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ABSTRACT 
 
Document similarity is an important part of Natural Language Processing and is most commonly used for 

plagiarism-detection and text summarization.  Thus, finding the overall most effective document similarity 

algorithm could have a major positive impact on the field of Natural Language Processing.  This report sets 
out to examine the numerous document similarity algorithms, and determine which ones are the most 

useful.  It addresses the most effective document similarity algorithm by categorizing them into 3 types of 

document similarity algorithms: statistical algorithms, neural networks, and corpus/knowledge-based 

algorithms.  The most effective algorithms in each category are also compared in our work using a series of 

benchmark datasets and evaluations that test every possible area that each algorithm could be used in.  
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1. INTRODUCTION 
 

Document similarity analysis is a Natural Language Processing (NLP) task where two or more 
documents are analyzed to recognize the similarities between these documents. Document 

similarity is heavily used in text summarization, recommender systems, plagiarism-detection as 

well as in search engines.  Identifying the level of similarity or dissimilarity between two or more 

documents based on their content is the main objective of document similarity analysis. 
Commonly used techniques like cosine similarity, Euclidean distance, etc., compares the 

document’s text features to provide a similarity score between 0 and 1, where 1 indicates 

complete similarity and 0 indicates no similarity. Although there are numerous algorithms used 
for document similarity, there are no algorithms universally recognized as the most effective or 

efficient in a given area.   

 
This paper seeks to rectify this issue by categorizing the document similarity algorithms into 3 

different types of document similarity algorithms: statistical algorithms, neural networks, and 

corpus/knowledge-based algorithms.  Each category’s algorithms will be closely inspected, and 

several algorithms from each category will be judged to be the best of said category.  Once the 
most effective algorithms of each category are found, they will be run through four different 

datasets and three different metrics.  Finally, once this data is obtained, it will be analyzed to 

determine which of the algorithms are most effective. 
 

This paper is organized as follows: In section 2: Relevant Works, a variety of similar research 

work are discussed.  In section 3: Proposed Methodology: a general description of three 

categories of document similarity algorithms is given, and the methodology and the comparison 
process are more thoroughly discussed.  Finally, in section 4: Results, the specifics, and 
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limitations of implementation of each algorithm are discussed, the results of the comparison 
process are given followed by conclusions in section 5. 

 

2. RELEVANT WORKS 
 

Jesus M. Sanchez-Gomez, along with other researchers, compared term-weighting schemes and 
similarity measures when used for extractive multi-document text summarization [1].  The result 

of this research is that overall cosine similarity appears to be the most effective statistical 

similarity measure in this area.  Kazuhiro Seki created a text similarity measure that was able to 
work across languages [2].  The proposal accomplished this by using two Neural Machine 

Translation models to build word embeddings that it can use to compute document similarity.  

The NMTs in question translated multiple possible translations to account for mistranslations.  

The result of the translations are matrices that are normalized and transformed, creating 
multilingual word embeddings that can be compared using cosine similarity.  The proposal has 

significant flexibility, as the study explicitly states that it is possible to add other similarity scores 

onto this system. This proposal was compared to other multilingual similarity algorithms such as 
Doc2Vec, Sec2Vec, and the S2Net Siamese Neural Network, with the result being that it 

outperformed all other algorithms.  When the proposal’s sentence retrieval was compared to 

Google Translate, they had similar results, despite the proposal having a much lower BLEU score 
due to its relatively small training data and models. 

 

Emrah Inam proposed a document similarity algorithm that combines the usage of word 

embeddings with knowledge-based measures through a semantic lexicon named ConceptNet [3].  
Once the sentences are run through ConceptNet, the proposal then produces a vector 

representation of the transformed sentences using a breadth first traversal algorithm.  Finally, a 

soft cosine similarity measure is used to compare the vectorized sentences.  The similarity from 
the ConceptNet metric and the similarity from the dependency parser model is then combined to 

produce the final similarity score. The proposal, named SimiT, is given the Microsoft Research 

Paraphrase Corpus (MRPC) as an evaluation task to determine if it can detect and understand 
paraphrases.  Its result is measured using Pearson correlation and is then compared to several 

other similarity algorithms’ results.  Among these algorithms are basic cosine similarity, 

Word2Vec cosine and soft cosine, and several state-of-the-art methods such as BERT and its 

variations.  Of the compared algorithms, SimiT performed very well, exceeding the performance 
of all but the state-of-the-art methods.  Even among the state-of-the-art methods, SimiT was still 

useful due to its incredibly low run time. 

 
Table 1. Chosen dataset’s tasks and purpose. 

