
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

DOI: 10.5121/ijaia.2023.14302 21

PROCEDURAL GENERATION IN 2D METROIDVANIA

GAME WITH ANSWER SET PROGRAMMING AND

PERLIN NOISE

John Xu1, John Morris2

1Harvard-Westlake High School, 3700 Coldwater Canyon Ave, Studio City, CA 91604
2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

Designing metroidvania games often poses a unique challenge to video game developers, namely the

difficulty of consistently preventing soft-locking, which hinders or blocks the player’s ability to traverse
through levels effectively [1]. As a result, many turn to hand-making all levels to ensure the level’s

traversability, but in the process often forsaking the ability to rely on procedural generation to lessen the

time and burden on human game developers [2]. On the other hand, when developers rely on popular ways

of procedural generation such as using perlin noise, they find themselves unable to control those

procedural algorithms to guarantee certain characteristics of the outputs such as traversability [3]. Our

paper aims to present a procedural solution that can also effectively guarantee the traversability of the

generated level. Our method uses Answer Set Programming (ASP) to verify generation based on

restrictions we place, guaranteeing the outcome to be what we want [4]. The generation of a level is

divided into rooms, which are first mapped out in a graph to ensure traversability from a starting room to

an ending boss area. The rooms’ geometry is then generated accordingly to create the full level. Using

perlin noise, we were also able to create a demonstration of how traversability works in another form of

procedural generation, and compare it with our methodology to identify strengths and weaknesses. To
demonstrate our method, we applied our solution as well as the perlin noise algorithm to a 2D

metroidvania game made in the Unity game engine and conducted quantitative tests on the ASP method to

assess how well our method works as a level generator [5].

KEYWORDS

Procedural Generation, Answer Set Programming, Video Game Application

1. INTRODUCTION

Answer set programming excels at searching for multiple solutions (facts) that satisfy constraints

(rules) that are desired. Its strengths are very unique and can work extremely efficiently in
situations where different solutions that satisfy certain constraints are needed. In other words,

ASP is able to declaratively search for its solutions, and thus represent its output as only the rules

that are fed into it [6]. There is no need in ASP to individually dictate each solution when the

solutions can be represented by the restrictions that imply what they can and cannot be. This
lessens the need for manual implementation and control, which makes things a lot more labor

intensive and time consuming. In addition, ASP is extremely powerful at solving computationally

intensive and difficult search problems (NP-hard). Its efficiency and power lends itself well to
real-world applications in topics that would otherwise cause huge headaches. For example,

complicated problems like industry-level scheduling and planning can be handled efficiently with

ASP. Unfortunately, ASP has not been frequently applied to video game development, which is

http://www.airccse.org/journal/ijaia/current2023.html
https://doi.org/10.5121/ijaia.2023.14302

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

22

what this paper focuses on [7]. However, this paper will prove that ASP’s powerful and efficient
constrained search works well with the delicate generation of video game levels.

The programming language in which the rules are written is called AnsProlog (short for: Answer

Set Programming in Logic) [8]. These constraints are solved using answer set solvers, which
compute the final answer sets, such as clasp, assat, cmodels, and clingo. Our experimentation

with ASP involves the use of clingo as an ASP solver. It was rare for previous endeavors to

produce game-related projects with ASP in the first place, and it is extremely rare to see it done
with clingo [9]. Many of those who tried ASP as a way of generating levels did not go far with

the extent of application, often opting for a proof of concept and very small scaled designs that

did not consider larger scale implementation of ASP into games. Many parts of the ASP
application into video games remain unexplored and a lot of potential problems in ASP

implementations like loading time and loading behavior are not as considered in the rare

instances where ASP is used. However, our endeavor strives to create a practical and full-scale

game, which would demand our implementation to be efficient in areas previously mentioned.
Another point that expands on the lack of practicality is the fact that answer set solvers such as

clingo need to go through complicated installation steps on any local machine in which it is used

to function properly. Therefore, it becomes difficult for other implementations to work for the
wider public. However in our implementation, we have the option for clingo to be hosted in a

server so that it is able to send its answer set output to any local machine without the user needing

to install anything extra. The online feature will not be the focus of this paper. It is also important
to note that our approach to generate metroidvania-style levels is very unique to begin with [10].

