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ABSTRACT 
 
Additive manufacturing is an emerging and crucial technology that can overcome the limitations of 

traditional manufacturing techniques to accurately manufacture highly complex parts. X-ray Computed 

Tomography (XCT) is a widely used method for non-destructive testing of AM parts. However, detection 

and segmentation of defects in XCT images of AM have many challenges due to contrast, size, and 

appearance of defects. This study developed deep learning techniques for detecting and segmenting defects 
in XCT images of AM. Due to a large number of required defect annotations, this paper applied image 

processing techniques to automate the defect labeling process. A single-stage object detection algorithm 

(YOLOv5) was applied to the problem of defect detection in image data. Three different variants of 

YOLOv5 were implemented and their performances were compared. U-Net was applied for defect 

segmentation in XCT slices. Finally, this research demonstrates that deep learning techniques can improve 

the automatic defect detection and segmentation in XCT data of AM. 
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1. INTRODUCTION  
 

Additive manufacturing (AM) is an emerging technique that involves the construction of a three-

dimensional object from a digital 3D CAD model in a layer-wise fashion. AM possesses several 
advantages such as the manufacturing of components with complex geometries, rapid 

prototyping, design flexibility, and material customization [1]. The final property of an additively 

manufactured part is a result of a combination of several processing parameters such as laser 
power, scanning hatch distance, and scan speed. However, the effect of these parameters and the 

correlation of each of these parameters to the mechanical properties and defects has not been 

fully defined. There is a greater chance of defect formation in AM parts without fully optimized 
parameters. Additionally, internal defects can occur due to other reasons such as residual 

stress[2]. These defects can lead to failure of the parts during operation or early stage of 

performance. 

 
Several non-destructive evaluation methods such as infrared thermography, laser ultrasonics, and 

X-ray computed tomography (XCT) have been implemented to detect defects in AM parts. X-ray 

Computed Tomography (XCT) is widely used to inspect the AM parts to evaluate internal defects 
and internal properties such as porosity. XCT utilizes either a moving X-ray beam and detector or 
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an object rotating within an X-ray beam and detector to obtain ‘slices’ (or cross-sections) of 
physical objects which can be used to reconstruct a 3-dimensional (3D) model of the scanned 

object. 

 

Developing a machine learning model that can classify and localize the defects in the post-build 
XCT images possesses many advantages. Knowing the location of defects in post-build data will 

help correlate how that defect appears in the in-situ monitoring sensor signal. Those location and 

defect information can be further utilized for data preparation and training a machine learning 
model for online monitoring of AM. Gobert et. al. [3] applied supervised machine learning for 

defect detection during metallic powder bed additive manufacturing using high-resolution 

imaging. They found the ground truth location of defects in post-build CT data using image 
processing algorithms and transferred the information to in-situ data by coordinate transformation 

using the least-squares approach for labeling the layer-wise images. From those in-situ sensor 

data, they applied an ensemble classification scheme and used K-fold cross-validation for the 

performance evaluation of discontinuity detection. X-ray CT can be used to inspect the quality of 
AM parts and thus advanced method to automate the tedious process of defect detection and 

segmentation is essential. However, several challenges such as contrast, size, distribution, and 

appearance make it difficult to automate the process of defect detection and segmentation in XCT 
data of AM. As a result of such difficulties traditional image processing techniques are not 

always effective. Accurate detection of defects requires skilled manpower to examine every slice 

in the scan. 
 

To automate defect detection and segmentation, this study applied two state-of-art deep learning 

algorithms, YOLOv5 [4] and U-Net [5] respectively. The dataset used in the study is publicly 

available XCT data [6] of additively manufactured cobalt chrome samples. To generate the 
annotation required for the training of those supervised deep learning networks, a series of image 

processing was carried out. An open-source software ImageJ [7] was used to apply Bernsen’s 

auto local thresholding algorithm. A method for generating an annotation for the training of 
YOLOv5 and U-Net was developed using Python programming. In this study, YOLOv5 has been 

implemented for defect detection and U-Net for automatic defect segmentation in XCT slices of 

AM samples. The focus of the study was to implement deep learning techniques on the XCT 

data. The rest of this paper is organized as follows. Section 2 reviews the related works.  Section 
3 presents detailed information about dataset preparation, the architecture of the model applied, 

and details of implementation.  Section 4 discusses the results of the experiments. Finally, 

Section 5 presents a conclusion with future research recommendations. 
 

2. RELATED WORKS  
 

The neural network has been used for defect detection and classification in several applications. 

