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ABSTRACT 
 
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its 

widespread use. Estimating the confidence of these predictions is paramount for improving the safety and 

reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to 

be overconfident and unreasonable. Previous studies have found out that ensemble of NNs typically 

produce good predictions and uncertainty estimates. Inspired by these, this paper presents a new 
framework that can quantitatively estimate the uncertainties by leveraging the advances in multi-task 

learning through slight modification to the existing training pipelines. This promising algorithm is 

developed with an intention of deployment in real world problems which already boast a good predictive 

performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for 

the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of 

experiments show that the proposed approach produces well calibrated uncertainty estimates with high 

quality predictions. 
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1. INTRODUCTION 
 

The significant advancements and tremendous performance of neural networks (NNs) has led to 
its ubiquitous usage in many fields. Even with such leading edge deep learning techniques, the 

interpretability and quantification of predictive uncertainty in NNs has long been a challenging 

and yet unsolved problem [1, 2, 3]. However, this is crucial for integrating deep learning 

algorithms into most practical applications as well as supporting other applications such as to 
initiate exploration/exploitation in reinforcement learning (RL), active learning etc. Despite NNs 

boasting state-of-the-art accuracy in supervised learning benchmarks, they are poor at quantifying 

predictive uncertainty, and tend to produce overconfident and miscalibrated predictions. This is 
significantly useful in algorithms which helps to take critical decisions that impact human lives in 

medical, financial or legal domains, where the cost of error is high. For instance, in safety-critical 

applications like autonomous driving system need to respond based on the confidence of the AI 
system. Hence, it is imperative to estimate the uncertainty in model’s predictions as it enhances 

the reliability of AI systems and trigger actions in an informed manner. 

 

While more data and better training and optimization techniques can improve the predictive 
performance of NNs, it is crucial for these networks to emphasize the uncertainty of predictions to 

be trustworthy. The NNs predict presumptuously because they do not specifically model data 

uncertainty or they overlook relationship between data and model uncertainty [4]. Uncertainty 
usually originates from two sources : data uncertainty (epistemic) and model uncertainty 
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(aleatoric). For example a sensor can always be expected to give noisy data and training datasets 
need not always cover all the possible edge-cases. Uncertainty estimation can be used in several 

scenarios such as determination of samples which are hard to classify, evaluation of uncertainty 

on out-of-distribution samples. These algorithms should predict a rare/larger noisy sample with 

higher uncertainty, when compared to a frequent/less noisy sample in the training data. 
 

Traditional uncertainty estimation algorithms model the network activations and weights by 

parametric probability distributions, which are difficult to train [5]. Recently, several approaches 
have explored incorporating uncertainty and probabilistic methods to NNs [1, 3, 5, 6]. Majority of 

these works exploits the Bayesian framework [7, 8, 9, 10] as a principled approach for modeling 

uncertainty. In such networks, the parameters of the NNs are modeled as probability distributions 
computed via the Bayes rule [11]. Since it is computationally intractable for exact Bayesian 

inference in NNs, several approximations have been developed [11, 12, 13, 8, 14, 15, 16, 17, 18, 

19]. Whilst appealing, the quality of uncertainty estimates by these networks depends on the 

degree of approximations, and the assumptions made on the prior distribution [20]. Further, such 
networks are often harder to implement and computationally expensive compared to widely 

adopted non-Bayesian NNs. 

 
In this context, estimating uncertainty through non-Bayesian NNs using a generalized approach 

that can deliver high quality uncertainty estimates through slight modifications is required. Monte 

Carlo dropout (MC-dropout) has been recently proposed along these lines by estimating the 
predictive uncertainty using dropout during both training and inference times [1]. This technique 

has gained popularity in practice owing to its easy implementation and slightest modification 

required to the existing pipelines. Interestingly, such an approach can be interpreted as an 

ensemble of models [21], wherein the dropout can be considered to perform averaging across the 
possible subnetworks. Along these lines, a technique that utilizes an ensemble of models trained 

with a proper scoring rule to produce accurate uncertainty estimates has been proposed [3]. 