Many of previous implementations had their focuses on other aspects, and ASP played varying

sizes of roles in these projects

In this paper, we will be using clingo as our ASP solver to solve for rules we can manually input

and adjust. The overall level is split into rooms, where each room and its relevant information is

determined by the solver first represented by a graph, and then each room is iteratively solved
based on the information from the graph. The solution is sent as a dictionary to the game engine,

where we’ve set up scripts to read these dictionaries and build it into an actual level. Compared to

a perlin-noise procedurally generated level, our method has strength in its ability to both generate

and verify the map structure / geometry in the same step, which guarantees that the level that is
generated satisfies any valid constraint we give it. ASP allows for easy prevention of softlock,

which traditionally game designers solve by adding work-around solutions, like giving players

the ability to selectively destroy or place certain tiles. With ASP, there is no need to create work-
around solutions and lessens the burden on game designers to shape game play around the faults

of level generation. Lastly, our method also has strength in its flexibility thanks to our

incorporation of a powerful game engine. We are able to tweak generation rules and the tiles’
sprites and artwork can also be easily modified and changed with a powerful game engine. This

flexibility allows for even more potential variation in the levels that can be generated and thus

supplying even more interesting combinations of content for players to explore.

We conducted two experiments to prove the function of our method. The first experiment

involves measuring the runtime of generation of different types of rooms. All combinations of

doors and directionality in rooms were tested, and average runtime was tabulated across a graph
of time vs room type using the raw data of each type of room. The types are listed in an

increasing order of number of doors, where bidirectional and directional door room types are

clearly separated. This was done to see if our method was able to generate levels at good speeds
relative to other more popular automated generation methods such as perlin noise generation,

therefore determining our method’s ability to be applied to more mainstream and real world

examples. The second experiment involves testing the traversability of our generated levels to see

how effective they are at preventing softlocking and maintaining playability. A pathfinder was

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

23

used to determine this across a 2D “letter representation” of the map where all important features
of the map are represented by individual characters. The pathfinder would traverse through the

level, finding the key first, and then going to the end. The pathfinder will not be able to reach the

end if the key is after a gate, thus rendering the end unreachable since the end is always gated by

a gate. We used this experiment to see how compatible ASP was with level generation and if it
could “replicate” its strengths in a metroidvania level.

We have also created a demonstration using perlin noise in this paper to show its difference with
the ASP method [11]. We used a very standard model, with the ouput being directly influenced

by the value of the parameters such as lacunarity and persistence [12]. The output is then mapped

out as either an empty or filled tiled, which gives us a very natural looking map as a result [13]. A
main appeal of using perlin noise over ASP is its ability to guarantee map structure that is much

less restricted, something ASP abandons for the sake of traversability. The map itself is then

tested for connections between the different platforms, which are defined based on the player’s

movements. These connections help us see between what parts of the map the player can traverse
and shows that traversability is not always guaranteed from a certain point to another, providing a

comparison to our ASP method. The perlin-noise generation’s general level geometry can also be

used as a comparison to the more rigid and unnatural generation of ASP.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Directionality in Rooms

One of the important features developed using this ASP method is the implementation of

directionality within rooms and determining a viable path in which the player can traverse the

level. This specific feature is crucial for our method to generate traversable levels and prevent

players from going where they are not supposed to. Though it may seem simple at first, its
implementation presents itself as an extremely difficult one since the generation must take in

account all the possible moves of the player and determine which way the room can lead players

based on those moves. Our solution to this problem was to provide an effective way of
determining direction, where we first determined all the possible tile locations the player could be,

and then split the room into distinct platforms, which were defined in the code as floor tiles that

are connected and within the player’s jump height of each other. We then were able to determine

directionality of the room based on these platforms but checking to see if the player’s possible
positions / movements were able to reach these platforms.