 

 MRPC AFS SICK-R SICK-E 

Benchmark 

Purpose 

Testing if algorithm 

can detect 

paraphrases 

Testing if 

algorithm can 

detect similar 

arguments 

Testing if 

algorithm can see 

lexical similarity 

of sentences 

Testing if algorithm 

can see semantic 

similarities/differen

ces between 

sentences 

 
Aminul Islam and Diana Inkpen collaborated on a method to give knowledge-based measures the 

ability to determine sentence similarity [4].  Knowledge-based measures are designed primarily 

to compare concepts, and while turning a word into a concept is easy it is much harder to do so 
for a sentence.  As part of the process, the authors introduce a string similarity word method 

using three modifications of the longest common subsequence: The Normalized Longest 
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Common Subsequence (NLCS), the Normalized Maximal Consecutive Longest Common 
Subsequence starting from the first character (NMCLCS1), and the Normalized Maximal 

Consecutive Longest Common Subsequence starting from any character (NMCLCSn). The scores 

from each of the three modified LCS algorithms are combined, then divided by three, such that 

there is an average between 0 and 1. 
 

To develop a sentence similarity algorithm that uses knowledge-based measures, the authors first 

process the sentences by removing all special characters, punctuation, capital letters, and stop 
words.  At this point, the lengths of the two sentences are stored for later use.  From here, they 

then find all of the words in both sentences that match with each other using the knowledge-

based measures or string similarity measures, count the number of words where this is the case, 
and remove all matching words from the sentence.  Then, all the remaining words are compared 

using the knowledge-based measure, and the results are put in a matrix whose length is equal to 

the length of the first sentence and width is equal to the length of the second sentence.  Another 

matrix is created using the same method, with the string similarity method replacing the 
knowledge-based measure.  The knowledge-based measure matrix is added with the string 

similarity matrix to produce a joint matrix.  Next, the highest value in the joint matrix is found 

and added to a list, after which the column and row the value was in is deleted.  This continues 
until the highest value is zero or until there are no rows or columns left.  The final algorithm to 

determine the similarity of the two sentences is the number of matching words plus all the values 

in the list, times the length of the two sentences without stop words combined.  The result is then 
divided by two times the length of the first sentence without stop words, times the length of the 

second sentence without stop words.  Table 2 summarizes the advantages and disadvantages of 

different algorithm categories. 

 
Table 2. Algorithm categories. 

 

 Advantages Disadvantages 

Basic Statistical 

Techniques 

Simple, easy to use Does not obtain enough semantic 

information to make accurate 

predictions about entailment vs 

contradiction 

Neural Networks Incredibly effective, achieves 
state-of-the-art results 

Incredibly computationally expensive 
and memory intensive, difficult to 

debug 

Knowledge/Corpus-

Based Measures 

Can trivially obtain and 

process the semantic 

information needed for 

accurate predictions 

Relies heavily on large corpora and 

semantic networks to work properly, is 

designed for word/concept similarity 

and thus difficult to scale 

 
Yigit Sever and GonencErcan perform a comparison of cross-lingual semantic similarity methods 

by building a cross-lingual textual similarity evaluation dataset utilizing seven different 

languages [5].  Wordnets measure concepts, and while some concepts are specific to a given 
language, others are shared between languages.  By linking several of these synsets together, a 

foundation is built for building the evaluation dataset.  The resulting dataset can determine the 

effectiveness of both unsupervised and supervised text similarity algorithms, allowing the two 

categories to be easily compared.  Word embeddings are victim to the hubness problem, where 
many of the vector embeddings are similar to other vector embeddings.  To investigate how hubs 

such as these can affect the similarity result, the evaluation task is split into two different tasks: 

alignment and pseudo-retrieval. 
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In addition to building the evaluation dataset, the paper also compares several text similarity 
models, both unsupervised and supervised.  Among the algorithms tested is machine translation 

the monolingual baseline (MT), cosine similarity between sentence embeddings (SEMB), word 

mover’s distance (WMD), Winkhorn (SNK), and Siamese long-short term memory (LSTM).  

Concerning retrieval, WMD surprisingly performed the best, followed by SNK.  LSTM 
performed the third best, but it was noted that it was trained using a limited number of instances, 

so it may be possible for it to score higher in this area.  Concerning the matching task, SNK 

performed the best, followed by WMD, followed by SEMB. 
 

Yuki Arase and Junichi Tsuji developed a method of improving the BERT model through 

transfer fine tuning [6].  Their method of pretraining focused on semantic pair modeling, 
allowing the proposed method to have significant improvements over the normal BERT model. 

Furthermore, in addition to performing better than the baseline BERT model, it is also more cost-

effective, as it focuses on phrase alignments, which can be automatically generated.  

