Large Language Models for Ciphers

David Noever
PeopleTec, Inc., Huntsville, AL, USA

Abstract

This study investigates whether transformer models like ChatGPT (GPT4, MAR2023) can generalize beyond their training data by examining their performance on the novel Cipher Dataset, which scrambles token order. The dataset consists of 654 test cases, and the analysis focuses on 51 text examples and 13 algorithmic choices. Results show that the models perform well on low-difficulty ciphers like Caesar and can unscramble tokens in 77% of the cipher examples. Despite their reliance on training data, the model's ability to generalize outside of token order is surprising, especially when leveraging large-scale models with hundreds of billions of weights and a comprehensive text corpus with few examples. The original contributions of the work focus on presenting a cipher challenge dataset and then scoring historically significant ciphers for large language models to descramble. The real challenge for these generational models lies in executing the complex algorithmic steps on new cipher inputs, potentially as a novel reasoning challenge that relies less on knowledge acquisition and more on trial-and-error or out-ofbounds responses.

KEYWORDS

Transformers, Text Generation, Cipher, Generative Pre-trained Transformers, GPT

1. Introduction

Given the prominent role of language in the way humans reason about their environment, memories, and preserved knowledge [1], what if machines could not only mirror language generation but, as an unexpected consequence, develop some of the same capabilities to reason about their environment and preserve complex manipulations over time [2]? An unexpected outcome of recent large language models [3-5] is how much of their raw text generation captures signs of complex reasoning [6] as a simple next-token prediction.

The present work examines whether the current LLM generators can act as ciphers, adept manipulators for symbolic letter substitutions that naturally break the order of subsequent token learning [7-11]. We have previously examined part of this problem as a language translation problem using paired phrases and trained GPT-2 models with an application toward learning more obscure or neglected languages outside the scope of the universal translators [12]. Those experiments showed that, in some cases, the finely trained model for language pairs could outperform the larger translators in their subdomain, a result that others have seen in medicine [13], law [14-15], and some scientific summarizations [16-17].

However, the novel aspect of GPT scaling [18-19] suggests that the current generators do not need preparation for such challenges. They perform as zero-shot [20] or few-shot [21] models that generate meaningful answers from prompts without specialization or fine-tuning cycles. As these models evolve to test well on many examination challenges [15] objectively, we propose a new cipher dataset [22] that shows promising potential to rate the reasoning capacity as models improve. While ciphers share many aspects of traditional language translation [7-12], the pure
pattern recognition challenges suggest an alternative to mechanically mapping from one input to an output. For instance, crude translators might pair all verbs across multiple languages and never deviate from a deterministic program without assistance from LLM or machine learning methods [23].

One can easily convince an observer that this translator is not reasoning, just performing a substitution. This type of baseline shares similarities to a new Lovelace 2.0 test, first proposed [24] in 2014 as an extension of the original Turing test [25]. The Lovelace 2.0 test [24] seeks to vary the initial conditions and test whether a computer could truly surprise a human by making the kinds of leaps that are left unexplained in human reasoning and separate a set of defined tasks like art, music, and literature as reserved for the surprisingly creative label. As others have noted [26-28], the Turing and Lovelace 2.0 tests seem to be teetering when faced with the present LLM generators. Not only are they conversant like Turing imagined [25], but surprisingly creative like Lovelace 2.0 thought impossible for a machine [24]. These models play chess with strategy [2931]. Can these models solve complex problems [8] like math theorems [32] or ciphering challenges? We propose 13 cipher tests, release the dataset for others to explore [22], and solve them with varying degrees of success using the GPT-4 variant of ChatGPT ([4] released March 2023).

Transformer Challenge

Large language models fall into three broad categories: autoregressive (GPT-like [3-4]), autoencoding ([33] BERT-like), and sequence-to-sequence ([34] T5/BART-like). By autoregressive, we mean that past values predict future values in a feed-forward (and parallelized) network. By autoencoding, we suggest a kind of compression or embedding space. By sequence models, we mean a map between prior sequences to a language scalar or next sequence. While the autoregressive models are also sequence predictors, their structure as feed-forward optimizers makes them faster for training and inference. For the present purposes, the hypothesis is that language modeling [35] fundamentally involves predicting the next word, letter or token - given a starter- to finish the thought. In addition to the modeling assumption behind the base or foundational model [4], subtle refinements include the training data, self-supervision, and most recently, human feedback and reinforcement learning [36] either using Proximal Policy Optimization (PPO) [37] or Advantage Actor-Critic (A2C) [38]. The hybrid blending of human labeling after unsupervised learning seems to yield the most satisfying output in this generation of transformer-based language models (particularly the generators).

One counterintuitive observation about next-token prediction is how effective this method proves empirically when a prompt engineer presents never seen input sequences and the model reasonably responds based on some frequency distribution of its prior training [28, 39-41]. In the case of models after GPT-2, the result of scaling seems to produce enough prior knowledge [5] and exposure to edge cases that the GPT-3+ models display zero-shot capabilities [20] or inference with rare edge cases [7]. Cipher challenges pose one such unlikely edge case [7,9-11]. In the 40 TB of text training, the Internet presents many examples of algorithms for scrambling text in ways that either slow down human readers or entirely obscure the original text content and meaning. But there's a difference between seeing an algorithm's pseudocode and executing those defined steps on new inputs, potentially as a "reasoning" challenge [41].

In the ongoing debate as to whether these LLMs are stochastic (but overfitted) parrots [41] or capable of creatively combining concepts [2] based on attention fine-tuning, the problem of descrambling or deciphering text seems worth investigating. In a simple case, teaching a language model to reverse a word or the entire alphabet seems like a translation pair problem at first glance. But how does a zero-shot learner make the leap to recognizing the pattern ab initio:
through trial-and-error iterations like humans, or perhaps by somewhere traversing a subreddit thread that outlines enough examples to generalize? The problem statement for the present work, thus, seeks to answer the question: Can next-token predictors as current LLMs show emergent capabilities to master deciphering tasks, with or without examples of success?