2.2. Long Solve Time

ASP is a power tool to be able to use, however we encountered downsides regarding the solve

time that the solver is taking in order to generate valid solutions. Generally speaking, ASP solve
times are prolonged when there is a big workload or if an excessive amount of constraint is

placed. Knowing this, we were able to effectively counteract the factor we believed was giving us

the biggest trouble, that being the big workload we were giving to the solver. The most obvious
thing that added to the solver’s workload was the fact that we were requiring the solver to solve

for the entire level, so we came up with a “divide and conquer” solution where we split the

generation workload into individual same-sized rooms to be solved iteratively. In this way, each
call to the solver will have a room size that is a lot smaller to solve, exponentially decreasing the

runtime of a singular room, and therefore decreasing the runtime of the entire level.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

24

2.3. Learning ASP

The syntax and actual writing of AnsProlog was a challenge that was prominent in the early

stages of development. Personally speaking, AnsProlog as well as its logic was very unique from
other programming languages and difficult to understand at first, and thus it seemed like a far-

fetched idea that any playable levels were able to be produced using AnsProlog. The way we set

up the solver meant that we had to code the rules as a one whole long string, which were then
passed into the solver, meaning that there was no color differentiation, auto-correct nor auto-

indentation. This unfortunate circumstance made typos hard to detect, and in combination with

our unfamiliarity resulted in a very difficult start to our research. However, we were able to

familiarize ourselves with the workings of ASP by testing its behavior tiresomely with a Jupyter
Notebook that simulated tile placements until we were able to grasp and utilize AnsProlog for our

research.

2.4. Adapting the Code for Perlin Noise

Many of the existing code for the project solely works in conjunction with the generation and
formatting of ASP. Code for processes such as light setup and placement throughout the level as

well as enemy placement became outdated due to how perlin noise generation differs from ASP.

Being able to quickly generate a noise map and translate that information into a 2D level, a plain
perlin noise approach cannot easily export its solutions into Unity the same way that ASP with

the clingo solver does [14]. Issues thus arise when we try to populate additional features of the

game into the perlin generated terrain since the tile information is not compatible. Adjustments
and adaptions had to be made for the perlin generation to be properly interpreted and used in

conjunction to formulate a complete level.

2.5. Determining Platform Connections with Perlin Noise

The determination of platform connections with perlin noise differed greatly from our approach
using ASP. It becomes a problem for us to determine the reachability of the player without the

help of ASP, which can rule out impossible cases of movement based on the characteristics of the

player’s movement given. Following the same basis of using player movement as a metric to

determine the reachability of tiles, we mapped out every empty tile in the entire level and
assigned it a specific integer between -1 and 3, which explains the player’s ability (or inability) to

reach that location. The specifics of this method will be explained in section 3. Using this method,

we can determine player reachability of every tile in the level without the use of ASP, which is
extremely beneficial when paired with our perlin noise approach. It is through this number

mapping of individual tiles that we are able to achieve a successful determination of the player’s

ability to reach from one platform to another.

2.6. Trouble with Enemy Behavior

To simulate an authentic experience of enemies acting as a gate to block the player’s path, enemy

behavior must be refined to perfection to ensure that its intended purpose of gating works

smoothly. One specific enemy we had trouble with trying to perfect the behavior of the Missile

Enemy. Our intention was to have the missile enemy shoot missiles to try to target the player
constantly. This required the tracking of the missiles to have high precision with its attacks,

therefore we used Dijkstra’s algorithm to achieve a clear path from the spawning point of the

missile to the player with each node representing a tile [15]. Our implementation of the algorithm
proved to be very inefficient at first, which forced us to implement two key optimizations. The

first optimization is the fact that we realized how missiles generated after a previous missile has

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

25

already secured a path to the player can just copy the path of that previous missile as long as the
player’s position doesn’t update. This saves a lot of redundant calculations and increased the

efficiency of the missiles’ ability to track the player. Additionally, we also utilized an

implementation to cap the maximum iterations for the path finding algorithm because we noticed

that sometimes the Dijkstra’s algorithm underwent too many iterations and resulted in crashes.