As part of the evaluation process, the paper used two different benchmarks: the GLUE 
Benchmark, and the PAWS dataset.  The GLUE Benchmark used consists of nine different 

evaluation datasets whose tasks cover various parts of natural language understanding.  The most 

relevant tasks for the paper, however, is that of Semantic Equivalence, whose subtasks consist of 
paraphrase understanding and an understanding of Semantic Text Similarity (STS).  The PAWS 

dataset, like the MRPC dataset, focuses on paraphrase understanding, but utilizes controlled word 

swapping and back translation to determine if an algorithm is sensitive to context and word order.  
In the GLUE Benchmark, the proposed method successfully performed better than their BERT 

counterpart in all areas except for QNLI and SST, while in the PAWS benchmark the proposed 

method performed better than BERT in all areas. Furthermore, the evaluation showed that the 

proposed method performed better when the fine-tuned training corpus used is smaller, which 
would make creating said training corpi much easier. 

 

3. PROPOSED METHODOLOGY 
 
Statistical techniques are the simplest of the three types of document similarity algorithms.  

They compare text by first turning the sentences into vectors, and then comparing said vectors.  

The most used and most effective way of comparison is through cosine similarity, but other 

methods such as Euclidean distance are occasionally used.  Of the possible preprocessors, 
Sentence-BERT was judged to be most ideal for the purposes of this paper.  This is because it 

performed incredibly well among the algorithms tested for this purpose and was the second most 

computationally efficient algorithm tested [7].  Neural networks are another possible avenue of 
document similarity, and a very effective one.  The basics of neural network-based techniques is 

that they are first fed training documents of pairs of texts that are either similar to each other or 

different.  Gradually, the neural network learns which pairs of texts are similar and which pairs 

are different through understanding semantic information.  Generally, the text is run through a 
tokenizer first, which allows the semantic information to be more understandable to the network.  

Some models, like BERT and XLNet, are pre-trained, which allows the network to have 

accurate predictions without needing long training times and massive corpora for each 
individual task.  Figure 1 shows a typical methodology of document analysis using statistical 

algorithms. 
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Figure 1. Methodology of statistical algorithms.   

 

Corpus-based measures find text similarity by using large corpora to determine the similarity 

between different words [8].  Two methods that utilize this technique are Pointwise Mutual 
Information, and Latent Semantic Analysis.  Pointwise Mutual Information accomplishes this by 

determining how often the compared words appear together, while Latent Semantic Analysis 

accomplishes this by performing singular value decomposition on the corpus.  Knowledge-based 
measures follow a similar path by converting words into concepts, and then using semantic 

networks to compare those concepts [8].   

 
Two neural-network systems are included, as they seem to be overall most effective.  These are 

knowledge-distilled MT-DNN, and XLNet [9].  The Multi-Task Deep Neural Network proposed 

in [10] is improved using knowledge distillation.  Several “teacher” MT-DNNs are developed, 

one for each task.  Each “teacher” MT-DNN then generates a set of “soft” targets, which are 
combined with the correct “hard” targets for their respective task.  A single “student” MT-DNN 

then uses these combined targets as the target for each task.  The end result of this process is that 

the “student” MT-DNN is able to significantly outperform other MT-DNNs that do not use 
knowledge distillation as part of their training.  XLNet combines the usage of both 

autoregressive language modeling and autoencoding to build a pretrained model that can obtain 

context from both previous and future words without relying on data corruption like BERT [11].  

As a result, XLNet is able to significantly outperform the baseline BERT in most NLP tasks.  In 
addition, a statistical technique is also included, dubbed Sentence-BERT + cosine similarity. 

Sentence-BERT is a modification of BERT that uses siamese triplet networks to derive sentence 

embeddings that are both semantically meaningful and can easily be compared using cosine 
similarity [7].  In addition to these algorithms, a combination of the Lin knowledge-based 

measure proposed in [8] and a string similarity method proposed in [12] and [4] is also used.  

The Lin knowledge-based measure is designed specifically to understand semantic similarity, 
while the string similarity method was designed to understand lexical similarity.  As a result, the 

combination of the two algorithms would be able to understand far more information than each 

of the algorithms individually. 

 
The datasets used will be the Microsoft Research Paraphrase Corpus (MRPC) [13], the 

Argument Facet Similarity (AFS) dataset [14], and the Sentences Involving Composition 

Knowledge (SICK) dataset [15].  The MRPC dataset is designed to test whether the algorithm 
can detect paraphrases, while the AFS dataset is designed to test whether the algorithm can 

detect similar arguments.  The SICK dataset is split into two tasks, named SICK-R and SICK-E.  

