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ABSTRACT 
 
The probability of an event is in the range of [0, 1]. In a sample space S, the value of probability 

determines whether an outcome is true or false. The probability of an event Pr(A) that will never occur = 

0.  The probability of the event Pr(B) that will certainly occur = 1. This makes both events A and B thus a 

certainty. Furthermore, the sum of probabilities Pr(E1) + Pr(E2) + … + Pr(En) of a finite set of events in 

a given sample space S = 1.  Conversely, the difference of the sum of two probabilities that will certainly 

occur is 0. Firstly, this paper discusses Bayes’ theorem, then complement of probability and the difference 

of probability for occurrences of learning-events, before applying these in the prediction of learning 
objects in student learning. Given the sum total of 1; to make recommendation for student learning, this 

paper submits that the difference of argMaxPr(S) and probability of student-performance quantifies the 

weight of learning objects for students. Using a dataset of skill-set, the computational procedure 

demonstrates: i) the probability of skill-set events that has occurred that would lead to higher level 

learning; ii) the probability of the events that has not occurred that requires subject-matter relearning; iii) 

accuracy of decision tree in the prediction of student performance into class labels; and iv) information 

entropy about skill-set data and its implication on student cognitive performance and recommendation of 

learning [1].   

 

KEYWORDS 
 
Complement of probability, Bayes’ rule, computational education, pre-learning assessment, information 

theory, SQL ontology 

 

1. INTRODUCTION 
 
Indeed, the theory of probability application is far beyond determining the outcome of a rolled 

dice, picking a colored ball from an urn or a card from a set in a deck of cards [2]. Probability is 

thus a veritable method for drawing inferences i.e. arriving at conclusions from given evidence 

and reasoning in a given domain problem. While approaches such as deductive and inductive 
logic are based on logical reasoning from available evidence, approaches by probabilistic 

methods are largely dependent on statistical computation of facts and the evidence provided.  

 
Assessment is an indispensable part of teaching and learning process. For subject-matter mastery, 

this paper argues using an adaptable predictive algorithmic model that pre-learning assessment 

which unravels and determines a student’s state of knowledge before teaching and further 

learning should be an integral part of teaching and learning systems. That, this should be achieve 

http://www.airccse.org/journal/ijaia/current2022.html
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by building ML algorithm into teaching, learning and assessment (LTA) systems to become (pre-
assessment) PLTA systems. 

 

This paper first discusses Bayes, complement of probability or difference of probability for 

occurrences of learning events, before applying them in the predication of learning objects in 
student learning. Like Bayes, the difference of probability computation is a model of supervised 

learning algorithm for recommender systems. Within a sample space 𝑆 , the total probability 

𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟(𝑆) = 1. Probability is a measure of the ratio of an event E in comparison to total 
number of occurrences S. In a finite space A, the complement of probability of an event denoted 

by 𝑃𝑟(¬𝐸), is that which is not occurring; and of that which has occurred is given as 𝑃𝑟(𝐸). 

Therefore  

 

𝑃𝑟(𝐸) +  𝑃𝑟(¬𝐸) = 1  (1) 

 

𝑃𝑟(¬𝐸) = 1 - 𝑃𝑟(𝐸)  (2) 
 

On the basis of Bayes, probability is a supervised learning technique for intelligent prediction, 

classification and recommendation of actions to be taken as per effective decision making. 

Supervised machine learning technique takes a set of inputs 𝑥𝑖 and outputs 𝑦𝑖 as training model 

𝑇(𝑥𝑖 , 𝑦𝑖). This is in turn used for future prediction denoted as 𝑇(𝑥𝑖 , ? ) based on a set of unknown 

but related dataset present in the training set; where the wildcard ? is the expected prediction. In 

this paper, we show that the computation of the 𝑃𝑟(¬𝐸)on the basis of complement theorem is 

the student missing skill-set. Given a set of 1, 2, 3, … , 𝑛 learning objects where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤
𝑛, according to Bayes’ rule e.g. [3, 4, 5]; it holds that the 𝑃𝑟(¬𝐸) is 

 

𝑃𝑟(𝐸𝑖|𝐴) =  
𝑃𝑟(𝐸𝑖 ∩ 𝐴)

∑ 𝑃𝑟(𝐴 ∩ 𝐸𝑖)𝑛
𝑖=1

 (3) 

 

which determines the maximum A posterior probability value of the pre-assessment object 𝐸𝑖 

amongst the 𝑛  learning modules in the sample space 𝐴  or objects that are recommended to 

students after some pre-assessments performance.  

 

1.1. Contribution of this Paper 
 
The contributions of this paper are  

 

i) the computation of probability of the occurrence of student skill-set,  

ii) complement of probability computation as a representation of skill-sets that are 
required by students (because the skills did not occur in the student knowledge given 

that they were failed at pre-assessment), 

iii) verification and applicable extension of the difference of probability computation in 
students’ pre-skill assessments using Bayes’ rule, and  

iv) estimating uncertainty with student performance dataset and the effect of uncertain 

prediction on learning material.  

 
The rest of this paper continues with Section 2 presenting related works on the theory of 

probability. Section 3 presents the difference of probability and its relationship with complement 

of probability, and in furtherance to Bayes’ theorem for prediction in student learning. With the 
use of the dataset gathered from prior study on the pre-assessments of SQL query statements, the 

section showed the application of Bayes’ in the computation of recommendation of learning 

objects. From our programmable architecture, section 4 discusses our programmable calculation 
and the iterative process involved in the derivation of the predictive probability theory for 
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recommendation of learning. In addition, the section calculated information entropy that 
determines the impurity in the skill-set data as well as decision tree modelling from the dataset. 

Section 5 conclusions. 

 

2. RELATED WORKS 
 
By and large, inference probability approaches are applied to a range of applications. With 

emphasis on binary classification such as defective or non defective, the work of [6]  surveyed 

several application areas and sub-areas in which binary function q ϵ {0,1}classification have been 
used. The areas covered in the survey are namely; medical testing and disease 

classification/treatment (via rule based classification method for clinicians using AND or OR 

clauses), biology (DNA testing, Counting defective items), telecommunications (Multiple access 
channels, Cognitive radios), information technology (Data storage and compression, cyber 

security, database systems, Bloom filters), and data science (Search problems, Sparse inference 

and learning, Theoretical computer science). Probability in such areas as these are applied to 

discover small entities within a large pool of items [6].   
 

Mathematical models of classification and prediction are generally geared towards the reduction 

of human intervention in our daily routines and process and to improve efficiency and 
productivity.  In mental health evaluation of college students, [7] observed that through the use of 

fuzzy mathematics in combination with entropy weight on analysis of experimental data, 

comprehensive mathematical evaluation model is established. In their research study, [8] also 

applied the entropy weighted method and Discrete Hopfield neural nets for the evaluation and 
classification of higher education systems and standards in different countries using MATLAB. 