3. SOLUTION

In this paper, we will be using Answer Set Programming to generate metroidvania-style levels.
The levels will contain keys that can unlock their respective gates, where the ASP guarantees the

keys to appear before the gate before the player’s path. Our method views a single level as

separate rooms that have a constant size, and we go through a two step process to ensure the

specific room geometry satisfies our parameters and constraints as well as making sure the
general pathway is connected throughout the level. The graph contains information on where the

room may lead the player (directionality) and whether the room contains a key, a gate or no

special objects (traversal rooms). Each room within the graph is iteratively solved based on this
information from the graph. To ensure that a constant pathway still remains through the level, the

edge geometry of neighboring built rooms was passed into the solving process of the current

room, however this still caused problems because it could be the case that no solution exists
under the additional consideration of neighboring edge tiles. For the case of a no solution /

unsatisfiable output, an algorithmic fix was applied to this problem involving the removal of

neighboring rooms. Our level generator will output a dictionary of all tiles, room, key, and gate

information after all the rooms are iterated through and all unsatisfiable conflicts are resolved to
the Unity game engine, where it is interpreted and built as an actual playable level. Based on the

locations of the tiles, the artwork for tiles is determined accordingly to stylize the level.

The first step in our method is to define the parameters of the overall level, those being the size of

the level, the type of gates we want it to have, the maximum and minimum number of gates and

the size of each room. These parameters are passed into the solver, which solves based on the
ASP rules we’ve given to the solver as well, and returns to us a graph that contains information

about the rooms. The graph shows the rooms’ directionality and what they contain (key, gate, or

nothing), and based on this graph we are able to iterate through each individual room to generate

it. To make the rooms fit together, all the solved neighboring rooms’ adjacent tiles to the original
room (edge geometry) is mirrored over to the current room-to-build. The above-mentioned fix is

applied when an unsatisfiable case occurs for a room. The final solution after all rooms have been

iterated are outputted as a dictionary to be read in Unity for the actual level to be built in-game.

Figure 1. Overview of the solution

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

26

The first main step in our method is the generation of the graph that acts as a guideline to the
more specific generation later. The graph is a 2D representation of separate nodes representing

rooms and connecting each room are either no arrows, a bidirectional arrow, or a one directional

arrow representing the directionality of the room [16]. ASP guarantees solutions that always have

a path between any two rooms. The nodes themselves can either be a circular shape, a diamond
shape or a rectangular shape. White circular nodes mean that the room does not contain any keys

or gates. Gray circular nodes are boss rooms while the green circular node is the start room,

which is picked randomly from the first row. Any other colored circular nodes represent areas
that are gated by a gate corresponding to its color. The colors of rectangular and diamond nodes

represent the type of key/gate that the room contains, and the shape of the node itself determines

whether it is a key or a gate. Rectangular nodes mean that there is a gate in that node / room, and
the diamond nodes mean that there is a key in that room. The types of key/gates we want to have

in our level, how big we want the entire level to be, how big we want each room to be, and the

maximum and minimum number of gates we want there to be must all be defined in the code,

which will be passed into the clingo solver to be solved. It’s important to note that keys are
always placed in an area that is before the gates so that there is no way the player can get stuck.

Its solution is sent as a dictionary to C# scripts that store this information for further generation.

Figure 2. 2D representation of separate nodes

We utilized a mix of C# code and ASP to generate the graph. Different rules that are written in

ASP are stored as strings in a separate script and are combined here to form the complete ASP

code. The parameters we pass in are slotted into their corresponding locations in the ASP code,
and everything gets passed into the solver to be solved.

Figure 3. Screenshot of code 1

Below are two examples of ASP rules chunks that are added to the final graph asp code. The

following code chunk defines the room ID based on where a room is in the level, and a grid of all

the rooms is also defined based on the X position, Y position and a room ID. A door is defined as
possibly occurring between any room and its immediate horizontal or vertical neighbors. The

start room is also defined as any room in the top row of the level.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

27

Figure 4. Screenshot of code 2

This next chunk of ASP code is responsible for bidirectional constraints. The code is simplified

to only include east doors for the sake of better viewing since all the other doors of other
directions all behave similarly. An east door exit and an east door entrance is defined as must

being east one room of the original room. A door to the east, whether entrance or exit, is

considered an east door to the code. If there is only an entrance or only an exit, the room is

considered locked to the east. We then count how many doors the room has as well the number of
locks (this would originally contain all four directions). When you can only travel one way

through a door, it is directional. When a room has a directional door, there can only be two doors.

There can also not be two directional doors back-to-back in neighboring rooms. Anecdotally, we
have observed higher runtimes when these restrictions are not in place, so these restrictions were

added for maximum efficiency with solve time.