 
In this work, we propose an appealing technique which exploits the multi-task learning 

framework for quantifying uncertainty. First a base network is trained on the dataset for the 

specific task, and then the learned features are exploited for providing the uncertainty estimates as 

an addendum using another network. Intuitively, the idea is to preserve the source knowledge 
acquired by the important neurons for the original task. Such an approach permits the neurons to 

retain their abilities to extract features relevant for the original task, and augment it for the 

uncertainty estimation. Our main contribution are as follows: 
 

• A simple and extensible multi-task learning framework that can achieve state-of-the-art 

performance for supervised learning on many publicly available datasets while achieving 
good uncertainty estimates. 

• Easy extension of the widely adopted deep neural networks that are trained for the original 

task to estimate uncertainties as an addendum. This is achieved by adding an uncertainty 
estimating network to existing models from standard pipelines and retrained using proper 

loss function for computing the uncertainty. 

 
These properties make this an appealing approach for uncertainty estimation, enabling them to be 

easily incorporated into many potential applications, to improve the reliability of AI applications. 
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2. RELATED WORK 
 
Estimating the quality of predictive uncertainties is challenging because of the lack of ground 

truth uncertainties. However, there has been lot of recent interest to capture uncertainty of AI 

systems due to its wide scale adoption and most of these can be broadly classified into Bayesian 

and non-Bayesian techniques. 
 

2.1. Bayesian Approaches 
 

These approaches compute uncertainty by specifying a distribution over model parameters and 

then, given the training data, these parameters are marginalized to form a posterior predictive 

distribution [13, 8, 10]. However, for modern neural networks that contain millions of parameters, 
the posterior over these parameters (loss surface) is highly non-convex, rendering them infeasible 

in these scenarios. Hence several modern approaches to Bayesian deep learning are based on a 

variety of approximations such as Laplace [12], Markov chain Monte Carlo (MCMC) [13], 
expectation propagation [16, 22], variational inference [8, 15, 14] etc. Laplace approximations 

assume a Gaussian posterior and has been utilized for Bayesian neural networks in [12]. 

Hamiltonian Monte Carlo (HMC) approach for inference in NNs is proposed in [13]. In practice, 

the approximation introduces errors in modern NNs with finite learning rates and also difficulty 
with tuning stochastic gradient MCMC methods has led to the exploration of other techniques. 

 

A scalable approximate Bayesian inference technique for deep learning is proposed in [23], where 
the information contained in the SGD trajectory is utilized to efficiently approximate the posterior 

distribution of the weights of the NNs. [14] discusses a Gaussian variational posterior 

approximation over the weights of NNs, which is generalized in [24] for the reparameterization 
trick for training deep latent variable models. Even though variational techniques achieve good 

performance for moderately sized networks, they are empirically found to be difficult to train on 

larger architectures [25]. A probabilistic back propagation (PBP) technique for learning Bayesian 

NNs is proposed in [5], where a forward propagation of probabilities through the network and 
backward propagation of gradients are computed. 

 

However, the quality of predictive uncertainties obtained using such Bayesian approaches 
crucially depends on (i) the degree of approximations employed due to computational constraints 

and (ii) correctness of prior distribution assumption as convenient priors can lead to unreasonable 

predictive uncertainties [3]. 

 

2.2. Non-Bayesian Approaches 
 
The computational demands required by Bayesian approaches for uncertainty estimation has led 

researchers to work on exploring other methods with less computational and time cost. One such 

recent approach which is computationally much efficient, the Monte Carlo dropout (MC-dropout) 

method, has been shown to be an approximation of the probabilistic Bayesian model [1]. 
Concisely, the method performs multiple stochastic forward passes by activating the dropout 

during inference times as well to provide a Monte Carlo sampling utility that could reflect 

uncertainty estimates. However, such an approach is applicable only for dropout models and in 
practice it is harder to find an optimal dropout rate that can achieve good predictive performance 

and uncertainties. 

 
Dropouts can be viewed as a form of ensemble learning, where ensembling is done over an 

exponential number of subnetworks sampled from the original network [21]. Recent studies have 

shown that ensemble approaches are not only effective at improving predictive accuracy but 
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provides good model uncertainty estimates as well [3, 26, 27, 28]. In most of such studies, an 
ensemble of models with different weight initializations are constructed with mean prediction and 

variance as the uncertainty estimate. [6] discusses a method of estimating both the uncertainty and 

prediction using a single NN. An ensembling technique of NNs using a proper scoring rule that 

can provide both aleatoric and epistemic uncertainty is shown in [3]. Such a non-Bayesian 
approach has been found to outperform MCdropout with significantly less samples. This can be 

attributed to the increased capacity of NNs used in deep ensembles as it does not require dropout 

at inference times and also the different weight initializations causes the network to converge to 
different minimas [29]. 

