
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

DOI: 10.5121/ijaia.2023.14204 41

A COMPARISON OF DOCUMENT SIMILARITY

ALGORITHMS

Nicholas Gahman and Vinayak Elangovan

Computer Science Program, Division of Science and Engineering,

Penn State University at Abington, Pennsylvania, USA

ABSTRACT

Document similarity is an important part of Natural Language Processing and is most commonly used for

plagiarism-detection and text summarization. Thus, finding the overall most effective document similarity

algorithm could have a major positive impact on the field of Natural Language Processing. This report sets
out to examine the numerous document similarity algorithms, and determine which ones are the most

useful. It addresses the most effective document similarity algorithm by categorizing them into 3 types of

document similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-based

algorithms. The most effective algorithms in each category are also compared in our work using a series of

benchmark datasets and evaluations that test every possible area that each algorithm could be used in.

KEYWORDS

Natural Language Processing, Document Similarity

1. INTRODUCTION

Document similarity analysis is a Natural Language Processing (NLP) task where two or more
documents are analyzed to recognize the similarities between these documents. Document

similarity is heavily used in text summarization, recommender systems, plagiarism-detection as

well as in search engines. Identifying the level of similarity or dissimilarity between two or more

documents based on their content is the main objective of document similarity analysis.
Commonly used techniques like cosine similarity, Euclidean distance, etc., compares the

document’s text features to provide a similarity score between 0 and 1, where 1 indicates

complete similarity and 0 indicates no similarity. Although there are numerous algorithms used
for document similarity, there are no algorithms universally recognized as the most effective or

efficient in a given area.

This paper seeks to rectify this issue by categorizing the document similarity algorithms into 3

different types of document similarity algorithms: statistical algorithms, neural networks, and

corpus/knowledge-based algorithms. Each category’s algorithms will be closely inspected, and

several algorithms from each category will be judged to be the best of said category. Once the
most effective algorithms of each category are found, they will be run through four different

datasets and three different metrics. Finally, once this data is obtained, it will be analyzed to

determine which of the algorithms are most effective.

This paper is organized as follows: In section 2: Relevant Works, a variety of similar research

work are discussed. In section 3: Proposed Methodology: a general description of three

categories of document similarity algorithms is given, and the methodology and the comparison
process are more thoroughly discussed. Finally, in section 4: Results, the specifics, and

http://www.airccse.org/journal/ijaia/current2023.html
https://doi.org/10.5121/ijaia.2023.14204

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

42

limitations of implementation of each algorithm are discussed, the results of the comparison
process are given followed by conclusions in section 5.

2. RELEVANT WORKS

Jesus M. Sanchez-Gomez, along with other researchers, compared term-weighting schemes and
similarity measures when used for extractive multi-document text summarization [1]. The result

of this research is that overall cosine similarity appears to be the most effective statistical

similarity measure in this area. Kazuhiro Seki created a text similarity measure that was able to
work across languages [2]. The proposal accomplished this by using two Neural Machine

Translation models to build word embeddings that it can use to compute document similarity.

The NMTs in question translated multiple possible translations to account for mistranslations.

The result of the translations are matrices that are normalized and transformed, creating
multilingual word embeddings that can be compared using cosine similarity. The proposal has

significant flexibility, as the study explicitly states that it is possible to add other similarity scores

onto this system. This proposal was compared to other multilingual similarity algorithms such as
Doc2Vec, Sec2Vec, and the S2Net Siamese Neural Network, with the result being that it

outperformed all other algorithms. When the proposal’s sentence retrieval was compared to

Google Translate, they had similar results, despite the proposal having a much lower BLEU score
due to its relatively small training data and models.