Figure 5. Room Iteration and Iterative Unsatisfiable Conflict Resolution Algorithm

The graph output dictionary is used to generate each room iteratively based on an ID assigned to

it based on its location in the level. The solver is used here again to determine the specific terrain

geometry within the room as well as special cases such as implementing the gates and keys into
actual tiles. As mentioned earlier an issue of an unsatisfiable case in rooms emerges as we try to

fit these rooms back together. Our solution involves removing neighboring rooms in order to get

rid of what’s causing the unsatisfiable error. Our original approach was to randomly remove
neighboring rooms, solve for the current room, then placing the removed room at the top of the

stack of all rooms-to-build to be solved next. The random selection of neighboring rooms was not

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

28

effective enough, because multiple neighboring rooms could be causing this unsatisfiable nature
of the current room. Due to this lack of effectiveness, we modified our solution so that it

generates all the possible combinations of neighboring tiles from smallest number of neighbors to

biggest, and iterated through them to find the minimum set of neighboring rooms that caused the

room to be unsolvable. By removing this minimum set, solving for the current room, and putting
the removed rooms back to the stack to solve, the unsatisfiable case is able to be completely

solved.

The following method gets a random smallest permutation out of the permutation 2D list

generated by another method. The code represents its immediate neighbors as a 3 by 3 grid with

numberings from 1 through 9, so the permutation returns the to-be-removed neighbors this way.

Figure 6. Screenshot of code 3

The next piece of code shows how the output of the previous method is used. The list of integer

output is stored as the removed Neighbors of the current room, which is later interpreted into the

actual room inside the world/level, which can then be easily removed.

Figure 7. Screenshot of code 4

This is a cool gif of the iteration algorithm in action.

Figure 8. Screenshot of the gif

Additionally, it is important to note the method in which the perlin noise model is generated. As

mentioned previously, we have adopted a standard approach of perlin noise generation, which is

to map the output of a perlin noise function to specific tiles. The perlin noise function itself is

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

29

determined by a layering of multiple noise maps with varying amplitude and frequency. These
different layers of noise maps are called “octaves.” To increase the detail of each octave for the

sake of a varied and fun map, we have used lacunarity to increase the frequency of each noise

map as the octave increases. However, specificity should be dulled out in the final layered noise

map as the octaves gets more specific with its generation, therefore we have implemented
persistence as a means of decreasing the amplitude of the noise maps as there happens to be more

octaves.

From this process, perlin noise creates a basic level structure for further details such as lights or

enemies to be placed. The placement of lights and enemies involves using a determined seed to

generate a random location in the map to be placed. To ensure that these locations are tile
locations in which these enemies and lights will not be stuck in any walls or floating in the air,

we define a viable location as any tile that is one tile above a surface tile. This effectively allows

us to populate the terrain with features that make a regular noise map into a simple yet

functioning game. In this sense does perlin noise successfully generate a final and complete level.

However, the specifics of how player movement is interpreted as a tool to determine

traversability between platforms must be discussed. Being quite different from the method used
in our ASP approach, we assign each empty tile with a whole number from -1 to 3, which

represents possible player’s movements at that tile. -1 represents a tile in which the player cannot

reach no matter how the player moves. Any 0 or positive value represents a tile that the player
can reach. Starting from 3, representing the maximum velocity that the player can exert at any

given empty tile location, the velocity changes as the player moves along more empty tiles in all

directions possible. The new velocity at any given tile is then mapped to that tile location. For

example, jumping up would decrease the player velocity as the player moves to higher and higher
empty tiles, thus decreasing the numbering (e.g., 3,2,1,0) on higher tiles until the player reaches

its maximum jump height, and that point the player will not be able to reach any tile further,

meaning that any tile beyond the maximum jump height will become unreachable (-1).

Using this information, we can distinguish distinct tile groups based on whether certain tiles can

be reached from other tiles, and these are defined as platforms. This part of the traversability

logic is indeed like the ASP approach, which can act as a reference here in order to achieve a
better understanding. Now with the platforms defined, we are able to trace paths that are

exclusively made up of 0 or positively numbered empty tiles from one platform to another in the

numbered representation of the level. These paths are then drawn out using the Debug Gizmos
feature of Unity for visualization. When all paths are traced from each platform, we can

determine the traversability of the level.