As such, there are many approaches to the problem of classification and prediction. In table 1, 

this paper presents a brief summary of four computational models for decision making in 
classification and their characteristics; and in furtherance Bayes’ theorem which is the basis for 

this paper.  

 
Table 1: Comparison of Some of Computational Decision Models [9] 

 
Model Comparison Performance Metric Recommendation 

Naïve Bayes *Naïve Bayes is popular and suitable 

for large input data.  

*Each feature in the input vector are 

conditionally independent.  

*This ML technique has low 

computational(space and time) 

complexity.  

 

 

- 

*Probability 

computation based on 

the application of 

Bayes formula. 

*For large dataset. 

CART 

(classification 

and Regression 

Tree) 

*Ability to generate fuzzy rules for 

prediction purposes. 

 

- 

*For rule-based 

prediction and 

generation. 

Random Forest *Has the ability to perform better than 
decision tree algorithms. 

- *For aggregation of n 
number of decision 

trees. 

J48 (Decision 

Tree algorithm)  

*J48 is a ML algorithm that has the 

ability to select specific features or 

instances and theirmissing attributes.  

*It has the ability to support both 

continuous and categorical instances 

in the process of tree construction. 

J48 (67.15%) had 

better performance 

than CART 

(62.28%), SVM 

(65.04%), KNN 

(53.39%).  

*High prediction 

accuracy. 

*Easy to use. 

*Tree pruning. 

*Classification of 

tree into positive and 

negative instances, 

respectively. 
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2.1. Bayes  
 

Naive Bayes has been ascertained to be a simple algorithm, yet performs very well [10] e.g. in 

text and document analysis and classification [11] [12] [13] [14] [15]. In [5], when the “prior” 

probabilities 𝑃(𝐴𝑖) and the likelihood 𝑃(𝐵|𝐴𝑖) to obtain B for each𝐴𝑖are known for a number of 

events 𝐴𝑖 = E space, then it holds that  

 
 

𝑃(𝐵|𝐴𝑖) =
𝑃(𝐵|𝐴𝑖.  𝑃(𝐴𝑖)

∑ 𝑃(𝐵|𝐴𝑗)𝑃(𝐴𝑗)𝑛
𝑖=1

.  

 

Bayes theorem or rules is a machine learning technique for classifying and making predictive 

analysis after learning from a set of data and events for effective decision making [16]. On 
classification problem, the work of [16] reported and argued that studies have observed that 

Bayes algorithm has better performance, e.g. [17, 18]. J48, on the other hand, has also been 

shown to have better performance given the work of [19] . In the comparison of Naïve Bayes to 
Complement Naïve Bayes, [16] states that both are algorithms that are commonly used for texts 

classification because of their fast and easy implementation. In the same vein, that both has 

shown some advantages and disadvantages. From experimentation and result,  [16] observed that 

performance of Complement Naïve Bayes is better than performance of Naïve Bayes. 
 

2.2. The Objective and Subjective Approach to Prediction 
 

The foundation of probability theory has been widely attributed to a game of chance experiment 

[3] [5] [20]. Yet, further development has seen increased approaches to probability application in 

different domains of machine learning. In learning, teaching, and assessment (LTA), “knowing” 
is subjective to the “knower”. The question is: can probability be applied in: i) prediction of the 

outcome of a student’s (pre)assessment, and ii) prediction of the requisite knowledge: on the 

basis of the skill-sets that has been learned; not-yet-learned or learned-and-unlearned (i.e. 
forgotten)? Conversely, is the law of large number [5] [20] adequate enough to provide answers 

to this questions? Data obtained from experiment are always objective [5]. But in LTA, the 

probability of predicting a student to learn some failed skill-set or to progress to a higher learning 

after all pre-assessments are passed is subjective to the dataset at hand and to a specific domain 
of learning content. This is just as the knowledge of the student on a given content is subjective to 

that content or student. Hence, the more reason why probability has been described as a personal 

degree of belief and ability that depends on a person’s knowledge, experience or specific context 
[5]. A concept can be learned and unlearned and then re-learned. This is because learning can be 

fluid and highly volatile.  

 

2.3. The Expected Value 

 

The computation of all probabilities of the events or elements in a sample space 𝐴 = 1 which is 
equivalent to 100%. In teaching and learning, the goal of any student is to achieve 100% score 

performance during evaluation. This is the expected maximum value. A student attaining the 

probability of 1 in a given pre-assessment episode must have passed all the pre-assessment 
quizzes, and in that manner, progresses to a higher level of learning — called the student’s 

desired concept [21] [22] [23] [24]. Thus, the expected maximum value for a set of all passed 

performance 𝑃𝑖 where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 is defined as 

 

𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟(𝑃𝑖)  =  1 (4) 

 

In [20] this is stated as 
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∑ 𝑚(𝜔) = 1

𝜔∈𝐸

 

 
where event 𝜔 ∈ Ω  space, and 𝑚  a real-value distribution function such that 𝑚(𝜔)  ≥ 0 . 

Therefore, the maximum A posterior in eq.3 and eq.4 are equivalent and are defined as 

 
∑ 𝑃𝑟(𝑃𝑎𝑠𝑠𝑖| 𝐴) ≡  argMax𝑃𝑟(𝑃𝑎𝑠𝑠𝑖|𝐴)  = 1𝑛

𝑖=1  (5) 

 

Then, it holds that  

𝑃𝑟(𝐹𝑎𝑖𝑙𝑘) =  ∑ 𝑃𝑟(𝑃𝑎𝑠𝑠𝑖|𝐴) − 𝑛
𝑖=1 ∑ 𝑃𝑟(𝑃𝑎𝑠𝑠𝑗|𝐴)𝑛

𝑗=1  (6) 

 

where 𝑃𝑟(𝐹𝑎𝑖𝑙𝑘) is the probability weight of the 𝑘 learning objects needed by the student.  From 

the foregoing, it also holds that the difference of probability equals Bayes’ probability output 
which also predicts the needed learning object. Thus, combining eq. 3 and eq. 6, we have 

 

𝑃𝑟(𝐸𝑖|𝐴) =  ∑ 𝑃𝑟(𝑃𝑎𝑠𝑠𝑖|𝐴) − 𝑛
𝑖=1 ∑ 𝑃𝑟(𝑃𝑎𝑠𝑠𝑗|𝐴)𝑛

𝑗=1   (7) 

 

3. METHOD OF DIFFERENCE OF PROBABILITY FOR STUDENT LEARNING 

PREDICTION  
 
In this work, the difference of probability computation is based on the complement theorem of 

sets. It is a technique that is employed to compute the probability that represents appropriate 

materials needed for student learning based on some pre-assessment dataset in [23]. In formal 

education, learning is sequential and chronological given the order of learning in curricula. In 
Figure 1 is a knowledge graph that represents a set of knowledge modules in SQL programming 

which are interdependent on each other in accordance to the structure. The graph comprises three 

parent nodes, namely, delete, insert and select that are linked to their respective leaf nodes. The 
inter-relationship between parent nodes depicts that, for instance, the select node is a prerequisite 

to both insert and delete nodes. In other words, to learn the node insert or delete, a student must 

have a complete mastery of the leaf nodes pre-assessed upon and passed all the leaf nodes of the 
select module by the pre-assessment system [21] [23].  The difference of probability computation 

of this paper is illustrated considering the graph structure of Figure 1.  

