni et al. [19]
first get three features including spectrograms, a gammatonegram, and a rhythm from
audio input, and segment them into different windows, before training many SVM is
trained and ensembling their predictions. Moreover, Nanni et al. [19] leverage multiple
additional features and perform data augmentation to increase the data, then ensembled
the multiple model predictions. Similarly, Niranjan et al. [11] use two extra features (i.e.,
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MFCC and MS) for ensembling of CNN which showed a massive performance gain on the
ESC50 dataset (i.e., a dataset for environmental sound classification). Some studies have
attempted using multiple features to train their deep learning algorithms. Piczak [25]
devised a convolutional neural network for classifier training which combines two features
(i.e., MFCC and its delta) whereas Zhang et al. [44] extract three Mel Spectrogram features
(i.e., static, delta, and delta) for their training.

So far, all the existing work in the literature with feature ensembling for audio data
are only proposing and describing their approach with a unique configuration of features
and model. Instead, in this paper, we explore different combinations of features with a
diverse set of models, on different datasets. The goal of our work is to identify the best
combination of features and models in terms of type and number.

3. Ensembling Approach

In this section, we explain our investigated ensembling approach (publicly available on
github.com/turab45/multi-features-ensembler-for-audio-classification). The
approach starts by taking input audio sample Xinput. From Xinput, we extract three dif-
ferent features namely, Mel Spectrogram [2] Xmelspe, Mel Frequency Cepstral Coefficients
(MFCC [17]) XMFCC , Zero Crossing Rate (ZCR [7]) XZCR. After feature extraction, we
propose the approach as described below:

3.1. Multi-modality approach

In this approach, we first train each model for each feature like MMS , MMFCC and MZCR

for XMS XMFCC and XZCR, respectively. Once the models have been trained, we save
those models. During test, sample Xtest is converted to three features and then passed to
each model accordingly. Probability value of each model are average as ensembler. Then
we predict the class for sample Xtest, as shown in Figure 1.

Figure 1: The investigated multi-modality approach with three models

We describe the whole steps during test once models are trained:

• Get probabilities:
– PMS = MMS(XMS)
– PMFCC = MMFCC(XMFCC)
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– PZCR = MZCR(XZCR)
• We then explore combination of two feature probabilities first, then we combined all
these features probability, like Average = PMS+PMFCC+PZCR

3
• Finally, we predict the class or the label using argmax function:

– Predictedlabel = argmax(Average)

4. Experiment Design

In this section, we describe our experimental design in three parts: (i) the data set on
which we are basing our experiments, (ii) the algorithms we are comparing against, and
(iii) the setup of our system and the values defined for the parameters of our algorithms.

4.1. Datasets

We used three different datasets for digit classification in English, Urdu and Gujrati lan-
guages. We describe each of the datasets below.

4.1.1. Free Spoken Digits Dataset (FSDD [39])

This dataset is about spoken digits of English pronunciation (0 to 9) and consists of 1500
recordings. These are recorded from 3 different speakers and 50 of each digit per speaker.
Each recording is mono and sampled at 8kHz and saved in .wav format. It has 10 classes
(0 to 9). All participants are male. Information about audio duration is unknown, but we
noticed that its minimum duration length is 1 second and maximum is 2 second.

4.1.2. Audio Urdu Digits Dataset (AUDD [1])

This dataset is an audio spoken digits dataset for Urdu language. This dataset has 25218
samples collected from 740 participants aged between 5 an 89 for diversity purpose, but
the majority of participants were 5 to 14 years old and male participants were slightly more
numerous than female participants. Each sample is stereo and sampled at 48 kHz and
is mono-channel with a minimum length of 1 second and maximum length of 2 seconds.
Furthermore, the number of samples in the dataset is almost balanced between all the
classes (i.e., digit per age).

4.1.3. Audio Gujarati Digits Dataset (AGDD [5])

This dataset is an audio digits dataset for Gujarati language which has 1940 samples
sampled at 44.1 kHz. Recordings are obtained by 20 users, including 14 male and 6
female, from five different regions of Gujarat i.e. Central Zone, North Zone, South Zone,
Saurashtra, Kutch Region. Information about duration of audio is unknown but we notice
that minimum and maximum duration of audio is 1 and 2 seconds, respectively. Each
audio is saved in .wav format.

4.2. Algorithms

We used different deep learning models for generalization purpose. We used 3-layers
CNN, EfficientNet [38] and mobileNet [9]. For a fair comparison, we took the same model
architectures that were defined in [1, 5]. For the CNN model, we implemented a 3-layer
architecture as described in [1] and shown in Table 1.