 

One of the main drawbacks with the above approaches is that it requires significant modification 
to the existing pipelines. Further, over the years, numerous highly accurate state-of-the-art models 

has been trained which frightfully lack the ability to estimate uncertainty, which is paramount for 

real world applications. Also, when we need to perform a new task of uncertainty estimation, 

these existing models cannot be utilized. Hence we propose this minimally invasive framework 
leveraging multi-task learning, to circumnavigate the above concerns while estimating the 

uncertainty. This works as a supporting tool that can augment any pretrained NN with uncertainty 

estimates, by fine-tuning a trained model using a loss criterion that enables to obtain predictions 
along with uncertainty. Further details of the proposed approach is provided in the next section. 

 

3. UNCERTAINTY ESTIMATION THROUGH MULTI-TASK LEARNING 
 

This section provides detailed summary of the proposed framework which combines the 
predictive capability of a pretrained network and uncertainty estimation from a supplementary 

network. A block diagram of the proposed framework is shown in Figure 1, which depicts the 

pretraining followed by fine tuning an ensemble of NNs, to capture uncertainties along with the 
predictions. 

 

 
 

Figure 1. Block diagram of the proposed approach by integrating pretrained and uncertainty subnet works 
to obtain predictions and its associated uncertainties 

 

3.1. Problem Setup 
 

It is assumed that the training dataset D consists of N i.i.d data points D = ,  where x ∈ 

RI represents the I-dimensional input features and y represents the corresponding output features. 

The y labels for classification problems are considered to be one among the K classes, and for 

regression y ∈ RO represents the O-dimensional real valued output features. The problem we are 
trying to tackle is to obtain good quality predictions along with its associated uncertainty 
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estimates. The proposed approach tries to disentangle this by initially training an ensemble of 
NNs to model the predictive distribution pθ(y|x), where θ are the parameters of the NNs, followed 

by fine-tuning these NNs along with the supplementary uncertainty network for estimating the 

associated uncertainties. There are two types of uncertainties which need to be considered for 

deep learning: 
 

• Aleatoric uncertainty captures the inherent noise in data, usually due to the imperfect 
sensors. This type of uncertainty is irreducible. 

• Epistemic uncertainty captures the ignorance of the model. This occurs due to an imbalance 

in the training data distribution. In contrast to aleatoric uncertainty, this uncertainty can be 
reduced by collecting more training samples in regions where the models are uncertain. 

 

In the proposed approach, both these types of uncertainties can be estimated. 

 

3.2. Pretraining of Forward Models 
 
For the above supervised problem formulation, the design objective of pretraining is to discover 

the mapping from inputs x to outputs y. For a particular learning task, the weight parameters of 

the NNs are updated during the training phase so that the model generalizes well for the training 

data. This is achieved by using a loss/cost function that quantifies the closeness of predictions 
with the real outputs. In other words, training phase of NNs aim to find the ideal weights and 

biases which minimizes the error between actual and predicted outcomes. The proposed approach 

provides the flexibility of using an existing (pretrained) model trained for the base learning task 
and leveraging it for the uncertainty estimation task. 

 

Further, the proposed approach exploits ensemble learning where a group of NNs are constructed 
and their predictions are combined to provide improved generalization. This is achieved by 

aggregating multiple diverse versions of NNs (as they have converged to different local minima 

and make different prediction errors) learned for a specific task which enables it to perform better 

than any of the individual models. In this paper, the individual NNs that constitute the ensemble is 
trained on the entire dataset and differ only in their initialization. Such an approach has been 

observed to yield better predictive accuracy and uncertainty estimates [3, 30]. For simplicity, the 

ensemble is treated as a uniform mixture model and the predictions are combined as

, where M corresponds to the ensemble size. Once a good predictive 

model is obtained, the next phase is to integrate uncertainty estimation into this framework and is 

explained in the following section. 