4. EXPERIMENT

4.1. Experiment 1

Our solution solves the problem because we were able to effectively use ASP to generate rooms

in a relatively adequate amount of time. A level generator isn’t really effective if it struggles with

its runtime, and thus fails to bring a playable map to players within a short period of time. This

experiment involves measuring the average runtime in seconds of solving 20 x 20 no gate and no
neighbor rooms. The varying runtimes for all combinations of bidirectional and directional

passageways are accounted for in this experiment. The fact that our ASP method was able to

quickly generate its rooms in most passageway types shows that our method of applying ASP to
level generation is viable to create 2D metroidvania maps.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

30

Runtime is an effective way of quantifying map generation, which can otherwise be a very hard
subject to measure and compare. Our sample size for this experiment is at least data from 30

generated levels, which could be improved. However, generating large amounts of levels still

takes quite a long time, so the sample size is unfortunately limited.

Figure 9. Graph of experiment 1

In a 20 by 20 no gate no neighbor scenario, all passageway types except directionally up rooms
solve rapidly (within a minute or two at most extreme cases). It also appears that the amount of

doors is directly related to the solvetime for rooms. The first 8 plots in the graph only have

bidirectional doors and are ordered based on average runtime, with the first four having 2

bidirectional doors, followed by the 3 door rooms, and then the four-door room. The rest of the
plots in the graph in the gray section are rooms with one directional door and one bidirectional

door. They are ordered from left to right in increasing average runtime. The directionally up room

types solve on average 4 times slower than the second biggest average and go as high as 600
seconds in some cases. Considering the fact that a 20 by 20 room gives plenty of room for players

to explore, the generation speed is very solid. By limiting the directionally up rooms in the future,

even faster runtime can be achieved.

4.2. Experiment 2

Our methodology is able to not only work efficiently but also work accurately to guarantee the

outcomes we want it to achieve. One of the crucial goals for using ASP in level generation is to

guarantee the player’s path from point A to point B, whether that be to a key or to a boss area.

We are able to prove that our solution completely guarantees the player to reach the key before a
gate that leads to an endpoint by using a pathfinding algorithm not designed but modified by us.

We used around 100 maps to guarantee that the map is traversable every time. More could be
used for testing because the level was represented as a 2D map consisting of ascii characters that

represented different objects and tiles in the level. The pathfinding algorithm was also able to

work quickly through multiple files and what we were looking for was simple: a true or false for
traversability.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

31

Figure 10. Result of experiment 2

Figure 11. Example Ascii Maps for an enemy type of gate for better reference

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

32

The first list is very long; however, it represents the guaranteed traversability of all the tested

worlds. The pathfinding does its calculations and only outputs a “traversable” if the map that it

traced was traversable, otherwise only the name of the map would appear. To visualize what the

pathfinder is doing, a specific example is provided to show how the pathfinder starts at its start

point (represented by ‘S’) traverses itself through the map to reach the end (‘B’). There are

two maps that have either tiles (‘X’) or empty (‘-’) as its base structure, one representing a

graph that has not been traversed yet, with all the key, start, and end visible. The other represents

the pathfinder’s path (‘@’), and it is only able to go through the enemies (‘R’) when it

has the key. The pathfinder always prioritizes getting the key first, so we see that the pathfinder

gets the key first before backtracking to get to the end in the shortest distance. Other ascii keys

such as numbers as other letters are for previous testing that will not be covered in this paper.

4.3. Experiment 3

We tested the perlin noise generation methodology’s traversability by looking for all the valid

connections that platforms can form between each other. These connections are mapped out in

the actual 2D space of the level for better visualization. We also experimented with different
settings of lacunarity and persistence to further demonstrate the effectiveness of perlin noise as a

tool to determine directionality in a level.

Figure 12. Example 1 of Platform Connections and Perlin Settings

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

33

Figure 13. Example 2 of Platform Connections and Perlin Settings

Different colored connections represent connections originating from different platforms. It is

extremely important to note that this experiment serves more as a demonstration purpose to show
the ineffectiveness of perlin noise at guaranteeing traversability and its strength in its ability to

generate natural terrain.