SICK-R tests the algorithm on the sentences’ lexical similarity, while SICK-E tests whether the 
algorithm is capable of high-level semantic knowledge, by deciding whether the sentences are 

similar, have no relation, or have the opposite meaning. The evaluations used for the tasks will 

be the Pearson correlation and Spearman rank correlation for AFS and SICK-R, and 

classification accuracy for MRPC and SICK-E.   
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4. RESULTS 
 
Overall, the implementation of Sentence-BERT + cosine similarity went well.  For the most part, 

the corpuses, once downloaded, were trivial to implement.  The biggest issue came from the 

AFS dataset, as it was stored in a comma separated value format, which made it difficult to 

distinguish the commas in sentences from the commas separating the data.  This issue was 
solved by editing the dataset to make every comma in a sentence appear twice, and then use 

regex to split the sentences using only the single commas from the CSV format.  Once the 

sentences were split, the double commas could be converted to single commas trivially.  The 
evaluations were somewhat difficult to code, but once their respective formulas were found 

implementing them was relatively trivial.  Unfortunately, due to how SICK-E’s classification 

works, SemanticBERT + cosine similarity is unable to properly classify the information, and a 

score could not be found. 
 

Unfortunately, the implementation of XLNet was not so simple.  The original plan was to use 

the implementation linked in the original paper [16], but after much consideration the plan was 
changed to use hugging face transformers [17] instead, as it would be significantly easier to 

import and use.  Initially, there were major issues with the XLNet model, as the input 

dimensions would consistently be off.  This was solved through usage of padding.  Then, 
training and evaluation became an issue, as running either would consistently fail from using too 

much GPU memory.  This was solved by reducing batch steps.  After this, I was able to find the 

accuracy of classification datasets without issue, but unfortunately, finding an XLNet model 

capable of regression was still a major problem. 
 

Implementing MT-DNN was a major issue from the very beginning.  It took several days to 

figure out atensorflow import that kept going wrong required an older version of Python (3.6), 
and another day after that to realize the GitHub project used [18] was designed for a Linux OS.  

After those two problems were found, the location of implementation was switched to a cloud 

computing server known as Paperspace Gradient.  Once accomplished, the model was able to be 
set up.  Import errors made it difficult at times but installing them via apt install worked nicely to 

clear up the problems.  Rewriting code in the program was often necessary to account for 

running python programs with python3 instead of python2, as well.  Furthermore, for the MT-

DNN to work quickly, reinstalling a CUDA driver that was only partially installed became 
necessary, which was difficult as simply deleting it did not work as there were dependencies 

involved.  Ultimately, manually deleting the system programs that relied on said driver, then 

deleting the driver solved the issue.  Uploading the datasets seemed simple at first, but quickly 
became difficult, as each task had a specific data orientation that the uploaded datasets did not 

match.  After preprocessing the datasets again to account for this and splitting them up into 

train/test/dev splits, evaluation was thankfully simple. 

 
Implementing the knowledge-based measure was for the most part simple, although there were 

some hiccups along the way.  The initial plan was to use the implementation mentioned in [8], 

but it was not linked anywhere in the paper and it could not be found online.  Ultimately, the 
implementation was changed to include Sematch [19,20] as the implementation for the 

knowledge-based measure.  Originally, the plan was to combine multiple knowledge-based 

measures together, but it quickly became clear that doing so would be difficult to impossible in 
the time remaining.  Ultimately, the knowledge-based measure chosen was the Lin method, as it 

seemed the most effective of the individual algorithms mentioned in [8] and had an easy 

normalization of between 0 and 1.  Having chosen the algorithm and GitHub implementation, the 

most difficult problem of implementation made itself known.  Knowledge-based measures work 
by turning words into concepts and comparing those concepts, and thus they are designed for 

word similarity instead of sentence similarity.  All the evaluation metrics compared sentence 
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similarity, so it was necessary to convert word similarity to sentence similarity.  Thankfully, 
several papers that did just that were found [12,13].  They achieved this feat by building a matrix 

of comparisons between each word in the two sentences.  Once this was done, the papers took the 

highest value in the matrix, added it to a list, deleted the row and column the value was in, and 

continued until the highest value was zero or until there were no columns or rows left.  The 
authors also combined the knowledge-based measure with a similarity measure so that the 

algorithm would be more sensitive to lexical information.  It was trivial to use those papers to 

convert the implementations’ word similarity to sentence similarity, and from there things 
proceeded smoothly.   

 
Table 3. Result analysis per task/evaluation combination.   