Emrah Inam proposed a document similarity algorithm that combines the usage of word

embeddings with knowledge-based measures through a semantic lexicon named ConceptNet [3].
Once the sentences are run through ConceptNet, the proposal then produces a vector

representation of the transformed sentences using a breadth first traversal algorithm. Finally, a

soft cosine similarity measure is used to compare the vectorized sentences. The similarity from
the ConceptNet metric and the similarity from the dependency parser model is then combined to

produce the final similarity score. The proposal, named SimiT, is given the Microsoft Research

Paraphrase Corpus (MRPC) as an evaluation task to determine if it can detect and understand
paraphrases. Its result is measured using Pearson correlation and is then compared to several

other similarity algorithms’ results. Among these algorithms are basic cosine similarity,

Word2Vec cosine and soft cosine, and several state-of-the-art methods such as BERT and its

variations. Of the compared algorithms, SimiT performed very well, exceeding the performance
of all but the state-of-the-art methods. Even among the state-of-the-art methods, SimiT was still

useful due to its incredibly low run time.

Table 1. Chosen dataset’s tasks and purpose.

 MRPC AFS SICK-R SICK-E

Benchmark

Purpose

Testing if algorithm

can detect

paraphrases

Testing if

algorithm can

detect similar

arguments

Testing if

algorithm can see

lexical similarity

of sentences

Testing if algorithm

can see semantic

similarities/differen

ces between

sentences

Aminul Islam and Diana Inkpen collaborated on a method to give knowledge-based measures the

ability to determine sentence similarity [4]. Knowledge-based measures are designed primarily

to compare concepts, and while turning a word into a concept is easy it is much harder to do so
for a sentence. As part of the process, the authors introduce a string similarity word method

using three modifications of the longest common subsequence: The Normalized Longest

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

43

Common Subsequence (NLCS), the Normalized Maximal Consecutive Longest Common
Subsequence starting from the first character (NMCLCS1), and the Normalized Maximal

Consecutive Longest Common Subsequence starting from any character (NMCLCSn). The scores

from each of the three modified LCS algorithms are combined, then divided by three, such that

there is an average between 0 and 1.

To develop a sentence similarity algorithm that uses knowledge-based measures, the authors first

process the sentences by removing all special characters, punctuation, capital letters, and stop
words. At this point, the lengths of the two sentences are stored for later use. From here, they

then find all of the words in both sentences that match with each other using the knowledge-

based measures or string similarity measures, count the number of words where this is the case,
and remove all matching words from the sentence. Then, all the remaining words are compared

using the knowledge-based measure, and the results are put in a matrix whose length is equal to

the length of the first sentence and width is equal to the length of the second sentence. Another

matrix is created using the same method, with the string similarity method replacing the
knowledge-based measure. The knowledge-based measure matrix is added with the string

similarity matrix to produce a joint matrix. Next, the highest value in the joint matrix is found

and added to a list, after which the column and row the value was in is deleted. This continues
until the highest value is zero or until there are no rows or columns left. The final algorithm to

determine the similarity of the two sentences is the number of matching words plus all the values

in the list, times the length of the two sentences without stop words combined. The result is then
divided by two times the length of the first sentence without stop words, times the length of the

second sentence without stop words. Table 2 summarizes the advantages and disadvantages of

different algorithm categories.

Table 2. Algorithm categories.

 Advantages Disadvantages

Basic Statistical

Techniques

Simple, easy to use Does not obtain enough semantic

information to make accurate

predictions about entailment vs

contradiction

Neural Networks Incredibly effective, achieves
state-of-the-art results

Incredibly computationally expensive
and memory intensive, difficult to

debug

Knowledge/Corpus-

Based Measures

Can trivially obtain and

process the semantic

information needed for

accurate predictions

Relies heavily on large corpora and

semantic networks to work properly, is

designed for word/concept similarity

and thus difficult to scale

Yigit Sever and GonencErcan perform a comparison of cross-lingual semantic similarity methods

by building a cross-lingual textual similarity evaluation dataset utilizing seven different

languages [5]. Wordnets measure concepts, and while some concepts are specific to a given
language, others are shared between languages. By linking several of these synsets together, a

foundation is built for building the evaluation dataset. The resulting dataset can determine the

effectiveness of both unsupervised and supervised text similarity algorithms, allowing the two

categories to be easily compared. Word embeddings are victim to the hubness problem, where
many of the vector embeddings are similar to other vector embeddings. To investigate how hubs

such as these can affect the similarity result, the evaluation task is split into two different tasks:

alignment and pseudo-retrieval.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