Ciphers

Table 1 summarizes the ciphers in the dataset created with 51 simple short sentences that can be scrambled or obfuscated methodically. Table 1 briefly describes the cipher's estimated difficulty to break and whether the cipher somehow preserves letter order. The list does not include the high-difficulty algorithms (labeled with an asterisk) that one might consider more advanced encryption, such as RSA, AES, Two-fish, One-time Pad, and Enigma Machine. The constructed dataset shows the original text and 13 variants of encoding schemes. The Appendix solutions (Appendices A-I) and the dataset describe various medium to low ciphers for language models to benchmark in future work.

Table 1. The Cipher dataset for the AI language table describes the encoding, estimated difficulty, and letter order dependencies. The estimates for difficulty and order are assigned broadly by Open AI GPT-4 Prompts.

Cipher Name	Short Description	Difficulty to Break	Depends on Letter Ordering?
Caesar Cipher	Simple substitution cipher with a fixed shift	Low	Yes
ROT13	Shifts letters by 13 places (Caesar Cipher variant)	Low	Yes
Vigenère Cipher	Polyalphabetic substitution cipher with a repeating key	Medium	Yes
Atbash Cipher	Reverses the alphabet for substitution	Low	Yes
*Rail Fence Cipher	Rearranges letters based on a zigzag pattern	Low	No
Playfair Cipher	Digraph substitution cipher using a 5x5 matrix	Medium	Yes
Columnar Transposition	Rearranges plaintext in a grid and reads columns in order	Medium	No
Morse Code	Represents letters and numbers with sequences of dots and dashes	Low	Yes
Leetspeak	Substitutes letters with numbers and special characters	Low	Yes
Hill Cipher	Linear algebraic substitution using matrices	High	Yes
Keyword Cipher	Substitution cipher based on a keyword	Low to Medium	Yes
*Enigma Machine	The mechanical and electrical encryption device	High	Yes
*One-Time Pad	Unbreakable cipher with a one-time pre-shared key	High	Yes
*RSA	Public key cryptosystem based on prime numbers	High	No
*AES	Symmetric encryption algorithm for electronic data	High	No
*TwoFish	A symmetric key block cipher, fast encryption	High	No
Bacon Cipher (2)	Binary encoding with a 5-bit representation of each letter	Medium	No
Mirror Writing	Reverse each word individually	Low	No

2. Methods

The experimental research provides a prompt-response sequence to probe whether the LLM ([4] GPT-4, Open AI, ChatGPT Mar2023) can decipher the scrambled text. Because the primary research question asks if there is any sign of underlying reasoning or creative leaps, the more complex algorithms required multiple clarification prompts, including finally submitting a one-to-one map where no solution appeared without examples.

While this approach may favor the model finding a plausible solution, the nine appendices show the process in detail, including all failed responses and corrections steps. In this way, the research focuses on what is possible rather than what might be considered face-value negative results for the deciphering challenges. A justification for this repeated probing stems from the remarkable conversational memory available to researchers in this current GPT generation (up to 8000 tokens or approximately 25 pages). It is worth emphasizing that such long-term token memory is novel and expensive to implement but demarks a significant break in previous API-driven models that rely on constant reminders and refresh stages to establish long-term memory and context.

Table 2. Cipher Examples and Scores from Experiment

Cipher Case	Example Prompt to Decode	LLM Success Rating	Difficulty
Original	MAY THE FORCE BE WITH YOU	N/A	N/A
ROT13	ZNL GUR SBEPR OR JVGU LBH	N/A	Low
Caesar+1	NBZ UIF GPSDF CF XJUI ZPV	Good	Low
Caesar+3	PDB WKH IRUFH EH ZLWK BRX	Good	Low
Caesar-2	KYW RFC DMPAC ZC UGRF WMS	Good	Low
Morse/...../-..../.....-.-....-.-...-./---..-/-...--....	Good	Low
LeetSpeak	M4'/ 7\#3 \|=02(3 83 V ! 7 7 '/01_I	Good	Low
Vignere	ZCZ RIR GMPDR CC XVVI WPH	Marginal	Medium
Playfair (APOLLO)	hllykcelqdgodxmrmvbs	Fail	Medium
Keyword (IRONJAZ)	GIX/SBJ/AKPOJ/RJ/VCSB/XKT	Marginal	Low-Medium
Atbash	NZB/GSV/ULIXV/YV/DRGS/BLF	Good	Low
Bacon	ABBAAAAAAABBAAA/BAABBAABBBAABAA/AAB ABABBBABAAABAAABAAABAA/AAAABAABAA/B ABBAABAAABAABBAABBB/BBAAAABBBABABAA	Fail	Medium
DaVinci (Word)	YAM EHT ECROF EB HTIW UOY	Good	Low
DaVinci (Sentence)	UOY HTIW EB ECROF EHT YAM	Good	Low
Hill	SGC	Fail	High

3. Results

Table 2 summarizes the overall success and cipher difficulty with examples derived from the Appendices. Of the thirteen instances shown in Table 2, the LLM scored a "good" or "marginal" capability to finish the deciphering task in 77% (10/13) of the cases. All three failures (Playfair, Hill, and Bacon) are medium to high in difficulty. Each of these ciphers recodes the token in complex ways, such as using linear algebra (Hill) or digraph methods (Playfair). Previous work has observed that LLMs trained on text struggle to mimic human math manipulations, even failing on $2+2$ in prior versions because the training data may embed a Reddit joke that implies the punchline is $2+2=5$, for example. While a topic of previous consternation, some evidence exists inferentially that later GPT models specifically train on next-token predictions with math problems. Why this might prove relevant to interpreting ciphers stems from the success of zeroshot language models to master alphabetic shifts. All the simple Caesar manipulations of letters (shifting N letters either way) proved amenable to LLMs with few hints. In some examples, the model seemed to match the shift to a real English sentence through trial and error, so the inverse problem of given an unknown shift and finding the next reasonable phrase proved possible.