Poudel and Chu [8] applied a combination of fuzzy logic and artificial neural network (ANN) 
techniques to achieve automated discontinuity detection in carbon/carbon (C/C) composite 

aircraft. Their research applied a hybrid fuzzy neural method to the infrared thermography and 

ultrasonic testing (UT) data for the C/C samples. Similarly, Pan et al. [9] applied fuzzy logic 
expert rules to improve the accuracy of anomaly detection and reduce human error in the analysis 

of infrared thermography inspection data. In their study, fuzzy logic achieved reasonable results 

for porosity location and distribution for the test result of advanced NDT methods such as 
infrared thermography. 

 

Kim et al. [10] developed an image segmentation and analysis method for defect detection and 

the measurement of pore structure in an additively manufactured component. They prepared 6 
samples from the process of laser powder bed fusion with varying process parameters, scan 

speed, and hatching distance, resulting in porosity levels ranging from 0.1% to 70%. A local 
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thresholding algorithm applying Bernsen’s method [11] was successfully used for the different 
2D images. The quantitative value of porosity measured from the image segmentation process 

and the experimental process was in good agreement. Tokime et al. [12] showed an effective 

application of the deep convolutional neural network to detect porosity in the X-ray inspection of 

welded parts. They used an open-source database called GDXray, which has radiographic images 
of welding with porosity defects. SegNet,[13] a deep convolutional network based on encoder-

decoder architecture, was applied based on their need. Kwon et al. [14] found deep learning-

based classification models effective to monitor and classify the in-situ melt pool images in 6 
categories based on laser powers. Davtalab et al. [15] applied deep learning for the detection of 

layer deformation in additive manufacturing. They developed a CNN architecture based on 

SegNet for the segmentation of defects in input images and have received an F1 score greater 
than 90%. Similarly, [16] Gonzalez-Val et al. developed a novel CNN-based approach to extract 

features and indicators of quality from the real-time medium wavelength infrared co-axial 

images. 

 
Alqahtani et al. [17] applied a convolutional neural network to the micro-computed tomography 

image data set of three different porous sandstone (Bentheimer, Berea, and Gosford) to evaluate 

the various physical properties. For the training and testing, both greyscale and binary images 
were used. The results of the testing image were able to provide the average relative error 

between ground truth labels and predictions from binary images. The errors were 2.7 % for 

porosity, 5.8% for a specific area, and 6% for mean pore size. However, with training and testing 
using a grey scale image the relative error of less than 6.3% for porosity, 5.8% for specific 

surface area, and 6.7% for mean pore size were achieved. Their study suggested that machine 

learning can play an important role in digital rock analysis. Mutiargo et al. [18] used deep 

learning (U-Net architecture) for the detection of pores in X-ray computed tomography images of 
additively manufactured components. Their result shows that the data augmentation significantly 

increases detectability using a U-Net. The author concluded that the U-Net can be used to 

significantly reduce the amount of post-processing time needed and it improves the accuracy of 
detection compared to traditional image processing. Li et. al. [19] proposed a novel approach to 

solve the requirement of the huge volume of annotated data which is very expensive to generate. 

They developed a semi-supervised CNN model which combines labeled and unlabeled data 

during the training. Similarly, Yuan et al. [16]developed the semi-supervised CNN for online 
monitoring of the selective laser melting process. 

 

Lee et al. [20] applied CNN for the classification of the defect in online monitoring image data. 
Similarly, Rand et. al. [21] found that the Faster RCNN [22] object detection model is capable of 

classifying and locating the re-coater defect in the in-situ monitoring images. Gobert et. al. [3] 

combined ground truth labels of defects from post-build CT data to the high resolution online 
monitoring data for defect detection in in-situ monitoring of additive manufacturing using 

supervised machine learning. To find the ground truth labels of a defect in post-build CT data 

they applied image processing and those labels were transferred to the in-situ sensor data. 

Features were extracted from layer-wise images and finally, a ensemble classification scheme 
was applied for the classification. 