44

In addition to building the evaluation dataset, the paper also compares several text similarity
models, both unsupervised and supervised. Among the algorithms tested is machine translation

the monolingual baseline (MT), cosine similarity between sentence embeddings (SEMB), word

mover’s distance (WMD), Winkhorn (SNK), and Siamese long-short term memory (LSTM).

Concerning retrieval, WMD surprisingly performed the best, followed by SNK. LSTM
performed the third best, but it was noted that it was trained using a limited number of instances,

so it may be possible for it to score higher in this area. Concerning the matching task, SNK

performed the best, followed by WMD, followed by SEMB.

Yuki Arase and Junichi Tsuji developed a method of improving the BERT model through

transfer fine tuning [6]. Their method of pretraining focused on semantic pair modeling,
allowing the proposed method to have significant improvements over the normal BERT model.

Furthermore, in addition to performing better than the baseline BERT model, it is also more cost-

effective, as it focuses on phrase alignments, which can be automatically generated.

As part of the evaluation process, the paper used two different benchmarks: the GLUE
Benchmark, and the PAWS dataset. The GLUE Benchmark used consists of nine different

evaluation datasets whose tasks cover various parts of natural language understanding. The most

relevant tasks for the paper, however, is that of Semantic Equivalence, whose subtasks consist of
paraphrase understanding and an understanding of Semantic Text Similarity (STS). The PAWS

dataset, like the MRPC dataset, focuses on paraphrase understanding, but utilizes controlled word

swapping and back translation to determine if an algorithm is sensitive to context and word order.
In the GLUE Benchmark, the proposed method successfully performed better than their BERT

counterpart in all areas except for QNLI and SST, while in the PAWS benchmark the proposed

method performed better than BERT in all areas. Furthermore, the evaluation showed that the

proposed method performed better when the fine-tuned training corpus used is smaller, which
would make creating said training corpi much easier.

3. PROPOSED METHODOLOGY

Statistical techniques are the simplest of the three types of document similarity algorithms.

They compare text by first turning the sentences into vectors, and then comparing said vectors.

The most used and most effective way of comparison is through cosine similarity, but other

methods such as Euclidean distance are occasionally used. Of the possible preprocessors,
Sentence-BERT was judged to be most ideal for the purposes of this paper. This is because it

performed incredibly well among the algorithms tested for this purpose and was the second most

computationally efficient algorithm tested [7]. Neural networks are another possible avenue of
document similarity, and a very effective one. The basics of neural network-based techniques is

that they are first fed training documents of pairs of texts that are either similar to each other or

different. Gradually, the neural network learns which pairs of texts are similar and which pairs

are different through understanding semantic information. Generally, the text is run through a
tokenizer first, which allows the semantic information to be more understandable to the network.

Some models, like BERT and XLNet, are pre-trained, which allows the network to have

accurate predictions without needing long training times and massive corpora for each
individual task. Figure 1 shows a typical methodology of document analysis using statistical

algorithms.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

45

Figure 1. Methodology of statistical algorithms.

Corpus-based measures find text similarity by using large corpora to determine the similarity

between different words [8]. Two methods that utilize this technique are Pointwise Mutual
Information, and Latent Semantic Analysis. Pointwise Mutual Information accomplishes this by

determining how often the compared words appear together, while Latent Semantic Analysis

accomplishes this by performing singular value decomposition on the corpus. Knowledge-based
measures follow a similar path by converting words into concepts, and then using semantic

networks to compare those concepts [8].