 

Now, let us consider the 𝑠𝑒𝑡 𝑆 of two learning objects as 

 
  𝑆 =  {𝑑𝑒𝑙𝑒𝑡𝑒, 𝑠𝑒𝑙𝑒𝑐𝑡} (8) 

 

 
 

Figure 1: A knowledge graph of finite set of learning objects of multiple horizontal and vertical traversal 
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Based on Figure 1, the objects 𝑑𝑒𝑙𝑒𝑡𝑒 and 𝑆𝑒𝑙𝑒𝑐𝑡  are parent nodes to some other leafnode 

objects. Using the notation 𝑆 = {{𝑆1}, {𝑆2}}, we have  
 

𝐴 = {𝐷𝑒𝑙𝑒𝑡𝑒 = {𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑇𝑎𝑏𝑙𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒𝑊ℎ𝑒𝑟𝑒},   
                                       𝑆𝑒𝑙𝑒𝑐𝑡 = {𝑠𝑒𝑙𝑒𝑐𝑡𝑂𝑟𝑑𝑒𝑟𝐵𝑦, 𝑠𝑒𝑙𝑒𝑐𝑡𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡, 𝑠𝑒𝑙𝑒𝑐𝑡𝑊ℎ𝑒𝑟𝑒, 𝑠𝑒𝑙𝑒𝑐𝑡𝐴𝑙𝑙}}

 (9)  
Since, each leafnode object have two possible states Pass and Fail, then we have the <Pass | 

Fail> decision-state per leafnode for the student skills status assessments in the form  

 

𝑆 = {{𝑆1{< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}}, {𝑆2{< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}}, … , {𝑆𝑛{< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}}}  (10) 

From eq.10, we expand  

 

S = {delete = {deleteSelect = {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}, deleteWhere = {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}, truncateTable 

= {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}}, 

 

select = {selectOrderBy = {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}, selectDistinct = {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}, selectWhere 

={< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >},  
                     

   selectAll = {< 𝑃𝑎𝑠𝑠|𝐹𝑎𝑖𝑙 >}}} (11) 

 

3.1. Bayes’ Theory of Classification and Object Prediction 
 

In this section, we present the prediction model of the needed (or recommended) learning on the 
basis of Bayes’ rule. If a student fails a pre-assessment quiz, the computed probability, as shown 

below, is a representation of the proportion of the quiz(zes) relative to the overall pre-assessment 

performance. The computation of needed learning using Bayes’, is also computable using 
complement theory or difference of probability as shown from eq. 1 - 7. Given eq.10, it is implied 

that the recommended materials are based on the set 𝐴 = <  𝑃𝑎𝑠𝑠 | 𝐹𝑎𝑖𝑙 > student performance     

 

From Bayes’, specifically, for a higher level of topic prediction, i.e. the probability of getting to 
learn a Desired_Concept given the performance of all passed pre-assessments 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑷𝒂𝒔𝒔is 

 

𝑃𝑟(𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐶𝑜𝑛𝑐𝑒𝑝𝑡 | 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒𝑝𝑎𝑠𝑠) = 
𝑃𝑟(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒𝑝𝑎𝑠𝑠  | 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐶𝑜𝑛𝑐𝑒𝑝𝑡)∗ 𝑃𝑟(𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐶𝑜𝑛𝑐𝑒𝑝𝑡)

𝑃𝑟(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒𝑝𝑎𝑠𝑠)

 (12) 

 

The probability of having a leafnode recommended given the set of performance is  
 

𝑃𝑟(𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒| 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) =
𝑃𝑟(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|𝑙𝑒𝑎𝑓𝑛𝑜𝑑𝑒)∗𝑃𝑟(𝑙𝑒𝑎𝑓𝑛𝑜𝑑𝑒)

𝑃𝑟(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒)
 (13) 

 

Computing probability for a Leafnode implies that the Leafnode has not been passed. As such, it 
is not yet part of the required skill-set to progress to a higher-level node learning in the 

knowledge graph. Essentially, 𝑒𝑞. 12 and 13  generalizes to 

 

𝑃𝑟(𝑁𝑜𝑑𝑒𝑗| 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) = 
𝑃𝑟(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 | 𝑁𝑜𝑑𝑒𝑗)∗ 𝑃𝑟(𝑁𝑜𝑑𝑒𝑗)

∑ 𝑃𝑟(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 | 𝑁𝑜𝑑𝑒𝑖)∗ 𝑃𝑟(𝑁𝑜𝑑𝑒𝑖)𝑛
𝑖=1 )

 (14) 

 

where DesiredConcept, LeafNode or Node are quantities which reflects the weighted probability 

of learning given the students’ performance. 
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With regards to eq.11; suppose a learning object is chosen at random for pre-assessment, what is 
the probability of having that same object recommended for learning: In other words, it is having 

a Fail in that pre-assessment, therefore the probability of a Fail (which is similar to saying the 

probability of recommending the 𝑁𝑜𝑑𝑒𝑗 in eq.14 is 

 

𝑃𝑟(𝐹𝑎𝑖𝑙𝑗|𝐴) =
𝑃𝑟(𝐹𝑎𝑖𝑙𝑗 ∩ 𝐴)

∑ 𝑃𝑟(𝐹𝑎𝑖𝑙𝑖 ∩ 𝐴)𝑛
𝑖=1

 (15) 

 

Having stated the probability of a node prediction on the basis of Bayes’ rule; now using a set of 

student performance data from Table 2--- an extraction from the pre-assessment dataset of [23], 
in the following section; we then provide cases to illustrate the foregoing formulas. 

 

3.2. Case I: A Single Parent-Node Object and Probability of Instance Leafnode 

Prediction 
 

Let us consider the parent-node select (Fig. 1) where the elements of  𝑠𝑒𝑙𝑒𝑐𝑡 =
 {𝑆𝑂𝐵, 𝑆𝐷, 𝑆𝑊, 𝑆𝐴}. From the dataset (Table 1), a given student’s performance that is also shown 

in an onto mapping (Fig. 2) is the set  

 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒔𝒕𝒖𝒅𝒆𝒏𝒕   =  {𝐹𝑎𝑖𝑙, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠}  (16) 
 

Then, the marginal probability for the set given in eq.16 is  

  

𝑃𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵) ≡ Pr (𝑆𝑂𝐵) =   
1

4
= 0.25   

 

which represents the probability weight of the needed knowledge by the student. 
 