 

3.3. Multi-Task Learning from Pretrained Forward Models to Estimate Uncertainty 
 
This phase is motivated by scenarios where good forward models exist and additional uncertainty 

measure will enhance its usability and trustability. We believe the concept of multi-task learning 

would be suitable for a minimally invasive approach for uncertainty estimation with good 

potential, since the features are general and suitable for both the base and uncertainty task. Hence, 
multi-task learning is exploited in this context, where a base learner is adapted to improve the 

generalization of a new task. As shown in Figure 1, the pretrained networks (or already trained 

models) is augmented with supplementary uncertainty estimation subnetworks to estimate 
uncertainty. Concisely, the base learner for the prediction task augments the learning of the target 

conditional probability distribution pθ (y|x) through the multi-task of knowledge from the base 

task that has been already learned. This is achieved by integrating a separate uncertainty 

estimation network with the base learner and trained with a proper loss function based on the 
supervised problem setting. 
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For example in a regression setting with O = 1, the base learner outputs the mean prediction µ(x) 
and the uncertainty estimation network outputs the variance σ2(x). This variance σ2(x) is modelled 

by a separate uncertainty estimation network with an exponential activation function to ensure 

that variance is always positive. For simplicity, y is considered sampled from a Gaussian 

distribution with the mean prediction and variance, the loss function that need to be minimized is 
the negative log likelihood (NLL) given by [3, 6] 

 

  (1) 
where θb and θu corresponds to the parameters of the base and uncertainty estimation network, 

respectively. 

 

This training process inherently fine-tunes the weights of the pretrained NNs and adjusts the 
weights of the uncertainty network for estimating the variance of the target error distribution as a 

function of input. All the NNs that constitute the ensemble is then trained accordingly and the 

overall training procedure is summarized in the pseudo code below. 
 

By considering the ensemble as a uniform mixture model, the predictions are aggregated from the 

individual models. In a supervised classification setting, this corresponds to averaging the 
predicted probabilities and for regression, this becomes a mixture of Gaussian distributions [3]. In 

a regression setting, the mean and variance of a Gaussian mixture is given as 

 

 
 

where µe(x) and σe(x), corresponds to the ensemble mean and variance (uncertainty), respectively. 

The variance term in equation (3) combines both the aleatoric and epistemic uncertainty 
estimates. 

 

4. EXPERIMENTS 
 

In this paper, NLL is employed as the loss criterion, which is also a commonly used evaluation 
metric for predictive uncertainty estimation [31]. For supervised regression problems, the root 

mean square error (RMSE) is also evaluated to highlight  
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Algorithm 1: Pseudocode of the proposed approach 
 

1. Construct an ensemble of base networks to model the predictive distribution pθ(y|x). 

Initialize θb1,θb2,··· ,θbm randomly. Recommended ensemble size is 5. 

2. for m = 1 : M do 

(a) Sample data points randomly for each NN, so that each member 

of the data has an equal opportunity of being picked. 

(b) Train the base networks independently, until cost function for the 

base task is minimized. 

end 
3. Construct an ensemble of multi-task networks for the uncertainty task. 

This is done by copying the base network and randomly initializing another uncertainty 

network for computing the uncertainty. A proper loss criterion L(θ,x,y) which captures 

the predictive distribution with uncertainty estimates is utilized. 
4. for m = 1 : M do 

(a) Fine-tune the base NNs along with the uncertainty networks until 

the loss function is minimized. 
end 

 
 
that uncertainty estimation doesn’t impact the prediction capability of the proposed approach. 

 

4.1. Synthetic Regression Problem 
 

Firstly, the performance of the proposed approach is evaluated on a one dimensional synthetic 

regression problem. Experimenting with a synthetic regression problem enables us to control the 
target distribution y with a known noise distribution which will validate our proposed method of 

predicting the mean and its associated uncertainties both aleatoric and epistemic. The aleatoric 

component should capture the noise variance in the data and epistemic component should capture 
the model uncertainties where there is no/less training data. Similar to [6], an amplitude 

modulation of the input feature for the target distribution is considered and is given as 

 

 f(x) = sin (4x) sin (5x) (4) 
 

The output feature y is obtained by corrupting the target distribution with noise and is modeled as 

 
 y = f(x) + N(x) (5) 

 

The additive noise N(x) is considered to be normally distributed with variance σ2(x), which moves 
the targets away from their true values f(x). For the synthetic regression problem, the variance of 

the noise is considered as 

 

 σ2(x) = 0.02 + 0.02(1 – sin (4x))2 (6) 
 