Table 3. Appendices Index of Detailed Experiments

Appendix	Task
A	Simple Caesar Cipher
B	Morse Code
C	LeetSpeak
D	Vignere Cipher
E	Playfair Cipher
F	Hill Cipher
G	Keyword Cipher
H	Atbash Cipher
I	DaVinci Mirror

While Table 2 presents the main experimental results, the appendices describe the sequence of prompts or commands to the LLM that matches each response. From the perspective of a structural probe for language and token ordering, understanding a one-to-one map like Morse code or Leet Speak without examples represents a leap forward in quantifying the model's ability to respond meaningfully to user prompts. One can postulate that given any mapping for translation, given a few examples, the current generation of LLMs could master the substitution pattern and eventually become proficient. The requirement for zero-shot knowledge of complex algorithms is arbitrary [20-21]. What a human might expect in a proficiency test or study material would likely be a few worked examples, from which one good teacher could assign future mastery skill ratings based on recognizing and remembering the pattern. The notable breakthrough with these LLMs is some long-term (and expensive) retention of prior instruction [4]. The second significant advance revolves around the interface, with a conversational chat style, such that when an incorrect or partial answer proves unsatisfactory, the evaluation process need not halt. Instead, the tutor can continue to probe for more profound insight or correctable behavior from the LLM

4. Discussion and Conclusions

There is a robust debate within the AI community concerning the actual output of LLM text generators. Are these transformer models very elegant parrots of human training data (the Internet), or have they learned to generalize in the way humans might expect for tasks like gameplay or unexpected inputs that never appear in training data? One example of rare or unusual cases is to reverse the primary hypothesis of next-token prediction by scrambling the order of tokens. The task of scrambling tokens thus generates a novel benchmark dataset called Cipher Dataset which consists of 654 test cases or prompts to consider in evaluating future LLM capabilities. From 51 text examples, the present work examines 13 algorithmic choices and evaluates the responses from ChatGPT (GPT4, MAR2023). For low-difficulty ciphers like Caesar, the zero-shot capabilities of these models score well against the benchmark. Overall, the recent generative models can unscramble tokens that modify the premise of their training data in 77% of the examples presented. While transformers remain highly dependent on training data, the ability of these models to generalize remains a surprising feature of their scale when hundreds of billions of weights are available, and a large corpus of text combines capabilities. The real challenge for these generational models lies in executing the complex algorithmic steps on new cipher inputs, potentially as a novel reasoning challenge that relies less on knowledge acquisition and more on trial-and-error or out-of-bounds responses.

ACKNOWLEDGMENTS

The author would like to thank the PeopleTec Technical Fellows program for its encouragement and project assistance. The author thanks the researchers at Open AI for developing large language models and allowing public access to ChatGPT.

References

[1] Johnson, K. E., \& Ma, P. (1999). Understanding language teaching: Reasoning in action. Boston, MA: Heinle \& Heinle.
[2] Kejriwal, M., Santos, H., Mulvehill, A. M., \& McGuinness, D. L. (2022). Designing a strong test for measuring true common-sense reasoning. Nature Machine Intelligence, 4(4), 318-322.
[3] Radford, A., Narasimhan, K., Salimans, T., \& Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI, https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
[4] OpenAI, (2023) GPT-4 Technical Report, https://arxiv.org/abs/2303.08774
[5] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., ... \& Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.
[6] Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., ... \& Hong, C. S. (2023). A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need?. arXiv preprint arXiv:2303.11717.
[7] Zheng, M., Lou, Q., \& Jiang, L. (2023). Primer: Fast Private Transformer Inference on Encrypted Data. arXiv preprint arXiv:2303.13679.
[8] Noever, D., \& Burdick, R. (2021). Puzzle Solving without Search or Human Knowledge: An Unnatural Language Approach. arXiv preprint arXiv:2109.02797.
[9] de Witt, C. S., Sokota, S., Kolter, J. Z., Foerster, J., \& Strohmeier, M. (2022). Perfectly Secure Steganography Using Minimum Entropy Coupling. arXiv preprint arXiv:2210.14889.
[10] Grinbaum, A., \& Adomaitis, L. (2022). The Ethical Need for Watermarks in Machine-Generated Language. arXiv preprint arXiv:2209.03118.
[11] Malinka, K., Perešíni, M., Firc, A., Hujňák, O., \& Januš, F. (2023). On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready to Obtain a University Degree?. arXiv preprint arXiv:2303.11146.
[12] Noever, D., Kalin, J., Ciolino, M., Hambrick, D., \& Dozier, G. (2021). Local translation services for neglected languages. arXiv preprint arXiv:2101.01628.
[13] Chintagunta, B., Katariya, N., Amatriain, X., \& Kannan, A. (2021, October). Medically aware GPT3 as a data generator for medical dialogue summarization. In Machine Learning for Healthcare Conference (pp. 354-372). PMLR.
[14] Eliot, D., \& Lance, B. (2021). Generative pre-trained transformers (gpt-3) pertain to AI in the law. Available at SSRN 3974887.
[15] Bommarito II, M., \& Katz, D. M. (2022). GPT Takes the Bar Exam. arXiv preprint arXiv:2212.14402.
[16] Kieuvongngam, V., Tan, B., \& Niu, Y. (2020). Automatic text summarization of covid-19 medical research articles using bert and gpt-2. arXiv preprint arXiv:2006.01997.
[17] Waly, R. R. (2022). Automatic Summarization of Scientific Articles.
[18] Wang, H., Ma, S., Huang, S., Dong, L., Wang, W., Peng, Z., ... \& Wei, F. (2022). Foundation transformers. arXiv preprint arXiv:2210.06423.
[19] So, D., Mańke, W., Liu, H., Dai, Z., Shazeer, N., \& Le, Q. V. (2021). Searching for efficient transformers for language modeling. Advances in Neural Information Processing Systems, 34, 6010-6022.
[20] Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., ... \& Le, Q. V. (2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.
[21] Srivastava, P., Ganu, T., \& Guha, S. (2022). Towards Zero-Shot and Few-Shot Table Question Answering using GPT-3. arXiv preprint arXiv:2210.17284.
[22] Noever, D.A. (2023) Cipher Dataset, https://github.com/reveondivad/cipher
[23] Meylaerts, R. (2010). Multilingualism and translation. Handbook of translation studies, 1, 227-230.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023
[24] Riedl, M. O. (2014). The Lovelace 2.0 test of artificial creativity and intelligence. arXiv preprint arXiv:1410.6142.
[25] Turing, A. M. (1950). Computing machinery and intelligence. In Parsing the Turing test (pp. 23-65). Springer, Dordrecht, republished 2009
[26] Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., \& Chen, W. (2021). What Makes Good InContext Examples for GPT-\$3 \$?. arXiv preprint arXiv:2101.06804.
[27] Elkins, K., \& Chun, J. (2020). Can GPT-3 pass a Writer's Turing test?. Journal of Cultural Analytics, 5(2).
[28] Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., \& Tang, J. (2021). GPT understands, too. arXiv preprint arXiv:2103.10385.
[29] Noever, D., Ciolino, M., \& Kalin, J. (2020). The chess transformer: Mastering play using generative language models. arXiv preprint arXiv:2008.04057.
[30] Toshniwal, S., Wiseman, S., Livescu, K., \& Gimpel, K. (2022, June). Chess as a Testbed for Language Model State Tracking. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 10, pp. 11385-11393).
[31] DeLeo, M., \& Guven, E. (2022). Learning Chess with Language Models and Transformers. arXiv preprint arXiv:2209.11902.
[32] Piotrowski, B., Mir, R. F., \& Ayers, E. (2023). Machine-Learned Premise Selection for Lean. arXiv preprint arXiv:2304.00994.
[33] Rogers, A., Kovaleva, O., \& Rumshisky, A. (2021). A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842-866.
[34] Roberts, A., Raffel, C., \& Shazeer, N. (2020). How much knowledge can you pack into the parameters of a language model?. arXiv preprint arXiv:2002.08910.
[35] Hugging Face, NLP course, https://huggingface.co/course/chapter 1/4
[36] Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., ... \& Clark, P. (2023). SelfRefine: Iterative Refinement with Self-Feedback. arXiv preprint arXiv:2303.17651.
[37] Tuan, Y. L., Zhang, J., Li, Y., \& Lee, H. Y. (2018). Proximal policy optimization and its dynamic version for sequence generation. arXiv preprint arXiv:1808.07982.
[38] Dong, H., Dong, H., Ding, Z., Zhang, S., \& Chang. (2020). Deep Reinforcement Learning. Singapore: Springer Singapore.
[39] Singh, M., SB, V., \& Malviya, N. (2023). Mind meets machine: Unravelling GPT-4's cognitive psychology. arXiv preprint arXiv:2303.11436.
[40] Binz, M., \& Schulz, E. (2023). Using cognitive psychology to understand GPT-3. Proceedings of the National Academy of Sciences, 120(6), e2218523120.
[41] Sparkes, M. (2023). Are chatbots really able to think like people?.
[42] Bender, E. M., Gebru, T., McMillan-Major, A., \& Shmitchell, S. (2021, March). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 610-623).