Table 2. Cross-section of individual-student performance 

 

 
 

 

 

 

 
 

 

 
 

 

Parent 

Node 

Child 

Objects 

Pass Fail Total 

              

Select 

SOB 0 1 1 

SD 1 0 1 

SW 1 0 1 

SA 1 0 1 

              

Delete 

TT 1 0 1 

DW 0 1 1 

DS 0 1 1 

Total  4 3 7 
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Figure 2. Onto mapping of children of the Select instance to some student performance outcome. 

 

3.3. Case II: Multiple Parent-Node Objects and Probability of Instance Leafnode 

Recommendation 
 

Again, from Figure 1, let the set 𝐴 =  {𝑆𝑒𝑙𝑒𝑐𝑡, 𝐷𝑒𝑙𝑒𝑡𝑒}; and from eq. 9, we have the set 𝐴 =
 {{𝑆𝑂𝐵, 𝑆𝐷, 𝑆𝑊, 𝑆𝐴}, {𝐷𝑆, 𝐷𝑊, 𝑇𝑇}} . Based on Table 2, we have the set of a given student 

performance as 

 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒔𝒕𝒖𝒅𝒆𝒏𝒕 = {{𝐹𝑎𝑖𝑙, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠}, {𝐹𝑎𝑖𝑙, 𝐹𝑎𝑖𝑙, 𝑃𝑎𝑠𝑠}}  (17) 

 

Applying the rule in eq. 15, the probability of recommending a failed node for re-learning in the 

subset of 𝐴 =  𝑠𝑒𝑙𝑒𝑐𝑡 parent-node is computed as follows: 
 

𝑃𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵| 𝐴)  =   
𝑃𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵 ∩ 𝐴)

𝑃𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵∩ 𝑆𝑒𝑙𝑒𝑐𝑡) + 𝑃𝑟(𝐹𝑎𝑖𝑙𝐷𝑒𝑙𝑒𝑡𝑒∩ 𝐷𝑒𝑙𝑒𝑡𝑒)
 (18) 

 

Suppose a student make a random choice of a Desired_Concept to learn, which maybe higher in 

hierarchy such as the parent-node delete(Figure 1). Automatically, that makes the prerequisite 

nodes to the 𝐷𝑒𝑠𝑖𝑟𝑒𝑑_𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑝𝑟𝑒𝑟𝑒𝑞 = {𝑠𝑒𝑙𝑒𝑐𝑡, 𝑖𝑛𝑠𝑒𝑟𝑡} and 𝐷𝑒𝑠𝑖𝑟𝑒𝑑_𝐶𝑜𝑛𝑐𝑒𝑝𝑡 =  {𝑑𝑒𝑙𝑒𝑡𝑒} . 

Since we have been working with the set 𝐴 =  {𝑠𝑒𝑙𝑒𝑐𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}; firstly, we need the probability 

of a random choice that resulted in the student performance of eq.17. Thus, from the two parent -

objects 𝐴 =  {𝑠𝑒𝑙𝑒𝑐𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}, the probability of recommending a node to learn is  

𝑃𝑟(𝑆𝑒𝑙𝑒𝑐𝑡) =  𝑃𝑟(𝐷𝑒𝑙𝑒𝑡𝑒) =  
1

2
 = 0.5  

From eq. 17,  

 𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒔𝒕𝒖𝒅𝒆𝒏𝒕 = {{3𝑃𝑎𝑠𝑠, 𝐹𝑎𝑖𝑙}, {𝑃𝑎𝑠𝑠, 2𝐹𝑎𝑖𝑙}} = 7 outcomes.  
 

Therefore, in the set 𝑨𝟏  =  𝑺𝒆𝒍𝒆𝒄𝒕,  

𝑃 𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵) ≡  𝑃𝑟 (𝑆𝑂𝐵) =
1

7
 

Similarly, in the set 𝑨𝟐  =  𝑫𝒆𝒍𝒆𝒕𝒆, 

𝑃 𝑟(𝐹𝑎𝑖𝑙𝐷𝑆,𝐷𝑊) ≡  𝑃𝑟(𝐹𝑎𝑖𝑙𝐷𝑒𝑙𝑒𝑡𝑒) =  
2

7
 

From e.q.18,   
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𝑃𝑟(𝐹𝑎𝑖𝑙𝑆𝑂𝐵|𝐴) =   

1
2  ∗  

1
7

(
1
2 ∗  

1
7

) + (
1
2 ∗  

2
7

)
=  0.33 ≅ 33% . 

 

3.4. Complement Theory for Prediction of Learning Materials 
 
Complement seeks to sort out the quantity that is missing from a whole sum of events either by 

difference operation or by negation. In set theory, suppose the set 𝐴 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑓} and set 𝐵 =
 {𝑏, 𝑑, 𝑓}; then 𝐴 −  𝐵 =  {𝑎, 𝑐}. Expressed as the complement of B, we have 

 

¬𝐵 =  {𝐴 −  𝐵} 

and in probability as  

 

𝑃𝑟(𝐴𝑐) = 1 − 𝑃𝑟(𝐴) (19) 
 

Our application of the complement theory in computing learning object or material 

recommendation requires that the lengths of the elements of set 𝐴 (i.e. minuend) and that of set 𝐵 

(subtrend) in the difference operation be equal in number of elements e.g. the set 𝐴 =  {𝑃𝑃𝑃𝑃} 

and set 𝐵 =  {𝑃𝑃𝐹𝑃}. 

 

3.5. Definition 
 

Given that the sets 𝐴  and 𝐵  have equal length of elements, the complement of probability 

between the sets 𝐴 and 𝐵 is 
 

𝑃𝑟(𝐴)  −  𝑃𝑟(𝐵)  =  𝑃𝑟({𝑥 | 𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ¬∈ 𝐴})  (20) 

𝑃𝑟({𝑃𝑃𝑃𝑃})  −  𝑃𝑟({𝑃𝑃𝐹𝑃})  =  𝑃𝑟({𝐹}) 

 
where the weighted probability of Pass  

 

𝑃𝑟({𝑃𝑃𝑃𝑃}) ≡  ∑ 𝑃𝑟(𝑃𝑖)𝑛
𝑖=1  ≡ 𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟(𝑃𝑃𝑃𝑃) = 1. 