 

Detection and segmentation of defects in XCT data are usually done with image processing 
techniques. However, XCT data of AM parts usually need a custom method for detection and 

segmentation of defects based on the type of dataset since XCT data possess unique challenges 

due to material, size, contrast, etc. This work investigates the opportunities for applying a deep 
learning approach for automatic segmentation, detection, and localization of defects in XCT 

slices. To the best of our knowledge, we present the first work that implements the state-of-art 

object detection algorithm You Look Only Once (YOLO) v5[4] in the XCT data of AM.  
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3. METHODOLOGY 
 

3.1. Dataset Preparation  
 

The study was carried out with the publicly available XCT image dataset of additively 
manufactured cobalt chrome specimens. The image dataset was produced by Kim et al. [6] for the 

National Institute of Standards and Technology (NIST). The dataset comprises high-resolution 

XCT images of additively manufactured samples where the artificial defects were created by 
varying laser powder bed fusion processing parameters (scan speed and hatch spacing). The 

dataset contains a large number of small-sized defects, so image pre-processing was utilized to 

assist the data annotation. Bernsen’s [23] automatic local thresholding algorithm was applied for 

the binarization of the image. Bernsen’s algorithm works only with 8-bit images so 16-bit raw 
images were converted to 8-bit images. However, 16- bit raw images were used during the 

training of the machine learning framework. For binarization, 16-bit raw XCT images were 

converted to 8-bit images followed by 2D median filtering, denoising, and finally, auto local 
thresholding using Bernsen’s algorithm in a similar approach as implemented by Kim et. al. [10]. 

The auto local thresholding using Bernsen's algorithm was implemented as available in the 

ImageJ open-source software [7]. The circular window radius (r) for the algorithm was chosen 

from the literature study [23] and local contrast threshold (LCT) values were found by varying it 
until the best segmentation result was found. The final image after thresholding as shown in 

Figure 1 for two different samples.  

 

 
 

Figure a      Figure b 

 
Figure 1. Two of the sample raw images with their corresponding segmentation (Figure a and Figure b) 

 
Rectangular bounding box annotation for each defect is required to train the YOLO algorithm. 

An approach was developed that automatically generates the rectangular bounding box for each 

defect in the image. Applying OpenCV [24], an open-source computer vision library available in 

Python, contours of each defect from the segmented image were found, and those contours were 
transferred and plotted in their corresponding raw image. OpenCV was further applied to find the 

smallest bounding rectangle of each defect contour, and the two-diagonal coordinate of the 

bounding box (Xmin, Ymin, Xmax, Ymax) was written in the .xml file as shown in Figure 2.  In 
addition to the coordinate of the bounding box, filename, path, width, height, depth, and object 

class name were generated in a .xml file which exactly replicates the process of manual data 

annotation using the software LabelImg [25]. The annotation with two coordinates of the 
bounding box was further converted into the form of the first corner coordinate (x, y) of a 

rectangle, width (w), and height (h).  

 

Training the U-Net requires image data with their corresponding mask where the mask represents 
the pixels for defects. The pixel which has defect are transformed to the pixel value of 1, whereas 

the background is 0. Firstly, a blank image with the same image size as the raw image was 

created, and the co-ordinate of those defects’ contours in the binarized image was transferred to 
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the blank images. All the pixels inside the defect contours were replaced with the pixel value of 
1. Thus, any pixel which is deemed as a defect has a pixel value of 1, and metal or background 

has a pixel value of 0. 

 

 

 

 

 

 

Figure a 

  

Figure b 

 

Figure 2. Image showing (a) rectangular bounding box enclosing defect contours, (b) annotation .xml file 

 

3.2. Defect Detection  
 
Classifying and localizing the defect in XCT of AM possess a challenge due to the contrast, size, 

and appearance of the defect. In this work, an object is a defect presented in XCT slices, and the 

problem is treated as defect detection. This work investigates the application of the state-of-art 
object detection algorithm YOLOv5 for the localization of defects in XCT slices. YOLO [4] is a 

single-stage object detector that has been mostly used in real-time object detection in various 

computer vision applications such as animal detection on the road [26]. YOLOv5 is a recent 

version of YOLO and has been implemented for object detection such as pothole detection on 
road [27]. However, based on the authors’ knowledge, YOLOv5 has not been implemented in 

computed tomography data of additive manufacturing. The process of object detection involves 3 

major steps: resizing an image, running data through a convolution network, and applying non-
max suppression. Intersection over Union (IoU) calculates the overlap between two bounding 

boxes. IoU is mostly used to measure the overlap of prediction with the ground truth bounding 

box and is expressed as follows [28]:  

 

Intersection Over Union (IOU)=
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 (1) 

 

Where A represents the prediction and B represents the ground truth. 