Two neural-network systems are included, as they seem to be overall most effective. These are

knowledge-distilled MT-DNN, and XLNet [9]. The Multi-Task Deep Neural Network proposed

in [10] is improved using knowledge distillation. Several “teacher” MT-DNNs are developed,

one for each task. Each “teacher” MT-DNN then generates a set of “soft” targets, which are
combined with the correct “hard” targets for their respective task. A single “student” MT-DNN

then uses these combined targets as the target for each task. The end result of this process is that

the “student” MT-DNN is able to significantly outperform other MT-DNNs that do not use
knowledge distillation as part of their training. XLNet combines the usage of both

autoregressive language modeling and autoencoding to build a pretrained model that can obtain

context from both previous and future words without relying on data corruption like BERT [11].

As a result, XLNet is able to significantly outperform the baseline BERT in most NLP tasks. In
addition, a statistical technique is also included, dubbed Sentence-BERT + cosine similarity.

Sentence-BERT is a modification of BERT that uses siamese triplet networks to derive sentence

embeddings that are both semantically meaningful and can easily be compared using cosine
similarity [7]. In addition to these algorithms, a combination of the Lin knowledge-based

measure proposed in [8] and a string similarity method proposed in [12] and [4] is also used.

The Lin knowledge-based measure is designed specifically to understand semantic similarity,
while the string similarity method was designed to understand lexical similarity. As a result, the

combination of the two algorithms would be able to understand far more information than each

of the algorithms individually.

The datasets used will be the Microsoft Research Paraphrase Corpus (MRPC) [13], the

Argument Facet Similarity (AFS) dataset [14], and the Sentences Involving Composition

Knowledge (SICK) dataset [15]. The MRPC dataset is designed to test whether the algorithm
can detect paraphrases, while the AFS dataset is designed to test whether the algorithm can

detect similar arguments. The SICK dataset is split into two tasks, named SICK-R and SICK-E.

SICK-R tests the algorithm on the sentences’ lexical similarity, while SICK-E tests whether the
algorithm is capable of high-level semantic knowledge, by deciding whether the sentences are

similar, have no relation, or have the opposite meaning. The evaluations used for the tasks will

be the Pearson correlation and Spearman rank correlation for AFS and SICK-R, and

classification accuracy for MRPC and SICK-E.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

46

4. RESULTS

Overall, the implementation of Sentence-BERT + cosine similarity went well. For the most part,

the corpuses, once downloaded, were trivial to implement. The biggest issue came from the

AFS dataset, as it was stored in a comma separated value format, which made it difficult to

distinguish the commas in sentences from the commas separating the data. This issue was
solved by editing the dataset to make every comma in a sentence appear twice, and then use

regex to split the sentences using only the single commas from the CSV format. Once the

sentences were split, the double commas could be converted to single commas trivially. The
evaluations were somewhat difficult to code, but once their respective formulas were found

implementing them was relatively trivial. Unfortunately, due to how SICK-E’s classification

works, SemanticBERT + cosine similarity is unable to properly classify the information, and a

score could not be found.

Unfortunately, the implementation of XLNet was not so simple. The original plan was to use

the implementation linked in the original paper [16], but after much consideration the plan was
changed to use hugging face transformers [17] instead, as it would be significantly easier to

import and use. Initially, there were major issues with the XLNet model, as the input

dimensions would consistently be off. This was solved through usage of padding. Then,
training and evaluation became an issue, as running either would consistently fail from using too

much GPU memory. This was solved by reducing batch steps. After this, I was able to find the

accuracy of classification datasets without issue, but unfortunately, finding an XLNet model

capable of regression was still a major problem.

Implementing MT-DNN was a major issue from the very beginning. It took several days to

figure out atensorflow import that kept going wrong required an older version of Python (3.6),
and another day after that to realize the GitHub project used [18] was designed for a Linux OS.