 

Thus, the difference of probability of the set 𝐴 and set 𝐵 is 
  

𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟({𝑃𝑃𝑃𝑃}) − 𝑃𝑟({𝑃𝑃𝐹𝑃}) =  𝑃𝑟({𝐹}) 

 

which is the probability of the failed learning object, and by computation is  
 

1 − 
3

4
 =  

1

4
 ≅ 0.25 

As a model of computation for pre-assessment and material recommendation in learning and 

teaching, in Figure 3 is a corollary for a generalized probabilistic approach in this work.  
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Corollary 1: 

 
Figure 3. Difference of probability generalization for prediction of learning object 

 

The second part of the Corollary equates to 0 (Fig. 3). In information theory, if entropy H(s) = 0, 

then there is no impurity in the given attributes of a dataset.  In analogy,  

 

𝒂𝒓𝒈𝑴𝒂𝒙𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒊+𝟏 | 𝑨) − 𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒋+𝟏 | 𝑨) =  𝟎 

 

implies that a student lacks no skills amongst the skillsets pre-assessed upon: The interpretation 

of the expression equals to zero means there is no impurity in the student “knowledge” within the 
range of the pre-assessed learning objects. Conversely, 

 

𝒂𝒓𝒈𝑴𝒂𝒙𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒊+𝟏 | 𝑨) − 𝑷𝒓(𝑭𝒂𝒊𝒍𝟏 … 𝑭𝒂𝒊𝒍𝒋+𝟏 | 𝑨) =  𝟏 

 

implies that the student has gained no knowledge, as such will have to relearn all concepts. 
 

4. DISCUSSION 
 

Previous and related studies of [21] [23] have described and formalized logical techniques for the 

pre-assessment of skills and recommendation of learning materials. This covered the use of 
inductive logic programming and inter-agent (multi-agent) communication system. Based on the 

extract of the dataset in [23], this paper extends the recommendation of appropriate, relevant and 

real-time learning materials but in the perspective of probability theorem.   
 

4.1. Computing the Probability for Passed Pre-assessments  

 

Firstly, from eq.11, we can compute the probability of a student scoring a pass given <
𝑃𝑎𝑠𝑠 | 𝐹𝑎𝑖𝑙 >on any leafnode object as  

 

𝑃𝑟(𝑃𝑎𝑠𝑠) =
1

2
. 

 

As independent action events, a student can only be in one state i.e. either Pass or Fail at any 
given time based on his/her skill sets. The outcome of either a Pass or Fail state signals the 

transition to a new state after an action on a pre-assessment event. The action taken is the 

submission of an answer response to a quiz on a pre-assessment system. The 𝑃𝑟(𝑃𝑎𝑠𝑠) is a 

measure of skill sets that the student has already acquired. We can compute the probability of 
skill competencies using complement theory to determine:  

In a finite set of 𝑛 learning objects where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 such that each object 𝑖 have both 

the 𝑃𝑎𝑠𝑠 and 𝐹𝑎𝑖𝑙 decision states for student pre-learning assessment skillset status; if a given 

student is pre-assessed on some 𝑛 learning objects, then the difference of probability between the 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of the 𝑖 objects and the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of 𝑗 number of 𝑃𝑎𝑠𝑠𝑒𝑠 

earned by the student is equal to the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of the 𝑘  number of 𝑓𝑎𝑖𝑙𝑒𝑑 learning object 
probability. That is, 

𝒂𝒓𝒈𝑴𝒂𝒙𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒊+𝟏 | 𝑨) − 𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒋+𝟏  | 𝑨) =  𝑷𝒓(𝑭𝒂𝒊𝒍𝟏 … 𝑭𝒂𝒊𝒍𝒌+𝟏 | 𝑨) 

Otherwise; 

𝒂𝒓𝒈𝑴𝒂𝒙𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒊+𝟏 | 𝑨) − 𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒋+𝟏 | 𝑨) =  𝟎 

and  

  𝒂𝒓𝒈𝑴𝒂𝒙𝑷𝒓(𝑷𝒂𝒔𝒔𝟏 … 𝑷𝒂𝒔𝒔𝒊+𝟏 | 𝑨) − 𝑷𝒓(𝑭𝒂𝒊𝒍𝟏 … 𝑭𝒂𝒊𝒍𝒋+𝟏 | 𝑨) =  𝟏 
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 The knowledge already acquired that will propel the student to a higher learning; or 

 The knowledge required to be learned before any progression to a higher-level learning. 
 

4.2. Complement Theory for Leafnode 𝑵𝒊 Recommendation: 𝑵𝒊 ⊊ 𝑪 Parent-Node  
 

Let 𝑁𝑖  be some set of leafnodes underneath a prerequisite parent node C [21] [22] [23]. 

Computing a Pass probability over some learning objects asserts that a student has passed the 

learning object pre-assessed upon and that the student has acquired some (but not all) skills. On 

the other hand, the recommendation for a higher learning object after pre-assessment requires that 
all the learning objects pre-assessed upon must be passed. Otherwise, in this paper we show that 

if some learning objects are failed, then the complement of Pass probability  𝑃𝑟(¬𝑃𝑎𝑠𝑠𝑗) 

computation be used in the computation of weighted-probability of the needed or requisite 

knowledge.   

 
Now consider the set of student performance on a single parent node using eq.16. Based on the 

first part of our Corollary (Fig. 3) or eq.19,  

 

𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟(𝑃𝑎𝑠𝑠1, … , 𝑃𝑎𝑠𝑠𝑖  | 𝐴) − 𝑃𝑟(𝑃𝑎𝑠𝑠1, … , 𝑃𝑎𝑠𝑠𝑗| 𝐴) =  𝑃𝑟(𝐹𝑎𝑖𝑙1, … , 𝐹𝑎𝑖𝑙𝑘| 𝐴) 

the probability of a failed learning recommendation given the node  

 

𝑆𝑒𝑙𝑒𝑐𝑡 = {𝐹𝑎𝑖𝑙, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠, 𝑃𝑎𝑠𝑠} 

𝑃𝑟(𝑃𝑃𝑃𝑃 |𝐴 = 𝑆𝑒𝑙𝑒𝑐𝑡) - 𝑃𝑟(𝑃𝑃𝑃𝐹 | 𝐴 = 𝑆𝑒𝑙𝑒𝑐𝑡) = 𝑃𝑟(𝐹 | 𝐴 = 𝑆𝑒𝑙𝑒𝑐𝑡) 

= 1 - 
3

4
=

1

4
= 0.25 

 

and for the set of 𝐷𝑒𝑙𝑒𝑡𝑒 where the student performance 𝐴 =  {𝑃𝑎𝑠𝑠, 𝐹𝑎𝑖𝑙, 𝐹𝑎𝑖𝑙}, the probability 

of the recommendation of failed learning recommendation is also computed as 

 

𝑃𝑟(𝑃𝑃𝑃 |𝐴 = 𝐷𝑒𝑙𝑒𝑡𝑒) - 𝑃𝑟(𝑃𝐹𝐹 |𝐴 = 𝐷𝑒𝑙𝑒𝑡𝑒) = 𝑃𝑟(𝐹𝐹 |𝐴 = 𝐷𝑒𝑙𝑒𝑡𝑒) 

= 1 - 
1

3
=

2

3
= 0.67. 