AUTHOR

David Noever has research experience with NASA and the Department of Defense in machine learning and data mining. He received his BS from Princeton University and his Ph.D. from Oxford University, as a Rhodes Scholar, in theoretical physics.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

```
Technical Note: Some appendix text generated from Large Language Model (LLM) for
illustration purposes.
The authors generated this text in part with ChatGPT, OpenAI's large-scale language-
generation model. Upon generating draft language, the authors reviewed, edited, and revised
the language to their own liking and take ultimate responsibility for the content of this
publication.
-- OpenAI policy statement (2022)
```


Appendix A: Example of a Simple Caesar Cipher

Prompt: I want you to be a code breaker. I will give you a scrambled phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. So for instance there are lots of known ciphers out there like ROT13, etc. or shifting letters. Make your best unscrambling guess at this sequence : NBZ UIF GPSDF CF XJUI ZPV
ChatGPT: Given the sequence "NBZ UIF GPSDF CF XJUI ZPV" and considering the white spaces, let's try the Caesar cipher again by shifting the letters forward and backward.

When I shift each letter back by 1 position, I get the following:

"MAY THE FORCE BE WITH YOU"

Which translates to:

"MAY THE FORCE BE WITH YOU"

The correct decrypted message appears to be "MAY THE FORCE BE WITH YOU." Prompt: TJNQMF BDUT PG MPWF BOE LJOEOFTT
ChatGPT: Given the sequence "TJNQMF BDUT PG MPWF BOE LJOEOFTT" and considering the white spaces, let's try the Caesar cipher again by shifting the letters forward and backward.

When I shift each letter back by 1 position, I get the following:
"SIMPle acts of love and kindness"
Which translates to:

"SIMPLE ACTS OF LOVE AND KINDNESS"

The correct decrypted message appears to be "SIMPLE ACTS OF LOVE AND KINDNESS."
Prompt: Vary the shift. FDQ GR WKLV DOO GDB
ChatGPT: Given the sequence "FDQ GR WKLV DOO GDB" and considering the white spaces, let's try the Caesar cipher with varying shifts:
When I shift each letter back by 3 positions, I get the following:
"CAZ DO THIS ALL DAY"
Which translates to:
"CAN DO THIS ALL DAY"
The correct decrypted message appears to be "CAN DO THIS ALL DAY."
Prompt: J BN BGSBJE J DBOOPU EP UIBU
ChatGPT: Given the sequence "J BN BGSBJE J DBOOPU EP UIBU" and considering the white spaces, let's try the Caesar cipher with varying shifts:

When I shift each letter back by 1 position, I get the following:

"I AM AFRIDA I CANNOT DO THAT"

Which translates to:

"I AM AFRAID I CANNOT DO THAT"

The correct decrypted message appears to be "I AM AFRAID I CANNOT DO THAT."
Prompt: try some shifts for this one. TPMZFOU HSFFO JT QFPQMF
ChatGPT: Given the sequence "TPMZFOU HSFFO JT QFPQMF" and considering the white spaces, let's try the Caesar cipher by shifting the letters forward and backward.

When I shift each letter back by 1 position, I get the following:

"SOLYENT GREEN IS PEOPLE"

Which translates to:

"SOYLENT GREEN IS PEOPLE"

The correct decrypted message appears to be "SOYLENT GREEN IS PEOPLE."
Prompt: MJGF GJOET B XBZ
ChatGPT: Given the sequence "MJGF GJOET B XBZ" and considering the white spaces, let's try the Caesar cipher by shifting the letters forward and backward.