 

NMS algorithm is used to find the best bounding box among multiple predicted bounding boxes, 
and it works in the repetition of the following method. The bounding box with the maximum 

confidence score assigned to it is individually compared with all other bounding boxes that have 

an intersection with it. If their Intersection over Union (IoU) is greater than a provided threshold 
value, they are discarded. The YOLO detection network consists of 24 convolution layers 
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followed by two fully connected layers as shown in Figure 3. Firstly, it divides the input image 
into an s*s grid cell, and b number of objects bounding boxes are predicted with confidence level 

and c class probabilities for each of those grids. The prediction results are encoded in the form of 

a tensor as s*s* (b*5+c). The number 5 in this expression represents the results of bounding box 

prediction which is co-ordinate of bounding box x, y, w, h, and confidence.  
 

 
 

Figure 3. YOLO architecture [4] 

 

3.3. Defect Segmentation 
 
In this study, U-Net architecture was implemented for defect segmentation. U-Net is a CNN 

initially developed for biomedical image segmentation [5]. The U-Net architecture consists of 

mainly two-part: one which performs contraction (left side) and another which performs 
expansion (right side) as shown in Figure 4. Figure 4 shows the input image, network 

architecture, and segmentation result as an output. The contraction path consists of repeated 

application of two 3*3 unpadded convolutions each followed by a Rectified Linear Unit (ReLU) 

and a 2×2 max pooling operation for down sampling. The number of feature channels is doubled 
at every down sampling step. In the expansion path, every step consists of up sampling of the 

feature map followed by a 2×2 convolution (up convolution) which reduces the number of 

feature channels by half. Then there is a concatenation with a correspondingly cropped feature 
map from the contracting path and two 3×3 convolutions each, which is followed by a ReLU. 

The cropping is carried out because of the loss of boundary pixels in each convolution. Finally, a 

1×1 convolution layer is applied to obtain the output mask. The network consists of a total of 23 
convolutional layers. 
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Figure 4. U-Net architecture used for defect segmentation [5] 

 

3.4. Experimental Setup  
 

In this research, a machine having operating system Ubuntu 20.4, embedded with Intel Core i5 

CPU, NVIDIA RTX 2060 (8GB) GPU 16GB RAM was used for training.  Several software 
packages such as OpenCV [24], CudatoolKit [29], Matplotlib [30], Numpy [31] and 

Tensorboard[32] were installed.  

 

3.5. Hyper Parameters 
 

Hyperparameters are utilized to control the learning process. In machine learning, getting good 
results and drawing a conclusion involves several experiments specific to the problem. For 

example, a set of parameters used to classify and localize pedestrians in the general image may 

not be suitable for detecting manufacturing defects in metal surfaces or anomalies in XCT test 
results. Learning rate is a tuning parameter in an optimization algorithm that provides the step 

size at each iteration during the process of moving towards the minimum value in the loss 

function. The YOLOv5 algorithm automatically calculates the learning rate, whereas the best 
learning rate for U-Net was found by running several experiments to choose the optimal learning 

rate. The batch size is the number of training samples that train through the network together in 

an epoch. The batch size was used based on the computational capacity of the machine used for 
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the experiment. Table 1 shows the training parameters used for the YOLOv5 and U-Net. The 
same parameters were used for all 3 different models of YOLOv5. 

 
Table 1.  Training parameters for YOLOv5 and U-Net 

 

Parameters YOLOV5 U-Net 

Batch size 4 2 

Initial learning rate 0.01 

0.0001 Final learning rate 0.2 

Optimizer SGD Adam 

Epochs 500 100 

 

3.6. Performance Evaluation Metrics 
 
Metrics such as accuracy, recall, precision, and mean average precision was used for the 

performance evaluation of defect detection by the YOLOV5 algorithm. Recall provides 

information about how accurate the model is in detecting all defects present in the image, 
whereas precision measures the accuracy of the model in making correct detection. However, all 

these metrics are affected by the IoU threshold. The true positive is defined as the part of the 

XCT slices which has been considered a defect in training data annotation. The false positive is 

considered as detecting the background or metal part as a defect in the image slice. The following 
expression shows the mathematical relation of those metrics [28]. The values of precision and 

recall lie between 0 to 1. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝(𝑟)) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅(𝑟)) =
𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

 Average Precision (AP) =∫ 𝑝(𝑟)𝑑𝑟
1

0
 (4) 

 𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑚𝐴𝑃) =
1

𝑁
∑ 𝐴𝑃(𝑖)

𝑁

𝑖

 (5) 

 𝑚𝐴𝑃 @0.5: 0.95 =
𝑚𝐴𝑃0.50 + 𝑚𝐴𝑃0.55 … + 𝑚𝐴𝑃0.95 

𝑁
 (6) 

 