From the first experiment, we can tell that the runtime for rooms does not usually exceed a one

minute to two-minute generation at most, meaning that generation for rooms will usually happen

fast, thus levels in general will not take a long time to generate. There are limiting edge cases to
the runtime performance, so the solution still needs to be better refined to produce more

consistent results for overall level generation. In general, the room generation runtime is not bad

for so many restrictions we put on it, however there is definitely room to grow. The second

experiment can be considered a bigger success since the traversability of the levels are proven to
be working for all test cases. This meets the demand of having a level generator where game

designers can guarantee the playability of a level, or in more general terms, the ability to fully

constrain certain parts of generation. The third experiment was able to compare our ASP
methodology against a more common approach of using perlin noise as a base layer of generation.

It contrasts the characteristics of our approach by demonstrating the strengths and weaknesses of

its own generation.

Considering how many restrictions we have put on the code for the solver to solve in addition

with the iterative conflict algorithm, solve time was not expected to be too low. The actual

solvetime of rooms did match our expectations and proved to be an overall okay speed. We had
high hopes of traversability on the other hand, since the guaranteeing aspect of ASP was one of

the strong points, we looked forward to utilizing. After testing, the traversability of ASP is indeed

guaranteed in all cases, taking more time to solve for a more complete and accurate solution.

5. RELATED WORK

This paper focuses on using Computational Tree Logic to prevent softlocking in Super Metroids

[17]. Path determination is also studied closely in this paper as the basis to solving softlocking as
well. Overall there are many similarities between this paper’s approach and our approach since

we also view path determination as a crucial part of determining possible softlocks. This paper

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

34

mostly differs in the aspect of what specific tool we chose to use to prevent softlocking, we used
ASP while they used CTL.

This paper provides a very in depth “skeleton” of how to generate correct key-gate structures in

video games using Answer Set Programming [18]. The paper does not specifically apply to
metroidvania games, but games in general. Both our paper and this paper uses answer set

programming as its tool of generating the placement of keys and gates since both want to

guarantee keys before their corresponding gates. This paper differs from ours in the sense that we
had more practical application to games since we used the output solution to go one step further

and generate real 2D metroidvania levels. In other words, both papers’ approach to generate the

overall structure of the map is similar but differs in the actual implementation of the level.

This paper focuses on a very well-rounded approach to the procedural generation of

metroidvanias [19]. Similar to our paper, this paper recognizes the difficulty of automating level

creation, and strives to outline their process of creating an entire metroidvania, however it
includes much more details than our paper in details such as player controls, animations and other

visualizations while we tended to focus on the level generation aspect of the entire game. The

paper also has a different approach to determining the key gate order, opting for a branching
approach where node position represents its priority in the overall order of gates.

6. CONCLUSIONS

We have proposed a method to generate 2D metroidvania levels with ASP that prevents softlocks
and guarantees traversability [20]. We generated an outline structure of a level first, then were

able to iteratively solve and render each room in the level. Each room and its neighbors were

checked for their ability to connect together and any possible unsatisfiable errors were accounted
for in the process using our iterative conflict resolution algorithm. We made sure that only the

minimum permutation of rooms causing unsatisfiability was removed. To quantitatively test that

our method works consistently and effectively, we applied our method to two experiments. The
first being an experiment measuring the runtime of different types of room passageway

generation. The second solution being an experiment measuring the traversability of each level

by using a pathfinding algorithm. Runtime turned out to not be extremely fast, but in most cases

short enough for level generation to take place in a brief time. Traversability was guaranteed in
all cases in which levels were tested, showing that ASP can be very effective at verifying the

playability of levels. Though it may take longer times to solve, ASP has complete insurance of

the level working. This “trade-off” for verification over time is a good enough cost to address the
issue of many issues plaguing traditional procedurally generated metroidvania levels.

One of the glaring problems with our method of applying ASP is the fact that actual users need to

install clingo on their local computers before being able to generate maps with our method. This
makes the idea of applying ASP to games a bit counter intuitive. In addition, the runtime also

seems to be a big issue in some cases, so more constraints must be placed to avoid long solve

time spikes for certain rooms that could prolong the generation of the entire level, leaving players
to wait a long time to start playing a level.