From the foregoing, we state that 

 

[𝑃𝑟(𝑃𝑃𝑃𝑃 |𝐴) - 𝑃𝑟(𝑃𝑃𝑃𝐹 |𝐴)] − [𝑃𝑟(𝑃𝑃𝑃|𝐴) - 𝑃𝑟(𝑃𝐹𝐹 |𝐴)] = 𝑃𝑟(𝐹|𝐴) + 𝑃𝑟(𝐹𝐹 |𝐴). 
 

Recall that our corollary also states that  

 

𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟(𝑃𝑎𝑠𝑠1 … 𝑃𝑎𝑠𝑠𝑖| 𝐴) − 𝑃𝑟(𝑃𝑎𝑠𝑠1 … 𝑃𝑎𝑠𝑠𝑗| 𝐴) =  0 

 

This is the case in which all learning objects 𝑖 𝜖 𝑆 that are pre-assessed upon are all Passed: no 
prerequisite to learn. The difference of probability = 0 implies that in the exercise, a Failed pre-

learning assessment will never occur; and when this is the case, the student is recommended an 

immediate higher learning objects of a parent node i.e. the desired learning object (or topic) that 

invoked the pre-assessed objects. For example, if the pre-assessed parent object 𝐴 =  𝐷𝑒𝑙𝑒𝑡𝑒, 

then the desired topic will be 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐶𝑜𝑛𝑐𝑒𝑝𝑡 =  𝑈𝑝𝑑𝑎𝑡𝑒 (Fig. 1). Therefore, it holds that 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑎𝑖𝑙𝑘 =  
(𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑛𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑠𝑠𝑗)

∑ 𝑎𝑟𝑔𝑀𝑎𝑥𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛
𝑖=1 − 𝑛𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑠𝑠𝑗

 

and the algorithm given in Figure 4 and the architecture in Figure 5.  
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Figure 4. Architecture of Complement of Probability: Difference probability. 

 

4.3. Iterative Computation of Difference of Probability Operation  
 

Every assessment has a number of 𝑖 learning objects whose maximum expected value = 1.  As 

earlier stated e.g. in eq.19; the difference probability determines the weight of the learning 
material recommended such that 0 implies maximum knowledge with no impurity in the student 

skillset, and 1 being the worst-case scenario where the student has not gained any competency on 

the pre-assessed number of 𝑖 learning objects. Therefore, given the set of 𝑖 learning objects where 

1 ≤ 𝑖 ≤ 3, we can iteratively determine the weighted probability of the recommended material 
using the difference probability operation as follows: 

 

If 𝑖 =  1 then 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1) = 1: 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1 | 𝐴) − 𝑃𝑟(𝐹1| 𝐴) = 1   To learn 100% Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1 | 𝐴) − 𝑃𝑟(𝑃1| 𝐴) = 0   To progress higher. No Failed 

object. 

If 𝑖 =  2 then 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2) = 1:    

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2 | 𝐴) − 𝑃𝑟(𝑃1𝐹2| 𝐴) = 0.5   To learn 0.5 or 50% 

Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2 | 𝐴) − 𝑃𝑟(𝐹1𝑃𝐹2| 𝐴) = 0.5  To learn 0.5 or 50% Failed 

object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2 | 𝐴) − 𝑃𝑟(𝐹1𝐹2| 𝐴) = 1   To learn 100% Failed 

object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2 | 𝐴) − 𝑃𝑟(𝑃1𝑃2| 𝐴) = 0   To progress higher. No 
Failed object. 
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If 𝑖 =  3 then 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3) = 1: 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝑃1𝑃2𝐹3| 𝐴) = 0.33  To learn 0.33 or 33% 

Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝑃1𝐹2𝑃3| 𝐴) = 0.33  To learn 0.33 or 33% 

Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝐹1𝑃2𝑃3| 𝐴) = 0.33  To learn 0.33 or 33% 

Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝑃1𝐹2𝐹3| 𝐴) = 0.67  To learn 0.67 or 67% 
Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝐹1𝑃2𝐹3| 𝐴) = 0.67  To learn 0.67 or 67% 

Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝐹1𝐹2𝑃3| 𝐴) = 0.67  To learn 0.67 or 67% 
Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝐹1𝐹2𝐹3| 𝐴) = 1  To learn 100% Failed object. 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑟(𝑃1𝑃2𝑃3 | 𝐴) − 𝑃𝑟(𝑃1𝑃2𝑃3| 𝐴) = 0  To progress higher. No Failed 

object. 
 

If i = ∞ then … 

 

For a given number of learning objects 𝑛, Table 3 illustrates further the probability computation 

and in Figure 5 the probability distribution of the ratio of Pass probabilities 𝑃𝑖 to that of Fail 

probabilities 𝐹𝑖  over a given sample size n. As shown in Table 3, the computed values depict 

weighted learning materials. For instance, for n = 5; if 𝑃5 = 0.2, then 𝐹5 = 0.8: an indication 

that 0.2 is the weighted learning material that was passed and  0.8 the weighted-learning material 

failed. Thus, computation of weighted-probability learning material for 𝑃𝑖  can be determined 

from the computation of weighted probability of 𝐹𝑖 and vice versa; such that, if 𝛿 ∈ {𝑃, 𝐹} and 

0 ≤ 𝛿 ≤ 1, then 𝑃𝑟(𝑃𝑖) + 𝑃𝑟(𝐹𝑖) = 1. 
 

Table 3: Probability of 𝛿 ∈ {𝑃𝑖 , 𝐹𝑖} 𝑓𝑜𝑟 0 ≤ 𝛿 ≤ 1 and n = 1, 2, 3, …, n 
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Figure 5. The weighted-probability distribution plot for recommendation of learning. Only column P1 

(from Table 3) across all learning objects depict 𝑷𝒂𝒔𝒔𝒆𝒔 for all prerequisite pre-assessments and 

subsequently the recommendation for students’ 𝐷𝑒𝑠𝑖𝑟𝑒𝑑_𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝐷. While other columns indicate the 

recommendation of 𝑭𝒂𝒊𝒍𝒆𝒅 learning of some or all prerequisite leaf nodes 𝑁𝑖. 

 

 

4.4. Dataset and Learning Material Prediction by Bayes’ Rule 
 

The preceding sections have demonstrated two theoretical approaches, namely, difference of 

probability over passed and failed learning objects and Bayes’ theorem for the prediction and 
recommendation of learning materials in teaching and learning process. In this section, we 

present weighted-probability computation based on the student pre-assessments’ dataset [23]. In 

the dataset there are parent node𝐶𝑖 and leafnode 𝑁𝑖 objects (Table 4); and as shown in 𝑒𝑞. 8 and 

9, respectively, 𝐶𝑖 is the set that contains the elements 𝑁𝑖. In this computation of learning object 

prediction using Bayes’ rule, we consider two parent node objects i.e. 𝐶 =  {𝑆𝑒𝑙𝑒𝑐𝑡, 𝐷𝑒𝑙𝑒𝑡𝑒} 

over a number of leafnode elements 𝑁𝑖.  