When I shift each letter back by 1 position, I get the following:
"LIFE FINDS A WAY"
Which translates to:
"LIFE FINDS A WAY"
The correct decrypted message appears to be "LIFE FINDS A WAY."

Appendix B: Example of Morse Code

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

```
The decoded message is "TO BE FREE."
Prompt: -.- .-.. .- .- -..- / -... .- .-. .- -.. . / -... -.- - ---
ChatGPT: Given the Morse code sequence "-.- .-.. .- .- -..- / -... .- .-. .- -.. .- / -. .. -------- ", let's
decode it:
-.- = K
\(-. .=\mathrm{L}\)
.- = A
.- = A
\(=\mathrm{T}\)
..- = U
\(-\ldots=B\)
. \(=\mathrm{A}\)
.-. = R
.- = A
\(-. .=\mathrm{D}\)
.- = A
\(-.=\mathrm{N}\)
.. = I
\(-.-=K\)
\(=\mathrm{T}\)
--- = O
When we put these letters together and maintain the spaces, we get:
"KLAATU BARADA NIKTO"
The decoded message is "KLAATU BARADA NIKTO."
Prompt: .. / -.- -. --- .-- / -.- ..- -. --. / ..-. ..-
.. = I
-.- = K
\(-.=\mathrm{N}\)
--- = O
.-- = W
-.- = K
..- = U
\(-.=\mathrm{N}\)
--. = G
..-. = F
..- = U
```

When we put these letters together and maintain the spaces, we get:

"I KNOW KUNG FU"

The decoded message is "I KNOW KUNG FU."

Appendix C: Example of LeetSpeak

Prompt: I want you to be a code breaker. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. So for instance there are lots of known alphanumeric substitution patterns. The following problem is different than single letters and may involve special characters and the spaces represent real word breaks. Make your best unscrambling guess at this sequence : ! WV!11 8384 (|<
ChatGPT: The given sequence "! //!11 $8384(\mid<$ " appears to be a combination of alphanumeric and special characters that mimic the appearance of a sentence using leetspeak, which is an alternative alphabet for English that is often used on the Internet.

Based on the sequence, here is the best guess for the translation:
! //!11 -> ! WW! 11 -> W will (The W and the exclamation marks form "WW", which might represent double "W", and the "11" represents "ll" in "will")
83 -> 83 -> B E (The " 8 " resembles "B" and " 3 " resembles " E ")
$84(\mid<->84(\mid<->B 4 c k$ (The " 8 " resembles "B" and "4" resembles "A", while "(|" represents "R" and "<" represents "K")

When we put these letters together, we get:

"W will BE BACK"

However, it seems that there might be an extra "W" at the beginning. Ignoring the first "W" to form a coherent sentence:

The correct decrypted message appears to be "I WILL BE BACK."
Prompt: ! 4/ 142341 80'/
ChatGPT: The given sequence "! 4// 4234180 '/" appears to be a combination of alphanumeric and special characters that mimic the appearance of a sentence using leetspeak, which is an alternative alphabet for English that is often used on the Internet.

Based on the sequence, here is the best guess for the translation:
! -> I (The "!" resembles "I")
4/^ -> 4 M -> A M (The "4" resembles "A" and "/" represents "N", but in this context, "M" makes more sense)
4 -> A (The "4" resembles "A")
2341 -> 2341 -> R E A L (The "2" resembles "R", "3" resembles "E", "4" resembles "A", and "1" resembles "L")
80'/ -> 80 ' -> B O Y (The " 8 " resembles "B", " 0 " resembles "O", and the apostrophe "'" resembles " Y ")

When we put these letters together, we get:
"I AM A REAL BOY"
The correct decrypted message appears to be "I AM A REAL BOY."
Prompt: '/0|_||N33|) 4 8!6632 8047
ChatGPT: The given sequence "'/0|_|||33|) 48 !6632 8047" appears to be a combination of alphanumeric and special characters that mimic the appearance of a sentence using leetspeak, which is an alternative alphabet for English that is often used on the Internet.

Based on the sequence, here is the best guess for the translation:
'/0\|| -> Y O U (The "'" resembles "Y", "0" resembles "O", and "||" represents "U")

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

```
|| -> N (The "||" represents "N")
33|) -> 3 3 |) -> E E D (The "3" resembles "E" and "|" represents "T", but in this context, "D"
makes more sense)
4 -> A (The "4" resembles "A")
8!6632 -> 8 I 6 6 3 2 -> B I G G E R (The " 8" resembles "B", "!" represents "I", "6" resembles
"G", "3" resembles "E", and "2" resembles "R")
8047 -> 8 04 7 -> B O A T (The "8" resembles "B", "0" resembles "O", "4" resembles "A", and
"7" resembles "T")
When we put these letters together, we get:
```

"YOU NEED A BIGGER BOAT"

Appendix D: Example of Vignere Cipher

```
Prompt: I want you to be a code breaker using the Vigenère Cipher. I will give you a mapped
phrase and I want you to try to uncrack it and give the letters back to me in the right order to
make a good sentence. So for instance there is a key "APOLLO". Make your best unscrambling
guess at this sequence: LQV ABAPPR GVIIR JA UFC JCS PPBO
ChatGPT: (combining several incorrect first tries)
To decrypt the given text using the Vigenère Cipher, we'll need to use the provided key
"APOLLO" and implement the decryption process in Python. Here's the code to do that:
def vigenere_cipher(text, key, encode=True):
    key_len = len(key)
    key_ord = [ord(i) for i in key]
    result = []
    for i, c in enumerate(text):
        if c.isalpha():
            shift = key_ord[i % key_len]
            if encode:
                shift = -shift
            new_ord = ord(c) - shift
            if c.islower():
                    new_ord = (new_ord - ord('a')) % 26 + ord('a')
            else:
                    new_ord = (new_ord - ord('A')) % 26 + ord('A')
            result.append(chr(new_ord))
        else:
            result.append(c)
    return ".join(result)
key = "APOLLO"
cipher_text = "LQV ABAPPR GVIIR JA UFC JCS PPBO"
plain_text = vigenere_cipher(cipher_text, key, False)
print(plain_text)
The output for the decrypted text is:
YOU CANNOT FIGHT IN THE WAR ROOM
So, the decrypted message using the key "APOLLO" is "YOU CANNOT FIGHT IN THE
WAR ROOM".
Prompt: VV GQ BPMW B HMCQI YPSLE
ChatGPT: To decrypt this message, I will use the Vigenère cipher decryption code with the
previously provided key "APOLLO":
```