We plan to solve the issue of installing clingo by hosting clingo in an online server, so any local
computer may just request a solution from the server through local scripts setup in the game.

Solve time can be reduced if we limit the amount of up directional passageway rooms that can

exist in the map, which could speed up runtime significantly.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.3, May 2023

35

REFERENCES

[1] Guo, Yunfan, et al. "Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre

electrical contacts." Nature Nanotechnology 17.3 (2022): 278-284.

[2] Dondlinger, Mary Jo. "Educational video game design: A review of the literature." Journal of

applied educational technology 4.1 (2007): 21-31.

[3] Jakes, David, et al. "Perlin noise generation of physiologically realistic patterns of fibrosis."

BioRxiv (2019): 668848.

[4] Brewka, Gerhard, Thomas Eiter, and Mirosław Truszczyński. "Answer set programming at a
glance." Communications of the ACM 54.12 (2011): 92-103.

[5] Oliveira, Bruno Pinheiro, et al. "A framework for metroidvania games." Proceedings of SBGames

(2020): 836-844.

[6] Erdem, Esra, Michael Gelfond, and Nicola Leone. "Applications of answer set programming." AI

Magazine 37.3 (2016): 53-68.

[7] McAllister, Graham, and Gareth R. White. "Video game development and user experience." Game

user experience evaluation (2015): 11-35.

[8] Mellarkod, Veena S., Michael Gelfond, and Yuanlin Zhang. "Integrating answer set programming

and constraint logic programming." Annals of Mathematics and Artificial Intelligence 53.1-4 (2008):

251-287.

[9] Gebser, Martin, et al. "Multi-shot ASP solving with clingo." Theory and Practice of Logic

Programming 19.1 (2019): 27-82.
[10] Morris, John. DESIGNING A PROCEDURALLY GENERATED METROIDVANIA STYLE

VIDEO GAME USING ANSWER SET PROGRAMMING. Diss. California State Polytechnic

University, Pomona, 2021.

[11] Ruben M. Smelik, Klaas Jan De Kraker and A Saskia, "Groenewegen Tim Tutenel", Rafael

Bidarras Proc. of the CASA Workshop on 3D Advanced Media In Gaming And Simulation, pp. 1,

2009.

[12] Gustavson, S. (2005). Simplex Noise Demystified. Technical Report, Linkping University, Sweden.

[13] SMELIK, R. M., DE KRAKER, K. J., TUTENEL, T., BIDARRA, R., AND GROENEWEGEN, S.

A. 2009. A survey of procedural methods for terrain modelling. In Proceedings of the CASA

Workshop on 3D Advanced Media in Gaming and Simulation (3AMIGAS).

[14] Olsen, J. (2004). Realtime Procedural Terrain Generation. Technical Report, University of
Southern Denmark.

[15] Yue Yang, Gong Jianya. An Efficient Implementation of Shortest Path Algorithm Based on Dijkstra

Algorithm[J]. Geomatics and Information Science of Wuhan University, 1999, 24(3): 208-212.

[16] Hou, Ji, et al. "Pri3d: Can 3d priors help 2d representation learning?" Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2021.

[17] Mawhorter, Ross, and Adam Smith. "Softlock Detection for Super Metroid with Computation Tree

Logic." Proceedings of the 16th International Conference on the Foundations of Digital Games.

2021.

[18] Smith, Thomas, Julian Padget, and Andrew Vidler. "Graph-based generation of action-adventure

dungeon levels using answer set programming." Proceedings of the 13th International Conference

on the Foundations of Digital Games. 2018.

[19] Stalnaker, Trevor Wayne. "Procedural generation of metroidvania style levels (thesis)." (2020).

[20] Claiche, Benjamin Elliot. Haiku, the Robot. Sistema de mapas para 2D Metroidvania. Diss.

Universitat Polite -cnica de València, 2021.

	Abstract
	Designing metroidvania games often poses a unique challenge to video game developers, namely the difficulty of consistently preventing soft-locking, which hinders or blocks the player’s ability to traverse through levels effectively [1]. As a result, ...
	Keywords