 
Table 4: An SQL pre-assessment dataset showing student performance [23] 

 
Parent-node 

object 

Leafnode object Pass Fail Total 

                                              

Select 

SelectOrderBy[SOB] 11 3 14 

SelectDistinct[SD] 14 1 15 

SelectWhere[SW] 14 0 14 

SelectAll[SA] 14 0 14 

                             

Delete 

DeleteSelect[DS] 5 16 21 

DeleteWhere[DW] 20 1 21 

TruncateTable[TT] 10 3 13 

Total  88 24 112 

 
From the data (Table 4), any leafnode that is failed is recommended for re-learning. Note that the 

number of Pass and Fail represents students’ performance for each respective leafnode element. 

In the hierarchy of nodes in our ontology tree (Fig. 1), a parent node 𝑐 𝜖 𝐶 has a higher height 

than its leaftnodes 𝑁𝑖. Now, consider the leafnode 𝐷𝑆 that recorded 16 Fails. We compute the 

weighted probability of having the 𝐷𝑆 node recommended (from the set 𝐷𝑒𝑙𝑒𝑡𝑒) relative to other 

nodes that are recommended. That is, the event of choosing a Desired_Concept or topic (parent 
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node) is prior to the event of pre-assessments on the leafnodes. Thus, in the pre-assessment 

system, a student chooses a topic ( 𝐷𝑒𝑠𝑖𝑟𝑒𝑑_𝐶𝑜𝑛𝑐𝑒𝑝𝑡  denoted as 𝐷 ) to study prior to pre-

assessments on the prerequisite leafnodes 𝐶 ⊇ 𝑁𝑖underneath the chosen topic 𝐷. From 𝑒𝑞. 18, 

according to Bayes’, we have 

 

𝑃𝑟(𝐹𝑎𝑖𝑙𝐷𝑆 |𝐴 = 𝐷𝑒𝑙𝑒𝑡𝑒) =
Pr(𝐷𝑒𝑙𝑒𝑡𝑒 ∩ 𝐹𝑎𝑖𝑙𝐷𝑆)

Pr (𝑆𝑒𝑙𝑒𝑐𝑡 ∩  𝐹𝑎𝑖𝑙𝑆𝑒𝑙𝑒𝑐𝑡) + 𝑝𝑟(𝐷𝑒𝑙𝑒𝑡𝑒 ∩  𝐹𝑎𝑖𝑙𝐷𝑒𝑙𝑒𝑡𝑒)
 

 

  =   
55

112
 ∗ 

16

20

(
57

112
 ∗ 

4

24
)+(

55

112
 ∗ 

20

24
)

=  
0.49 ∗0.8

0.51∗0.17+0.49∗0.83
= 0.78 ≅ 78%.  

 

From the foregoing; our customized model predicts that 78% of pre-assessments on the 𝐷𝑆 

(DeleteSelect) leafnode would be recommended to study to re-learn the 𝐷𝑆 query for mastery. 
 

4.5. Information Entropy on Student Cognitive Activities  
 
Information gain (IG) and Entropy H(s) are important metrics in the construction of J48 decision 

trees. While 𝐼𝐺  was used to determine the most important attribute (Select, Insert, Delete, 

Update, Join) that would become the root node in the decision tree, the 𝐻(𝑆) computes the 

amount of impurity present in each of the features on every given attribute in the dataset. In this 

work, the computed 𝐻(𝑆) in Table 6 depicts the values that quantifies the amount of skill-sets 

information that is present in the data.  

 
Table 5. Pre-assessment Dataset of student performance: extracted from [23] 

 

Pre-assessment Dataset 

Select Insert Delete Update Join Outcome 

SelectOrderBy InsertInto DeleteWhere UpdateSelect InnerJoin Fail 

SelectDistinct InsertSelect DeleteWhere UpdateWhere FullOuterJoin Pass 

SelectWhere InsertInto DelectSelect UpdateSelect SelectJoin Pass 

SelectDistinct InsertInto DeleteWhere UpdateWhere InnerJoin Pass 

SelectDistinct InsertInto DeleteSelect UpdateSelect InnerJoin Fail 

SelectAll InsertSelect DeleteSelect UpdateWhere InnerJoin Pass 

SelectWhere InsertSelect DeleteSelect UpdateWhere FullOuterJoin Pass 

SelectAll InsertInto DeleteSelect UpdateWhere FullOuterJoin Pass 

SelectOrderBy InsertSelect DeleteSelect UpdateSelect FullOuterJoin Fail 

 

In Table 5, we have the Outcome column with 6 Passes, and 3 Fails. Therefore, from 
 

H(S)  = − ∑ 𝑃(𝑥)𝑙𝑜𝑔2𝑃(𝑥)𝑥∈𝑁   

 
the Entropy(Outcome) ≡ Entropy(6, 3) i.e. passes = 6, fails = 3; where the number of passes and 

fails equals 9. Thus, the Entropy before the decision tree split is 

 

        =  −
6

9
𝑙𝑜𝑔2

6

9
−

3

9
𝑙𝑜𝑔2

3

9
 

               =  −0.667 ∗ −0.584 − 0.333 ∗ −1.586 
         = 0.39 + 0.528 

         = 0.918 uncertainty. 
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Subsequently, the information gain given the formula 

 

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑ 𝑃(𝑥)𝑙𝑜𝑔2𝑃(𝑥)

𝑛

𝑖=0

 

 

before and after the split for each attribute, as computed, is presented in Table 5.  

 

4.5.1. Zero Impurity 

 

In information theory, entropy 𝐻(𝑆)  =  0 implies zero impurity. Thus, in this paper, we interpret 

𝐻(𝑆)  =  0 to be very high information i.e. there is no impurity in student knowledge of the given 

learning object or subject area. Whereas, those with high H(S) = 1 or close to 1 implies little or 

no knowledge of the given tasks. As shown in Table 6, the leafnodes 𝑆𝑂𝐵, 𝑆𝑊, 𝑆𝐴, 𝑈𝑊, and 𝑆𝐽 

have 𝐻(𝑆)  =  0  impurity. Recall that in the preceding sessions we have demonstrated how 

complement of probability 𝑒𝑞. 19, difference of probability 𝑒𝑞. 20, and Bayes’ rule 𝑒𝑞. 12 –  15 

can be applied to predict the probable weight (through probability computations) of learning 

materials given the performance of students on the basis of the nodes in our ontology tree (Fig. 