To decrypt this message, I will use the Vigenère cipher decryption code with the previously provided key "APOLLO":
The output for the decrypted text is:
IT IS TIME TO START WORKING
So, the decrypted message using the key "APOLLO" is "IT IS TIME TO START WORKING"
Prompt: IT IS ONLY A FLESH WOUND

Appendix E: Example of Playfair Cipher

Prompt: I want you to be a code breaker using the Playfair Cipher. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. So for instance there is a key "APOLLO". White space does not matter here. Make your best unscrambling guess at this sequence : hpnfbpipfkfs
ChatGPT: (combining several incorrect first tries)
To decrypt the given text using the Playfair cipher with the key "APOLLO", I'll first need to create a 5×5 matrix using the key. Then, I'll use the provided functions to decrypt the text. Here's a complete Python program to do that:
Prompt: Do not give me code. I just want the phrase deciphered: key = "APOLLO" cipher_text = "hpnfbpipfkfs"
ChatGPT: I apologize for the confusion. Using the key "APOLLO" and the cipher_text "hpnfbpipfkfs", the decrypted text using the Playfair Cipher is "HELLOFRIENDS".
Prompt: That is incorrect. Here is a worked example where the first entry is the plaintext, followed after the comma by an encrypted version. iwillbeback , rpmpbagochnx. I just want the plain text from the earlier one.
ChatGPT: Apologies for the confusion earlier. Using the provided example and the key "APOLLO", I have revised the decryption process. Here is the correct decryption for the given cipher_text "hpnfbpipfkfs":

The decrypted text using the Playfair Cipher is "HELLOXWORLDX".
Note that the " X " in the decrypted text represents the filler characters used in the Playfair cipher. You can remove them to get the meaningful phrase: "HELLO WORLD".
Prompt: Incorrect, here is the worked second example: iamgladwemet, hpnfbpipfkfs
ChatGPT: I apologize for the confusion earlier. Based on your provided example, the decryption process is revised.

Using the key "APOLLO" and the cipher_text "hpnfbpipfkfs", the decrypted text using the Playfair Cipher is "IAMGLADXWEMET". Note that the " X " in the decrypted text represents the filler characters used in the Playfair cipher. You can remove them to get the meaningful phrase: "I AM GLAD WE MET".
Prompt: Correct. Using what we learned, try this then as encrypted to decipher: oqxlrzkrnv ChatGPT: Using the key "APOLLO" and the cipher_text "oqxlrzkrnv", the decrypted text using the Playfair Cipher is "SLOWLYXRISEN". Note that the "X" in the decrypted text represents the filler characters used in the Playfair cipher. You can remove them to get the meaningful phrase: "SLOWLY RISEN".
Prompt: Incorrect
ChatGPT: I apologize for the incorrect decryption. Based on the key "APOLLO" and the cipher_text "oqxlrzkrnv", the correct decrypted text using the Playfair Cipher is
"SECRETXCODE". Note that the " X " in the decrypted text represents the filler characters used in the Playfair cipher. You can remove them to get the meaningful phrase: "SECRET CODE". Prompt: No the correct plain text pair with the encrypted one is asyouwish , oqxlrzkrnv
ChatGPT: I apologize for the confusion earlier. Based on the provided example, the decryption process is revised.

Using the key "APOLLO" and the cipher_text "oqxlrzkrnv", the decrypted text using the Playfair Cipher is "ASYOUXWISHX". Note that the " X " in the decrypted text represents the filler characters used in the Playfair cipher. You can remove them to get the meaningful phrase: "AS YOU WISH".

Appendix F: Example of Hill Cipher

Note: for he Hill Cipher, the input was taking a few original statements and wrapping them into 3 letter inputs. For example: MAY THE FORCE BE WITH YOU, TO BE FREE, YOU EITHER DIE A HERO, were wrapped to make 15 sample candidates for GPT-4 to solve.

> Hill

MAY	SGC
THE	AJN
FOR	TRV
CEB	FWT
EWI	OQC
THY	UBB
OUT	LQV
OBE	IET
FRE	ANH
EYO	QEW
UEI	QOQ
THE	AJN
RDI	ALR
EAH	FSD
ERO	EWH

Prompt: I want you to be a code breaker using the Hill Cipher. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. So for instance there is a key "APOLLOELE". Make your best unscrambling guess at this sequence : YAO
ChatGPT: To decrypt a message using the Hill Cipher, we need to convert the key into a matrix. In this case, the key is "APOLLOELE". For a Hill cipher, we need to know the dimensions of the matrix. Common dimensions are 2×2 or 3×3. Since the key has 9 characters, it seems like you intended to use a 3×3 matrix.

However, there is an issue with the key "APOLLOELE". A Hill Cipher key matrix must have an inverse in modulo 26 to be valid, and the matrix formed by this key does not meet this requirement. The determinant of the matrix formed by "APOLLOELE" is not coprime with 26. Therefore, the Hill Cipher decryption cannot be performed with this key. Please provide a valid key for the Hill Cipher.
Prompt: Ok. Good points. Let's try key=ABCDEFGHI. And the encrypted 3 letters are WAE, and I want just the plain text input back.
ChatGPT: Using the key "ABCDEFGHI" and the cipher_text "WAE", we can decrypt the message using the Hill Cipher.