4.3. Setup

Once features are extracted by using MS, MFCC, ZCR, we reshape the features to 32 ×
32 × 1 as 2D images. Each dataset is randomly split into training and test sets with an
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Table 1: CNN Model, architecture taken from [1]
Layer type Dimensions Other Details
Input Input layer (32, 32, 1)
CNN (30, 30, 64) kernel 3× 3; stride 1 ;

relu activation
Max Pool (15, 15, 64) N/A
BN (15, 15, 64) default value as

given in Keras [3]
CNN (13, 13, 64) kernel 3× 3; stride 1;

relu activation
Max Pool (6, 6, 64) N/A
BN (6, 6, 64) default value as

given in Keras [3]
CNN (4, 4, 64) kernel 3× 3; stride 1;

relu activation
Max Pool (2, 2, 64) N/A
BN (2, 2, 64) default value as

given in Keras [3]
Dropout (2, 2, 64) dropout rate=0.1
Flatten 256 N/A
Fully Connected 512 N/A
Dropout 512 dropout rate=0.1
Fully Connected 128 N.A
Dropout 512 dropout rate=0.1
Fully Connected 10 softmax activation

8 to 2 ratio. Furthermore, the training set is also split into training and validation sets
with a 9 to 1 ratio.

We used hyperparameters as epoch 150, learning rate 0.01, batch size of 64 and set the
loss to categorical cross entropy as shown in Equation 2.

L(Θ) = −
k∑

i=1

yi log (ŷi) (2)

where yi is the ground truth, ŷi is the predicted label, k is the number of samples in the
batch.

5. Evaluation

We evaluated the performance using accuracy metric (as shown in Equation 3) and time
required for testing (in millisecond).

A =
P

T
(3)

where A, P and T represent accuracy, correct number of predicted samples and total
number of samples, respectively.
We performed each experiment three times and average accuracy is reported. In Tables 2,
3 and 4, the values MS, MFCC and ZCR represent Mel Spectrogram, Mel Frequency
Cepstral Coefficients, and Zero Crossing Rate, respectively. In braces, MS means the
experiment is performed using a single feature and this is the same for MFCC and ZCR.
For two or three features in braces, the model prediction is obtained using an ensemble
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of models trained using two or three features. EfficientNetB0 to EfficientNetB7 are the
different versions of EfficientNet and similarly we used a single version of MobileNetV1.

Tables 2, 3 and 4, also report the average time taken for testing (in milliseconds). We
evaluated the testing time for each feature individually and when combined as an ensemble,
with each of the considered models and datasets.

Obtained results suggest that testing time is dependent of all dataset, model and feature.
For the same dataset, time for CNN with MS is lower than with ZCR. For the same model,
time of CNN with MFCC is larger than CNN with MS. For the same feature, time of CNN
with MS on AUDD is lower than CNN with MS on FSSD. Otherwise, it is natural that
when increasing the number of features, time increases as well. So time for two and three
features increases. Overall, obtained results suggest that if we want to achieve a trade-off
between accuracy and speed, we should also select our features and models carefully.

For AUDD dataset [1], among single feature experiments, CNN with MS feature achieves
the highest performance, whereas the same CNN with the ZCR feature achieves the worst
performance. That is due to the loss of sound features during ZCR extraction.

While we are not able to identify a rule on what number of features is ideal during
emsembling (i.e., either two or three features at a time), we see that the features showing
high performance independently lead to better performance when combined in a feature
ensembling. ZCR which achieved less performance acts as a handicap as it drops the
performance whenever it is combined with MFCC or MS. MFCC and MS combination
with CNN model showed the best performance over previous SOTA performance with an
absolute improvement of 3.00%, as shown in Table 2.

Similarly for the FSSD dataset, we performed many experiments using diverse DL models.
First we explore single feature based performances. Then, we check combinations of
feature ensemblings. Unlike ZCR for AUDD, ZCR for FSSD a shows better performance.
Therefore, the combination ZCR with MFCC and MS using either CNN or EfficientNet
helps to improve the performance during ensembling and shows superior performance with
a 1% improvement to the previous SOTA performance, as shown in Table 3.

Moreover, to check the effectiveness of the approach, we perform the experiment on Audio
Gujarati Digits Dataset (AGDD). In AGDD dataset, MS single feature has been effective
with CNN and similarly MFCC is also effective. When these two features are used during
ensembling, it further improved the performance over SOTA performance with an abso-
lute improvement of 0.2%. However, these two individual features with EfficientNet and
MobileNet have shown worse performance than CNN. None of the different DL models
using three features ensembling were unable to improve performance due to the presence
of the ZCR feature which acted as a handicap–achieving worse performance compared to
MS and MFCC features.