After those two problems were found, the location of implementation was switched to a cloud

computing server known as Paperspace Gradient. Once accomplished, the model was able to be
set up. Import errors made it difficult at times but installing them via apt install worked nicely to

clear up the problems. Rewriting code in the program was often necessary to account for

running python programs with python3 instead of python2, as well. Furthermore, for the MT-

DNN to work quickly, reinstalling a CUDA driver that was only partially installed became
necessary, which was difficult as simply deleting it did not work as there were dependencies

involved. Ultimately, manually deleting the system programs that relied on said driver, then

deleting the driver solved the issue. Uploading the datasets seemed simple at first, but quickly
became difficult, as each task had a specific data orientation that the uploaded datasets did not

match. After preprocessing the datasets again to account for this and splitting them up into

train/test/dev splits, evaluation was thankfully simple.

Implementing the knowledge-based measure was for the most part simple, although there were

some hiccups along the way. The initial plan was to use the implementation mentioned in [8],

but it was not linked anywhere in the paper and it could not be found online. Ultimately, the
implementation was changed to include Sematch [19,20] as the implementation for the

knowledge-based measure. Originally, the plan was to combine multiple knowledge-based

measures together, but it quickly became clear that doing so would be difficult to impossible in
the time remaining. Ultimately, the knowledge-based measure chosen was the Lin method, as it

seemed the most effective of the individual algorithms mentioned in [8] and had an easy

normalization of between 0 and 1. Having chosen the algorithm and GitHub implementation, the

most difficult problem of implementation made itself known. Knowledge-based measures work
by turning words into concepts and comparing those concepts, and thus they are designed for

word similarity instead of sentence similarity. All the evaluation metrics compared sentence

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

47

similarity, so it was necessary to convert word similarity to sentence similarity. Thankfully,
several papers that did just that were found [12,13]. They achieved this feat by building a matrix

of comparisons between each word in the two sentences. Once this was done, the papers took the

highest value in the matrix, added it to a list, deleted the row and column the value was in, and

continued until the highest value was zero or until there were no columns or rows left. The
authors also combined the knowledge-based measure with a similarity measure so that the

algorithm would be more sensitive to lexical information. It was trivial to use those papers to

convert the implementations’ word similarity to sentence similarity, and from there things
proceeded smoothly.

Table 3. Result analysis per task/evaluation combination.

 SICK-R

Pearson

SICK-R

Spearman

SICK-E

Accuracy

AFS

Pearson

AFS

Spearman

MRPC

Accuracy

Sentence-BERT

+ Cosine

Similarity

73.61% 75.038% N/A 28.034% 75.063% 68.017%

MT-DNN 92.185% 88.567% 90.706% 80.860% 78.178% 88.286%

XLNet2 (second

implementation)

47.697% N/A 57.383% 72.752% N/A 66.236%

XLNet1 (first

implementation)

N/A N/A 56.911%

N/A N/A 66.983%

Lin Measure +

String Similarity

60.546% 75.038% N/A 32.273% 75.063% 70.172%

During the XLNet implementation, it became clear that the transformers XLNet code being
working with was designed for classification problems and could thus not handle continuous

data. As such, it was decided to implement a different implementation linked in the original

XLNet paper [16] as well to ensure that XLNet data concerning SICK-R and AFS could be
gathered. The main issue was the matter of installing CUDA 10.0, as Paperspace Gradient

automatically installed CUDA 10.2, which needed to be uninstalled before CUDA 10.0 was

installed. There were also issues with the Nvidia driver, which would prevent CUDA from fully

installing. In the end, the issue was resolved by removing all traces of CUDA from my system,
partially installing CUDA 10.0, manually removing the nVidia driver and its dependencies, and

then running apt --fix-broken install to properly install CUDA 10.0. After this, implementation

largely went smoothly. The only real roadblocks after this point was that XLNet only used
Pearson similarity as a metric, and it did not naturally include MRPC processing. Coding in an

MRPC Processor subclass using their basic MNLI Matched Processor became necessary, after

which the evaluation went smoothly. Unfortunately, adding Spearman Rank Similarity was a

much more arduous task, and there was no time left to finish the job. All results used 60% train,
20% test and 20% dev datasets. Figure 2 shows the accuracy of document similarity algorithms.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

48

Figure 2. Result analysis per task/evaluation combination.