The key matrix is:
[$[0,1,2]$,
$[3,4,5]$,
$[6,7,8]]$
The inverse key matrix modulo 26 is:
[[2, 19, 4],
$[21,9,11]$,
$[17,1,7]]$
The cipher text "WAE" is represented by the vector $[22,0,4]$.
Now we multiply the inverse key matrix by the cipher text vector modulo 26:
$[[2,19,4], *[22]=[0]$
$[21,9,11],[0][1]$
$[17,1,7]][4][1]]$
The resulting vector $[0,1,1]$ corresponds to the decrypted text "ABB".
Prompt: Here are 3 worked examples as input plain text and output encrypted results from
Hill cypher. MAY, WAE
THE , PBN
FOR, WAE. Now I want the plain text from the encrypted "GBW"
ChatGPT: It seems there is a mistake in the provided examples. The encrypted text "WAE" is given for both "MAY" and "FOR", which is not possible if a single key is being used for the Hill Cipher.

Please verify the provided examples and key, and then provide the correct encrypted text for "GBW" so that I can help you decrypt it.
Prompt: let's use the key = "GYBNQKURP". Then let's look at three worked example MAY , SGC
THE , AJN
FOR, TRV followed by an encrypted results to be decrypted to plain text inputs: FWT
ChatGPT: Using the provided key "GYBNQKURP", I decrypted the given encrypted text "FWT". The decrypted plain text is "MAN".
Prompt: No the decrypted text is CEB
ChatGPT: OQC
Prompt: Using the provided key "GYBNQKURP", I decrypted the given encrypted text
"OQC". The decrypted plain text is "YOU".
ChatGPT: No, the decrypted text is EWI. Are you just guessing?
Prompt: Apologies for the mistake earlier. I am not guessing, but it seems I made an error in the decryption process. Using the provided key "GYBNQKURP" and the encrypted text "OQC", the correct decrypted plain text is indeed "EWI".
ChatGPT: UBB
Prompt: Using the provided key "GYBNQKURP", I decrypted the given encrypted text
"UBB". The decrypted plain text is "ONE".
ChatGPT: No, THY

Appendix G: Example of Keyword Cipher

Prompt: I want you to be a code breaker using the Keyword Cipher. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. So for instance there is a key "IRONJAZ". Make your best unscrambling guess at this sequence where "/" is white space: GIHTIF/KUJPPCNJ
ChatGPT: To decrypt the given cipher text using the Keyword Cipher, first, we need to create the decryption table based on the keyword "IRONJAZ". Here's the decryption table:

Keyword: IRONJAZ
Alphabet: BCDEFGHKLMPSQTUVWXYZ
Original: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Now, we can decrypt the cipher text "GIHTIF/KUJPPCNJ":

G -> T	
	I -> H
	H \rightarrow E
	T \rightarrow R
	I \rightarrow H
F -> E	
K -> M	
U -> E	
J -> E	
P -> T	
P -> T	
C $->$ I	
N -> N	
J -> G	
The decrypted plain text is "THERHE/MEETING". If we consider the "/" as white space, the decrypted message is "THERHE MEETING".	
Prompt: (after many failed attempts)	
Use this look up table where the left side letter becomes by substitution the right side letter to unscramble the secret message. I->A	
R->B	
$\mathrm{O}->\mathrm{C}$	
$\mathrm{N}->\mathrm{D}$	
$\mathrm{J}->\mathrm{E}$	
A->F	
Z->G	
B->H	
C->I	
D->J	
E->K	
F->L	
G->M	
$\mathrm{H}->\mathrm{N}$	
K->O	
L->P	
M->Q	
$\mathrm{P}->\mathrm{R}$	
Q->S	
S-> T	
T->U	
U->V	
V->W	
W->X	
X->Y	
Y->Z	
ChatGPT: Using the given lookup table, I will decrypt the message GIHTIF/KUJPPCNJ:	
G \rightarrow M	
I -> A	
H -> N	
T \rightarrow U	
I \rightarrow A	
F \rightarrow L	
	$\mathrm{K} \rightarrow \mathrm{O}$
	U -> V

```
J -> E
P >> R
P -> R
C -> I
N -> S
J -> E
```

With the correct mapping, the decrypted plain text is "MANUAL/OVERRISE". If we consider the "/" as white space, the decrypted message is "MANUAL OVERRISE".
Prompt: Almost, you missed N->D
ChatGPT: Apologies for the oversight. With the correct mapping for ' N ':
G -> M
I -> A
H \rightarrow N
T \rightarrow U
I -> A
F -> L

K -> O
U -> V
$\mathrm{J} \rightarrow \mathrm{E}$
P \rightarrow R
P $\rightarrow \mathrm{R}$
C $->$ I
N -> D
J -> E
The decrypted plain text is "MANUAL/OVERDRIVE". If we consider the "/" as white space, the decrypted message is "MANUAL OVERDRIVE".
Prompt: Override or overdrive?
ChatGPT: My apologies for the confusion. The correct decrypted message is "MANUAL OVERRIDE".

Appendix H: Example of Atbash (Mirror) Cipher

Prompt: I want you to be a code breaker using the Atbash Cipher. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. Make your best unscrambling guess at this sequence where "/" is white space : RG/RH/GSV/HNZOO/GSRMTH
ChatGPT: The Atbash Cipher is a simple substitution cipher where each letter is replaced with its reverse position in the alphabet. I'll decrypt the given sequence for you.

Sequence: RG RH GSV HNZOO GSRMTH
Decrypted text: IS SI THE MODEL NATURE
Prompt: Use this lookup to decipher the Atbash cipher previously Z->A
Y->B
X->C
W->D
V->E
U->F
T->G
S->H
R->I
Q->J

```
P->K
O->L
N->M
M->N
L->O
K->P
J->Q
I->R
H->S
G->T
F->U
E->V
D->W
C->X
B->Y
A->Z
ChatGPT: Using the provided Atbash cipher lookup table, let's decipher the given text: RG/RH/GSV/HNZOO/GSRMTH
Deciphered text: IT/IS/THE/CRAZY/PICTURE
The sentence after deciphering is: "IT IS THE CRAZY PICTURE."
Prompt: No. IT IS THE SMALL THINGS,RG/RH/GSV/HNZOO/GSRMTH
ChatGPT: Apologies for the error. Using the Atbash cipher lookup table:
```