3.7. YOLO Training  
 

In this study, the latest version of YOLO which is YOLOv5 was applied. YOLOv5 algorithm 

developed and published by Ultralytics LLC in 2020 [33] as a GitHub repository is implemented 
for defect detection. The open-source repository contains 4 major models of YOLOv5, namely, 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. This paper evaluates the performance of 

YOLOv5s, YOLOv5m, and YOLOv5l where the subscripts s, m, and l denotes small, medium, 
and large networks of the YOLOv5 version. The training was carried out with 1648 images 

containing different-sized defects. The data were randomly split in training validation and test set 

in the ratio of 0.7: 0.2:0.1, respectively. One of the challenges in defect detection was because of 
a large range of defect sizes ranging from a few pixels to hundreds of pixel sizes as shown in 

Figure 5.  
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Figure 5. Dataset anchor clustering with X-axis representing annotation width and Y-axis height for YOLO 

model. 

 

Loss values signify how well or poorly a certain model performs after each iteration of 
optimization of the model parameters. The training loss values for a different model of YOLOv5 

are shown in Figure 6. The trend of change in loss values for YOLOv5s, YOLOv5m, and 

YOLOv5l are similar. However, the YOLOv5l model has relatively low values of loss followed 
by the YOLOv5m and YOLOv5s model. Table 2 shows the comparison of 3 different versions of 

YOLOv5: large, medium, and small. As expected, the YOLOv5l model has the highest number 

of training parameters, training time, number of layers, and model size followed by YOLOv5m 

and YOLOv5s. 
 

 

 

 
 

 

 

 

 
 

 
(a) Box loss  (b) Object loss 

 

 
 

Figure 6. (a) Loss values during the training of YOLOv5: (a) Object loss (b) Box loss 

 
Table 2. Comparison of 3 YOLOv5 models 

 

Item YOLOv5l YOLOv5m YOLOv5s 

Trainable Parameters 47,393,334 21,485,814 7,255,094 

Training time per epoch 58 sec 42 sec 26 sec 

 
 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.13, No.4, July 2022 

10 

3.8. U-Net Training  
 

For the training, a total of 1648 image slices from two different samples were utilized in this 

study. The data were randomly split with a ratio of 80% for training and 20% for validation. 
Training in each epoch carries out in a batch of 2 images and completion of each epoch indicates 

that all images in the training set are trained. The model was trained for 100 epochs. Figure 7 

shows the change in training and validation loss values during the learning process. 
 

 
 

Figure 7. Training and validation loss values during the learning process of U-Net 
 

The function of the optimizer is to update the various parameters that can reduce the loss. In this 

study, the Adam algorithm [34] with a learning rate of 0.0001 was applied to optimize the model. 
Adam (Adaptive Moment Estimation) is a modified form of RMSProp optimizer which takes the 

running average of both the gradients and second moments of gradients. The loss function 

utilized was a combination of dice loss and binary cross-entropy loss. The dice coefficient metric 

is analogous to IoU. The dice coefficient is calculated using equation 7. The binary cross-entropy 
loss function is used in binary classification tasks and is widely used in image segmentation. The 

binary cross-entropy loss function [35] is expressed as shown in equation 8. 

 

 Dice coefficient = 2 ×
 | 𝑋 ∩ 𝑌 | 

   | 𝑋 | +  | Y |  
 (7) 

 𝐽𝑏𝑐𝑒=−
1

𝑀
∑ [𝑦𝑚 ×𝑙𝑜𝑔 (ℎ𝜃(𝑥𝑚))+(1−𝑦𝑚)×log (1−

𝑀

𝑚=1

ℎ𝜃(𝑥𝑚))]  (8) 

 

Where X, Y, M, ym,xm and ℎ𝜃 represents prediction, target, number of training examples, target 

label for training example m, input for training example m, and model with neural network 

weight 𝜃 respectively [7- 8]. 

 

4. RESULTS AND DISCUSSION  
 
The present study shows that YOLOv5 can be used to classify and localize defects effectively in 

2D image slices. Figure 8 shows the performance comparison of YOLOv5s, YOLOv5m and 

YOLOv5l during training based on evaluation metrics, namely precision, recall, mAP@0.5, and 

mAP@0.5:0.95. The mAP@0.5 increases rapidly first to reach a peak and then decreases 
gradually and finally remains constant when training continued beyond 500 epochs. YOLOv5s 

model was found to have relatively good performance with mAP at 88.45% for defect detection if 
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IoU threshold is 0.5. However, for the average precision for the IoU threshold value ranging from 
0.5 to 0.95 YOLOv5m model performs best followed by the YOLOv5s and YOLOv5l model. 