1). In comparing Bayes probability to the 𝐻(𝑆)  =  0 impurity, now consider the customized 

Bayes’ 𝑒𝑞. 15: suppose there is no Fail in the number of leafnodes that were considered, then 

𝑃𝑟(𝐹𝑎𝑖𝑙𝑗| 𝐴) = 0.  Since there was no record of Fail, then this is invariably the probability of the 

recommendation of the student chosen topic called the 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝐷 in [21, 22, 24]. Thus, 

for teaching and learning, we draw the conclusion that where there is 0 impurity, then students’ 

knowledge and competency in these learning units are very high. While for instance, the 𝐻(𝑆) of 

the leafnode 𝑆𝐷 is computed as 0.306 or 31% lack of skill-set in the knowledge task; that of the 

leafnode 𝐷𝑊 resulted in 0.612 or 61% higher-lack of knowledge information. Therefore, from 

the notation 0 ≤  𝐻(𝑆)  ≤  1; we state that if information entropy H(S) = 0, then there is no lack 

of skill-set by the student on a given leafnode; otherwise some skill-set are needed to be filled for 
mastery of the given learning object.    

 

Table 6. Information gain pre-assessment dataset and entropy of performance attributes. 

 

Info Gain G(S, 

A) 

Entropy H(S) Info Gain G(S, 

A) 

Entropy H(S) 

                 

Select 
 

                     

1.219 

SOB 0 Impurity Update 0.558 US 0.36 Impurity 

SD 0.306 
Impurity 

UW 0 Impurity 

SW 0 Impurity         

Join 

                      

0.834 

SJ 0 Impurity 

SA 0 Impurity FOJ 0.36 Impurity 

Insert 0.738 IS 0.54 
Impurity 

IJ 0.444 
Impurity 

II 0.306 

Impurity 

    

Delete 1.225 DS 0.306 
Impurity 

    

  DW 0.612 

Impurity 
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4.6. Decision Trees: the J48 Algorithm in Weka 
 

Decision tree is a binary classification algorithm where the attributes in a dataset are split 

continuously so as to reach decision states or labels. In Table 4 are the dataset that contains two 
class labels Pass and Fail, five attributes and their respective features. As stated in [25], J48 

performs accurate results for classification problem. Thus, J48 [26] algorithm was chosen to 

implement the decision tree classification model given the set of attributes, features and class 

labels (Figure 6). The decision tree is a pruned tree in which the 𝑈𝑝𝑑𝑎𝑡𝑒 node splits into the 

𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡 and 𝑈𝑝𝑑𝑎𝑡𝑒𝑊ℎ𝑒𝑟𝑒 features and, subsequently, categorized into the Pass and Fail 

labels. The computed values for information gain (IG) and information entropy H(S) of the skill-

set pre-assessment data are presented in Table 6. From Table 6, the 𝐷𝑒𝑙𝑒𝑡𝑒 node has the highest 

𝐼𝐺 =  1.225 as well as the highest 𝐻(𝑆)  =  0.612 for 𝐷𝑊; and 𝑈𝑝𝑑𝑎𝑡𝑒 with the lowest 𝐼𝐺 =
 0.558. The decision tree in Figure 6 is built based on the best attribute and feature metrics of 𝐼𝐺 

and 𝐻(𝑆), respectively: that is, the Update node has the lowest impurity in the dataset. The 

decision tree depicts the 𝑈𝑝𝑑𝑎𝑡𝑒  attribute and its 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡  feature with 3  correctly 

classified instances of Fail and 1  incorrectly classified instance of Pass, and the 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑊ℎ𝑒𝑟𝑒 feature with all 5 instances correctly classified as Pass. This means that, based 

on the pre-assessment dataset, the 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡 learning object is predicted to be recommended 

for re-learning going by the number of 3 Fail instances to 1 Pass instance in the decision tree. Of 

the 9 total number of instances, 8 were correctly classified with 1 misclassification. However, in 

comparison to RandomForest, the confusion matrix showed no instance was incorrectly 

classified. Thus RandomForest performs better in classification than J48. 
 

4.7. Implication of Misclassification of Learning Objects to Student Learning 
 

We take special interest in the 𝟏 incorrectly classified learning instance by the J48 decision tree 

and discusses the implication of this on a given student. Whereas 4 Fail instances are correctly 

classified and recommended to be relearned (Fig. 6); the value 1 which is a misclassification is 
predicted to be a Pass. The implication of this 1 out of 5 classification is that learning has 

occurred in the student, whereas it has not. From Figure 6, the implication is that a given student 

should skip the learning of the failed unit of learning instead of re-learning and re-assessment. 
This should not be the case for a recommendation system in teaching and learning. Thus, for 

classification in teaching and learning, 100% accurate classification is unavoidable. Avenues for 

misclassification must be avoided otherwise gaps of learning would be left in the students. On the 

basis of the dataset, this decision tree algorithm, has left a gap in student’s skill set even with 
80% training and 20% test data.  

 

 
 

Fig. 6. J48 pruned decision tree visualization. The 𝑈𝑝𝑑𝑎𝑡𝑒 node has the least 𝐼𝐺(𝑆, 𝑈𝑝𝑑𝑎𝑡𝑒) =  0.558 that 

makes the most important decision tree with reduced impurity. 

 
In teaching-learning systems, misclassification of learning objects for recommendation is not in 

the best interest of a student: if some unit of learning that has not been learned is categorized to 

have been learned as shown by the decision tree classifier. Thus, teaching and learning algorithm 
such as the inductive logic programming (ILP) as applied in [21] [24]  must be used to deliver 
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accurate and exact materials for student learning. This is because learning internalizes structures 
of concepts and contents that, 1) meets the set standards of institutions, 2) gets institutional 

evaluation, and 3) post-learning application of knowledge to meet societal expectations; as 

against shopping-item recommendation systems that could be: 1) based on selective choice of the 

individual, 2) incidental, and 3) frivolous adventure. Thus, shopping-item recommendation is 
different from learning-material recommendation.   

 

5. CONCLUSIONS AND FURTHER WORK 
 
Learning is an intensive task in which high cognitive functions are required on the part of the 

student. This paper has demonstrated different computational models, namely; complement of 

probability, difference of probability, Bayes’ rule, and information entropy in the computation 

and prediction of learning materials to students.  We have demonstrated that when Pr(¬𝐹𝑎𝑖𝑙𝑖) =
0 , then it is the recommendation for an immediate higher-level learning; then for 0 <
 𝑃𝑟(¬𝑃𝑎𝑠𝑠𝑖)  ≤ 1 , it is the recommendation for the weighted k-number of Failed learning 

object. We showed that the complement/difference of probability and Bayes’ rule are equally 
applicable in the prediction of accurate learning for students. We have used J48 ML algorithm to 

show misclassification of feature in ML –- which is not suitable for the mastery of learning 

content. For the avoidance of leaving gaps in students’ knowledge, computational models must 
be 100% accurate in skills classification problem. In order for LTA (learning, teaching and 

assessment) systems to support mastery of subject matter content, computational models and ML 

algorithms that supports pre-learning assessment process should be integrated into LTA to have 

Pre-assessment LTA (PLTA) system. In future, this project shall look at moving this application 
to a web-based learning environment and implementing learning recommendation based on 

inductive logic programming and/or using the complement of probability and our customized 

Bayes’ rule.   
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