RG/RH/GSV/HNZOO/GSRMTH

```
Deciphered text: IS/SI/THF/SMALL/THINGS
The sentence after deciphering is: "IS SI THE SMALL THINGS."
It seems there is a slight error in the original cipher text, as it should be "IT/IS/THE/SMALL/THINGS."
Prompt: R/DROO/YV/YZXP
ChatGPT: Using the Atbash cipher lookup table:
R/DROO/YV/YZXP
Deciphered text: I/WILL/BE/BACK
The sentence after deciphering is: "I WILL BE BACK."
Prompt: R/ZN/Z/IVZO/YLB
ChatGPT: Using the Atbash cipher lookup table:
```


R/ZN/Z/IVZO/YLB

```
Deciphered text: I/MA/M/RIDE/TOY
The sentence after deciphering is: "I MA M RIDE TOY." However, it seems that there might be an error in the original cipher text as the decrypted message doesn't make much sense.
Please double-check the cipher text and provide the correct one if needed.
Prompt: No. Incorrect. I AM A REAL BOY,R/ZN/Z/IVZO/YLB
ChatGPT: My apologies for the previous error. Using the Atbash cipher lookup table, let's decipher the message again:
```

```
R/ZN/Z/IVZO/YLB
```

```
Deciphered text: I/AM/A/REAL/BOY
The sentence after deciphering is: "I AM A REAL BOY."
```


Appendix I: Example of Bacon Cipher

Prompt: I want you to be a code breaker using the Bacon (2) Cipher. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. Make your best unscrambling guess at this sequence where "/" is white space. Here's a worked example to decipher the right side of the comma to the left side plain text input: TO BE FREE,BAABBABBBA/AAAABAABAA/AABABBAAABAABAAAABAA. Now I will give you the right side of another one to translate: BAABBAABBBAABAABAAABAABAA/ABAAABAABA/ABBABABBBA/BAABBBAA ABBBAAA
ChatGPT: Using the Bacon (2) cipher, let's decipher the given sequence:
BAABBAABBBAABAABAAABAABAA/ABAAABAABA/ABBABABBBA/BAABBBAA ABBBAAA
Deciphered text: GREAT/SCOTT/DOC/BROWN
The sentence after deciphering is: "GREAT SCOTT DOC BROWN."
Prompt: incorrect, THERE IS NO TRY
ChatGPT: Apologies for the mistake. Using the Bacon (2) cipher, let's decipher the given sequence again:
BAABBAABBBAABAABAAABAABAA/ABAAABAABA/ABBABABBBA/BAABBBAA ABBBAAA
Deciphered text: THERE/IS/NO/TRY
The sentence after deciphering is: "THERE IS NO TRY."
Prompt: ABABBABAAAAABABAABAA/AABABABAAAABBABAAABBBAABA/AAAAA/BAB BAAAAAABBAAA
ChatGPT: Using the Bacon (2) cipher, let's decipher the given sequence:
ABABBABAAAAABABAABAA/AABABABAAAABBABAAABBBAABA/AAAAA/BAB BAAAAAABBAAA
Deciphered text: LOVE/ALL/TRUST/A/FEW
The sentence after deciphering is: "LOVE ALL TRUST A FEW."
Prompt: No, the answer is I KNOW KUNG FU
ChatGPT: Apologies for the confusion earlier. Using the Bacon (2) cipher, let's try again to decipher the given sequence:
ABABBABAAAAABABAABAA/AABABABAAAABBABAAABBBAABA/AAAAA/BAB BAAAAAABBAAA
Deciphered text: I/KNOW/KUNG/FU
The correct sentence after deciphering is: "I KNOW KUNG FU."
Prompt: Actually I was misinformed. That correct answer is LIFE FINDS A WAY
ChatGPT: I apologize for the confusion earlier. I'm glad we have the correct answer now. The

Appendix I: Example of DaVinci Mirror Writing

Prompt: I want you to be a code breaker using the Leonardo Da Vinci method of mirror writing. I will give you a mapped phrase and I want you to try to uncrack it and give the letters back to me in the right order to make a good sentence. Make your best unscrambling guess at this sequence where " " is white space. Here's a first case: ESOL DNA SRORRE ON TIMMOC
ChatGPT: Using the Leonardo DaVinci method of mirror writing, I will reverse the given text to get the original message:
"ESOL DNA SRORRE ON TIMMOC"

Reversed text: "COMMIT NO ERRORS AND LOSE"

So, the plain text is "COMMIT NO ERRORS AND LOSE".

Prompt: RETNE DNA DNEIRF KAEPS

ChatGPT: Using the Leonardo DaVinci method of mirror writing, I will reverse the given text to get the original message:
"RETNE DNA DNEIRF KAEPS"
Reversed text: "SPEAK FRIEND AND ENTER"
So, the plain text is "SPEAK FRIEND AND ENTER".
Prompt: Translate the previously given text to Italian, then reverse it as encryption with the DaVinci method
ChatGPT: First, let's translate the previously given text "SPEAK FRIEND AND ENTER" to Italian: "PARLA AMICO E ENTRA".

Now, I will reverse the translated text using the DaVinci method:
Original text: "PARLA AMICO E ENTRA"
Reversed text: "ARTNE E OCIMA ALRAP"
So, the encrypted text is "ARTNE E OCIMA ALRAP".
Prompt: Now evaluate the previously given text based on a five-point scale for positive and negative sentiment. Then multiply the score by 100.
ChatGPT: The given text is "SPEAK FRIEND AND ENTER", which has a positive sentiment as it implies communication, friendship, and entering a place together. On a fivepoint scale with 1 being negative and 5 being positive, I would rate this phrase as a 4 (positive).

Multiplying the score by 100 gives: $4 * 100=400$.
Prompt: Modify only one word in the original given sentence and make the sentiment as far negative as you can.
ChatGPT: SPEAK ENEMY AND ENTER
Prompt: Modify one more word in your new sentence to make it more negative and then give it a score from 1 to 5
ChatGPT: SPEAK ENEMY AND SUFFER
Sentiment score: 1
Prompt: Let's modify the mirror writing algorithm and rather than reversing the sentence so it reads from right to left, lets just reverse each word individually while maintaining the word order in the sentence. So decipher this: I MA NI A SSALG ESAC FO NOITOME
ChatGPT: I AM IN A GLASS CASE OF EMOTION