Both Sentence-Bert + cosine similarity and the unofficial XLNet code was implemented on an

Alienware m15 R4 with an Intel i7-10870H CPU, 32 GB of RAM, and a NVIDIA GForce RTX
3070 GPU. The MT-DNN, second XLNet implementation and Lin measure + string similarity

was implemented on Paperspace, with an Intel Xeon E5-2623 v4 CPU, 30 GB of RAM, and a

NVIDIA P5000 GPU.

Of the algorithms tested, the MT-DNN is by far the most effective, as it was the only algorithm to

successfully process all evaluation metrics, and it also had the highest scores in all evaluation

metrics. Lin Measure + String Similarity and Semantic BERT + Cosine Similarity had roughly
the same results, with Semantic BERT + Cosine Similarity performing better in the SICK-R

Pearson task, but slightly worse in the AFS Pearson and MRPC tasks. The official XLNet code

performed incredibly well in the AFS Pearson task but performed badly in the SICK-R Pearson
task and had a slightly worse MRPC score than Lin + String Similarity and BERT + cosine

similarity’s scores. However, unlike Lin + String similarity and BERT + Cosine Similarity, the

second XLNet implementation was able to give a score for SICK-E, so it has a major advantage

in flexibility. The first XLNet implementation had similar scores to the second XLNet
implementation, but was unable to handle continuous data, so in terms of versatility and results it

performed the worst of all tested algorithms.

In the future, XLNet could be further investigated. The second implementation of XLNet is

theoretically capable of using Spearman Rank similarity as a metric, making it the only algorithm

other than MT-DNN that can process all evaluation metrics.

5. CONCLUSIONS

This research gave a comprehensive study of four algorithms, Semantic BERT + Cosine

Similarity, MT-DNN, XLNet, and Lin Measure + String Similarity. Using the MRPC, AFS,
SICK-E and SICK-R datasets, and the Spearman Rank, Pearson, and Accuracy evaluation

metrics, the research was able to look at each of the four algorithms strengths and weaknesses,

and thus give an answer to the question of which document similarity algorithm is most effective.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

49

From the data obtained in this research, the MT-DNN is clearly the most effective document
similarity algorithm tested.

ACRONYMS

MRPC: Microsoft Research Paraphrase Corpus.

AFS: Argument Facet Similarity.

SICK: Sentences Involving Composition Knowledge.

BERT: Bidirectional Encoder Representations from Transformers.

MT-DNN: Multi-Task Deep Neural Network.

REFERENCES

[1] J. M. Sanchez-Gomez, M. A. Vega-Rodríguez, C. J. Pérez. “The impact of term-weighting schemes

and similarity measures on extractive multi-document text summarization.” Expert Systems with

Applications. 2021;169:N.PAG. doi:10.1016/j.eswa.2020.114510

[2] K. Seki. “Cross-lingual text similarity exploiting neural machine translation models.” Journal of

Information Science, vol. 47, no. 3, pp. 404–418, June 2021.

[3] E. Inan. “SimiT: A Text Similarity Method Using Lexicon and Dependency Representations.” New

Generation Computing, vol. 38, no. 3, pp. 509–530, July 2020.

[4] A. Islam and D. Inkpen, “Semantic text similarity using corpus-based word similarity and string

similarity,” ACM Transactions on Knowledge Discovery from Data, 2008. [Online]. Available:
https://www.academia.edu/4418471/Semantic_text_similarity_using_corpus_based_word_similarity_

and_string_similarity. [Accessed: 28-Jul-2021].

[5] Y. Sever and G. Ercan, “Evaluating cross-lingual textual similarity on dictionary alignment problem,”

SpringerLink, 2020. [Online]. Available: https://link-springer-

com.ezaccess.libraries.psu.edu/article/10.1007/s10579-020-09498-1. [Accessed: 29-Jul-2021].