The highest precision value of 71.61% was achieved by YOLOv5l followed by 69.19% of 

YOLOv5m and 63.66 % of YOLOv5s. Based on recall, relatively YOLOv5s perform best with a 

recall of 87.65% followed by YOLOv5m at 85.85% and YOLOv5l at 85.01%. Table 3 
summarizes the performance of the YOLOv5 models. 

 

 

 
 
 

 

 

 

 
 

 

(a) Precision  (b) Recall 

   

 

 

 

(c) mAP@0.5  (d) mAP@0.5:0.95 

 

 
 

Figure 8. Comparison of recall (at different IoU thresholds) and precision for the different models of 

YOLOv5 

 
Table 3. Performance comparison of YOLOv5 large, medium, and small model 

 

Item YOLOv5l YOLOv5m YOLOv5s 

Recall 85.01% 85.85% 87.65% 

Precision 71.61 % 69.19 % 63.66% 

Mean Average Precision (mAP@0.5) 87.11% 87.74% 88.45% 

Model size 95.3 MB 43.3 MB 14.8 MB 

Inference speed  0.019 sec 0.013 sec 0.008 sec 

 

The trained models were able to detect defects of various sizes and shape. Non-max suppression 

(NMS) is applied to select the best prediction bounding box per defect out of multiple predicted 

mailto:mAP@0.5:0.95
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bounding boxes. Figure 9 shows the sample result of defect detection using the YOLov5s model 
developed in this work.  The detection result fairly agrees with the annotation provided as an 

input to the algorithm during the training. The inference speed is the average time taken to detect 

all defects in the image. The inference was fastest with the YOLOv5s model at 8 milliseconds 

followed by YOLOv5m at 13 milliseconds and YOLOv5l at 19 milliseconds. The inference was 
carried out using the same setup mentioned in section 3.4. 

 

 

 

 
 

(a) Image slice of sample A  (b) Image slice of sample B 

 
Figure 9. Defect detection result from trained YOLOv5s model 

 

It was found that U-Net is capable of segmenting defects from a metal matrix background with a 
fair level of accuracy as shown in Figure 10. However, some inaccuracy can be seen in the test 

results which is because of errors in developing annotation. Figure 10 shows the result of U-Net 

segmentation and comparison with targeted annotation. Figure 10 and figure 11 show that the 

prediction of segmentation using U-Net agrees well with the target. 
 

 

 

 

 

 
     

(a) Input raw image  (b) Predicted 

segmentation 

 (c) Target segmentation 

 
Figure 10. Result of U-Net segmentation showing a portion of an XCT slice. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.13, No.4, July 2022 

13 

  
 

(a)                                                                              (b) 

 
Figure 11. (a) Raw XCT images slice, (b) defect segmentation prediction by trained U-Net model 

 

5. CONCLUSION AND RECOMMENDATION 
 

It is concluded that the state-of-art object detection algorithm YOLOv5 can recognize and 

localize AM defects in XCT 2D data with reliable accuracy. Additionally, it was found that U-
Net, a CNN-based network originally developed for biomedical image segmentation, effectively 

segments defects from a metal matrix in XCT slices of additively manufactured cobalt chrome 

specimens. The study was carried out with 3 variants of YOLOv5 which are YOLOv5l, 
YOLOv5m, and YOLOv5s. For defect detection, it was found that the YOLOv5s model has the 

highest recall of 87.65%, whereas YOLOV5l reported the highest precision of 71.61%. If it is 

crucial to find all defects present, recall is more important and YOLOv5s can be more reliable 

compared to the other two variants of YOLOv5. Overall, both YOLOv5 and U-Net show reliable 
results. The result of defect localization by the YOLOv5 algorithm in post-built CT data can 

assist in data fusion with in-situ monitoring sensor signals to develop a machine learning model 

to predict the defect formation by analyzing the in-situ sensor data. Thus, it can be concluded that 
those deep learning techniques can assist in the quality assessment and control of additively 

manufactured parts and AM processes. 

 
Future work could focus on optimizing the techniques used for a more accurate result. Image 

processing techniques can be optimized to get better annotation which could improve the result of 

defect detection and segmentation using YOLOv5 and U-net, respectively. Additionally, this 

work can be expanded by using the XCT AM data of different materials and geometries. Also, 
future work can consider redesigning the neural network architecture which may help to extract 

useful information more effectively and reduce the redundant layers. 
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