Overall, MS and MFCC combination showed the best performance for audio digit clas-
sificaiton, nevertheless model selection is very important. MS and MFCC combination
with EfficientNet and MobileNet unable to improve the performance. To select the good
features, we should also consider the model choice. ZCR with MS and MFCC ensembling
is only good choice of selection, whenever it shows good performance individually as shown
in Table 2. In the most cases, MS and MFCC has shown the best performance and results
suggest that we should use those two features combination for ensembling.

We have also analyzed the stability of the models with a single feature at a time and
their behavior during validation on AUDD, FSSD, and AGDD respectively, as shown in
Figures 2.
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Table 2: Different features accuracy using different models using AUDD [1] dataset
Model Name Accuracy Time(ms)

Single feature

Support Vector Machine (MS) [1] 0.65 ± 0.0 –

Multilayer Perceptron (MS) [1] 0.73 ± 0.02 –

CNN (MS) [1] 0.86 ± 0.02 0.264

EfficientNetB0 (MS) [1] 0.84± 0.05 1.60

EfficientNetB1 (MS) [1] 0.82± 0.02 –

EfficientNetB2 (MS) [1] 0.83± 0.04 –

EfficientNetB3 (MS) [1] 0.84± 0.06 –

EfficientNetB4 (MS) [1] 0.82± 0.03 –

EfficientNetB5 (MS) [1] 0.84± 0.04 –

EfficientNetB6 (MS) [1] 0.81± 0.06 –

EfficientNetB7 (MS) [1] 0.56± 0.07 –

MobileNetV1 (MS) 0.83± 0.00 0.531

CNN (MFCC) 0.85 ± 0.01 0.541

CNN (ZCR) 0.40 ± 0.03 0.360

EfficientNetB0 (MFCC) 0.81± 0.03 1.124

EfficientNetB0 (ZCR) 0.27 ± 0.02 1.681

MobileNetV1 (MFCC) 0.80± 0.02 0.628

MobileNetV1 (ZCR) 0.36 ± 0.03 0.689

Two Features Ensembler

CNN (MS and MFCC) 0.89 ± 0.01 0.896

CNN (MS and ZCR) 0.82 ± 0.03 0.805

CNN (MFCC and ZCR) 0.81 ± 0.01 0.631

EfficientNetB0 (MS and MFCC ) 0.88± 0.02 4.431

EfficientNetB0 (MS and ZCR) 0.82± 0.03 3.899

EfficientNetB0 (MFCC and ZCR) 0.80± 0.02 4.076

MobileNetV1 (MS and MFCC ) 0.87± 0.03 1.65

MobileNetV1 (MS and ZCR) 0.66± 0.02 1.70

MobileNetV1 (MFCC and ZCR) 0.72± 0.00 1.13

Three Features Ensembler

CNN (MS, MFCC and ZCR) 0.87 ± 0.03 0.8167

EfficientNetB0 (MS, MFCC and ZCR) 0.86± 0.03 5.859

MobileNetV1 (MS, MFCC and ZCR) 0.85± 0.05 2.540
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Table 3: Performance comparison multiple features using different models on FSSD [39]
Model Name Accuracy Time(ms)

CNNDigitReco-speakerindependent [36] 0.78 ± 0.0 –

Single Feature

Support Vector Machine [41] 0.90 ± 0.02 –

Random Forest [41] 0.96 ± 0.06 –

English Digit Model [21] 0.97 ± 0.09 –

CNN (MS) [1] 0.973 ± 0.01 0.3441

CNN (MFCC) 0.978 ± 0.03 0.2895

CNN (ZCR) 0.572 ± 0.08 0.306

EfficientNetB0 (MS) 0.947 ± 0.05 1.154

EfficientNetB0 (MFCC) 0.968 ± 0.07 0.740

EfficientNetB0 (ZCR) 0.378 ± 0.06 1.148

MobileNetV1 (MS) 0.877 ± 0.01 4.855

MobileNetV1 (MFCC) 0.980 ± 0.02 3.367

MobileNetV1 (ZCR) 0.538 ± 0.03 4.035

Two Feature Ensembler

CNN (MS and MFCC) 0.987 ± 0.02 0.651

CNN (MS and ZCR) 0.980 ± 0.03 0.630

CNN (MFCC and ZCR) 0.977 ± 0.05 0.639

EfficientNetB0 (MS and MFCC) 0.987 ± 0.07 2.811

EfficientNetB0 (MS and ZCR) 0.957 ± 0.08 3.583

EfficientNetB0 (MFCC and ZCR) 0.970 ± 0.01 2.838

MobileNetV1 (MS and MFCC) 0.985 ± 0.05 4.9

MobileNetV1 (MS and ZCR) 0.960 ± 0.06 1.682

MobileNetV1 (MFCC and ZCR) 0.970 ± 0.09 2.308

Three Features Ensembler

CNN (MS, MFCC, ZCR) 0.99 ± 0.03 0.921

EfficientNetB0 (MS, MFCC, ZCR) 0.99 ± 0.04 4.977

MobileNetV1 (MS, MFCC, ZCR) 0.987 ± 0.05 2.903
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Table 4: Performance comparison multiple features using different models on Gujarati
Digits dataset [5]