[6] Y. Arase and J. Tsujii, “Transfer fine-tuning of BERT with phrasal paraphrases,” ScienceDirect,

March 2021. [Online].

https://www.sciencedirect.com.ezaccess.libraries.psu.edu/science/article/pii/S0885230820300978.

[Accessed: 29-Jul-2021].

[7] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-

Networks,” arXiv.org, 27-Aug-2019. [Online]. Available: https://arxiv.org/abs/1908.10084.

[Accessed: 03-Jun-2021].
[8] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and Knowledge-based Measures of Text

Semantic Similarity.” [Online]. Available:

https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.aaai06.pdf. [Accessed: 02-Jun-2021].

[9] “Semantic textual similarity,” NLPProgress. [Online]. Available:

http://nlpprogress.com/english/semantic_textual_similarity.html. [Accessed: 02-Jun-2021].

[10] X. Liu, P. He, W. Chen, and J. Gao, “Improving Multi-Task Deep Neural Networks via Knowledge

Distillation for Natural Language Understanding,” arXiv.org, 20-Apr-2019. [Online]. Available:

https://arxiv.org/abs/1904.09482. [Accessed: eh, we ca03-Jun-2021].

[11] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized

Autoregressive Pretraining for Language Understanding,” arXiv.org, 02-Jan-2020. [Online].

Available: https://arxiv.org/abs/1906.08237. [Accessed: 03-Jun-2021].
[12] C. F. Ho, M. A. A. Murad, R. A. Kadir, and S. C. Doraisamy, “Word Sense Disambiguation-based

Sentence Similarity,” ACL Anthology, 2010. [Online]. Available: https://aclanthology.org/C10-

2048/. [Accessed: 07-Jul-2021].

[13] W. B. Dolan and C. Brockett, “Automatically Constructing a Corpus of Sentential Paraphrases,” ACL

Anthology, 01-Jan-1970. [Online]. Available: https://aclanthology.org/I05-5002/. [Accessed: 22-Jul-

2021].

[14] Amita Misra, Brian Ecker, Marilyn Walker. "Measuring the Similarity of Sentential Arguments in

Dialogue". In The 17th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL), Los

Angeles, California, USA, 2016.

[15] “The SICK data set,” SICK. [Online]. Available: http://marcobaroni.org/composes/sick.html.

[Accessed: 03-Jun-2021].

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.2, March 2023

50

[16] Zihangdai, “zihangdai/xlnet,” GitHub, 16-Dec-2019. [Online]. Available:

https://github.com/zihangdai/xlnet/. [Accessed: 03-Jun-2021].

[17] T. Wolf, “huggingface/transformers,” GitHub, 16-Jun-2021. [Online].

Available: https://github.com/huggingface/transformers. [Accessed: 16-Jun-2021].

[18] Namisan, “namisan/mt-dnn,” GitHub, 16-Feb-2021. [Online]. Available:
https://github.com/namisan/mt-dnn/. [Accessed: 03-Jun-2021].

[19] G. Zhu and C. A. Iglesias, “Sematch: Semantic similarity framework for Knowledge Graphs,”

ScienceDirect, 15-Aug-2017. [Online]. Available: https://www-sciencedirect-

com.ezaccess.libraries.psu.edu/science/article/pii/S0950705117302447?via%3Dihub. [Accessed: 06-

Jul-2021].

[20] G. Zhu and C. A. Iglesias, “gsi-upm/sematch,” GitHub, 26-Mar-2019. [Online].

Available: https://github.com/gsi-upm/sematch. [Accessed: 06-Jul-2021].

[21] AndriyMulyar, “AndriyMulyar/semantic-text-similarity,” GitHub, 08-Oct-2019. [Online]. Available:

https://github.com/AndriyMulyar/semantic-text-similarity. [Accessed: 03-Jun-2021].

	1. Introduction
	2. Relevant Works