 

 SICK-R 

Pearson 

SICK-R 

Spearman 

SICK-E 

Accuracy 

AFS 

Pearson 

AFS 

Spearman 

MRPC 

Accuracy 

Sentence-BERT 

+ Cosine 

Similarity 

73.61% 75.038% N/A 28.034% 75.063% 68.017% 

MT-DNN 92.185% 88.567% 90.706% 80.860% 78.178% 88.286% 

XLNet2 (second 

implementation) 

47.697% N/A 57.383% 72.752% N/A 66.236% 

XLNet1 (first 

implementation) 

N/A N/A 56.911% 

 

N/A N/A 66.983% 

Lin Measure + 

String Similarity 

60.546% 75.038% N/A 32.273% 75.063% 70.172% 

 

During the XLNet implementation, it became clear that the transformers XLNet code being 
working with was designed for classification problems and could thus not handle continuous 

data.  As such, it was decided to implement a different implementation linked in the original 

XLNet paper [16] as well to ensure that XLNet data concerning SICK-R and AFS could be 
gathered.  The main issue was the matter of installing CUDA 10.0, as Paperspace Gradient 

automatically installed CUDA 10.2, which needed to be uninstalled before CUDA 10.0 was 

installed.  There were also issues with the Nvidia driver, which would prevent CUDA from fully 

installing.  In the end, the issue was resolved by removing all traces of CUDA from my system, 
partially installing CUDA 10.0, manually removing the nVidia driver and its dependencies, and 

then running apt --fix-broken install to properly install CUDA 10.0.  After this, implementation 

largely went smoothly.  The only real roadblocks after this point was that XLNet only used 
Pearson similarity as a metric, and it did not naturally include MRPC processing.  Coding in an 

MRPC Processor subclass using their basic MNLI Matched Processor became necessary, after 

which the evaluation went smoothly.  Unfortunately, adding Spearman Rank Similarity was a 

much more arduous task, and there was no time left to finish the job.  All results used 60% train, 
20% test and 20% dev datasets. Figure 2 shows the accuracy of document similarity algorithms. 
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Figure 2. Result analysis per task/evaluation combination.   

 

Both Sentence-Bert + cosine similarity and the unofficial XLNet code was implemented on an 

Alienware m15 R4 with an Intel i7-10870H CPU, 32 GB of RAM, and a NVIDIA GForce RTX 
3070 GPU.  The MT-DNN, second XLNet implementation and Lin measure + string similarity 

was implemented on Paperspace, with an Intel Xeon E5-2623 v4 CPU, 30 GB of RAM, and a 

NVIDIA P5000 GPU. 

 
Of the algorithms tested, the MT-DNN is by far the most effective, as it was the only algorithm to 

successfully process all evaluation metrics, and it also had the highest scores in all evaluation 

metrics.  Lin Measure + String Similarity and Semantic BERT + Cosine Similarity had roughly 
the same results, with Semantic BERT + Cosine Similarity performing better in the SICK-R 

Pearson task, but slightly worse in the AFS Pearson and MRPC tasks.  The official XLNet code 

performed incredibly well in the AFS Pearson task but performed badly in the SICK-R Pearson 
task and had a slightly worse MRPC score than Lin + String Similarity and BERT + cosine 

similarity’s scores.  However, unlike Lin + String similarity and BERT + Cosine Similarity, the 

second XLNet implementation was able to give a score for SICK-E, so it has a major advantage 

in flexibility.  The first XLNet implementation had similar scores to the second XLNet 
implementation, but was unable to handle continuous data, so in terms of versatility and results it 

performed the worst of all tested algorithms. 

 
In the future, XLNet could be further investigated.  The second implementation of XLNet is 

theoretically capable of using Spearman Rank similarity as a metric, making it the only algorithm 

other than MT-DNN that can process all evaluation metrics. 

 

5. CONCLUSIONS 
 

This research gave a comprehensive study of four algorithms, Semantic BERT + Cosine 

Similarity, MT-DNN, XLNet, and Lin Measure + String Similarity.  Using the MRPC, AFS, 
SICK-E and SICK-R datasets, and the Spearman Rank, Pearson, and Accuracy evaluation 

metrics, the research was able to look at each of the four algorithms strengths and weaknesses, 

and thus give an answer to the question of which document similarity algorithm is most effective.  
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From the data obtained in this research, the MT-DNN is clearly the most effective document 
similarity algorithm tested. 

 

ACRONYMS 
 

MRPC: Microsoft Research Paraphrase Corpus. 

AFS: Argument Facet Similarity. 

SICK: Sentences Involving Composition Knowledge. 

BERT: Bidirectional Encoder Representations from Transformers. 

MT-DNN: Multi-Task Deep Neural Network. 
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