Model Name Accuracy Time(ms)

Single Feature

Gujarati Digits Model [5] 0.75 ± 0.02 –

CNN (MS) [1] 0.970 ± 0.03 1.770

CNN (MFCC) 0.959 ± 0.05 1.761

CNN (ZCR) 0.572 ± 0.07 1.750

EfficientNetB0 (MS) 0.880 ± 0.02 9.402

EfficientNetB0 (MFCC) 0.907 ± 0.01 9.781

EfficientNetB0 (ZCR) 0.321 ± 0.04 9.536

MobileNetV1 (MS) 0.856 ± 0.01 0.63

MobileNetV1 (MFCC) 0.89 ± 0.05 0.791

MobileNetV1 (ZCR) 0.557 ± 0.03 1.35

Two Features Ensembler

CNN (MS and MFCC) 0.972 ± 0.04 2.996

CNN (MS and ZCR) 0.936 ± 0.08 1.006

CNN (MFCC and ZCR) 0.943 ± 0.07 1.723

EfficientNetB0 (MS and MFCC) 0.970 ± 0.01 3.491

EfficientNetB0 (MS and ZCR) 0.881 ± 0.06 3.338

EfficientNetB0 (MFCC and ZCR) 0.94 ± 0.01 3.334

MobileNetV1 (MS and MFCC) 0.933 ± 0.03 1.84

MobileNetV1 (MS and ZCR) 0.80 ± 0.04 2.396

MobileNetV1 (MFCC and ZCR) 0.884 ± 0.02 2.280

Three Features Ensembler

CNN (MS, MFCC and ZCR) 0.966 ± 0.03 1.254

EfficientNetB0 (MS, MFCC and ZCR) 0.948 ± 0.05 5.261

MobileNetV1 (MS, MFCC and ZCR) 0.917 ± 0.03 3.520
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Interestingly, all Figures 2 have the same pattern as CNN with the MS feature, i.e.,
they are very stable. Furthermore, the analysis shows consistent accuracy improvements
from one epoch to another, except for EfficientNet with ZCR which has shown a worse
performance. Feature-wise, MS and MFCC are nearly equally successful among all cases
with the different models, whereas the use of ZCR drops the performance of all models.

Overall, Figures 2 suggest that to achieve the best performance and stability, the choice
of model is important, whereas MS seems to be an excellent feature extractor and the
feature of choice.

In summary, we have shown that ensembling all features at the same time does not guar-
antee achieving the best performance (in the contrary, it acts as a handicap) and that
beyond the selection of features, the choice of the model is important. Therefore, it
will be beneficial to design automatic and interpretable ensembling techniques, poten-
tially through reinforcement learning techniques such as grammar-guided genetic pro-
gramming [16, 30–32, 34]. Furthermore, while we have only focused on accuracy in this
work, it is possible that a feature/model ensembling does not achieve the best accuracy,
but performs better on other metrics. Therefore, it will be beneficial to formulate the
problem as a multi-objective feature selection [27–29,33]

6. Conclusion

This paper investigates the use of multi-feature ensemblers, combining three state-of-the-
art audio features (i.e., Mel Spectrogram, Mel Frequency Cepstral Coefficients, and Zero
Crossing Rate) to alleviate the performance constrained by the features when dealing with
audio classification tasks.

In our work, we sought to explore different combinations of the three state-of-the-arts
features with a diverse set of models, on different datasets with the goal of identifying
the best combination of features and models. To check the generalization of our results,
we used three different audio datasets including, Free Spoken Digits Dataset, Audio Urdu
Digits Dataset and Audio Gujarati Digits Dataset.

We trained our models with each feature individually, then with a combination of two
and three features. We evaluated the performance of each configuration, i.e., model and
feature(s) in terms of accuracy and testing time. Our thorough experimental evaluation
has shown that it is only better to combine features that already perform well individually
(i.e., mostly Mel Spectrogram, Mel Frequency Cepstral Coefficients).

Our future research direction is in two folds: (i) to reduce testing time by stacking multiple
features and (ii) to explore these features from data augmentation perspective to generate
novel features.
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