Around 5000 samples are generated based on equation (5) over the interval x ∈ [0, π/2] and 

around 75% are allocated for training and remaining 25% for testing. In the proposed approach, 
the base task is to estimate the true mean (µ) of the noisy target distribution around f(x). The 

initial weights of the base network are based on the default weight initialization in Tensor flow 

and mean squared error (MSE) is used as the loss criterion which enables the NNs to map the 

target distribution closely. Once the training of the base network has reached a point where loss 
criterion is improving only very slowly, we do an early stopping, as additional training in the next 

phase can fine-tune the predictions. 
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Figure 2 illustrates the performance of the pretrained network on the test set. It can be observed 
from Figure 2a that the pretrained ensemble network closely approximates the true function 

(overlapping green and red line). However, the uncertainty measured as the variance among the 

NNs constituting the ensemble (red line) does not accurately model the noise inherent in the data 

(blue line) as shown in Figure 2b. 
 

In order to improve the performance of the uncertainty estimation task, the neural networks for 

the base task is copied and concatenated with a randomly initialized uncertainty network that 
estimates the true variance σ2(x) of the target error distribution, which is actually the quantitative 

uncertainty due to N(x). The noise N(x) can either be independent of the input or systematically 

vary over the 
 

 
 

(a) Mean prediction compared with actualdata 
 

 
 

(b) Variance prediction compared with actual variance 
 

Figure 2: Comparison of predicted mean and variance from the pretrained ensemble of networks 

to the target probability distribution with the actual mean and variance 
 

input space. As mentioned previously, here we apply our method on a synthetic example with a 

noise that varies with the input feature. This network is then trained to minimize the NLL cost 

function (equation (1)), which reflects both the accuracy and quality of predictive uncertainty. 
The outputs of the final network gives us the parameters of a normal distribution, which describes 

the data generated by the sampling process in equation (5). The results of the proposed approach 

on the test set are shown in Figure 3. Figure 3a shows the training data x (over the interval x ∈ 
[0,π/2]), the true function f(x), and the mean prediction by the network. It clearly shows that the 

predictions (µe(x)) from the networks trained using the proposed framework closely matches the 

true function f(x) (overlapping green and red lines). Further, Figure 3b compares the true variance 

σ2(x) with the predicted variance σe(x) which has both aleatoric and epistemic uncertainty 
components as described in equation (3). It clearly shows that proposed framework maps the true 

noise variance in the data accurately. Hence, this validates that the proposed approach accurately 

estimates the mean and variance of the target probability distribution. Further in the interpolation 
region, where training data is available, the data noise (aleatoric uncertainty) is the main 

uncertainty contributor as observed by overlapping predicted noise variance and aleatoric 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.4, July 2023 

25 

component in Figure 3b. In this region, the contribution from model uncertainty (epistemic) 
should be quite small which is also validated in Figure 3b. 

 

After validating the performance of the proposed approach in the interpolation region, the 

uncertainties are estimated in the extrapolation region by varying x over the interval [−π/2, 0]. The 
performance of the proposed approach with mean prediction and uncertainties shown by shaded 

region corresponding to three standard deviations are shown in Figure 4. It can be observed that in 

the interpolation region, the data lies within the uncertainty estimated by the proposed approach. 
Also, the 

 

 
 
(a) Mean prediction with actual data 

 

 
 

(b) Variance prediction with actual variance 
 

Figure 3: Comparison of predicted mean and variance from the proposed framework of the target 

probability distribution with the actual mean and variance  

 

uncertainty starts to increase as we move further away from the interpolation region into the 
extrapolation region. This validates that the proposed approach estimates higher uncertainties in 

regions where there is no/less training data. 

 
The results shown in Figures 3, 4 validates that (i) the proposed approach is able to provide a 

good estimate of both mean and uncertainty in the interpolation region and (ii) uncertainty 

increases as we move farther from the observed training data into the extrapolation region. These 
are important aspects that enhances the value of the proposed approach. 
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Figure 4: Mean prediction and uncertainty estimated by the proposed approach in the interpolation and 

extrapolation region 

 

4.2. Regression on Real World Datasets 
 
Following the validation on synthetic regression problem, we empirically evaluated the 

performance of our method and compared to high performing baselines like deep ensembles [3], 

probabilistic back propagation (PBP) [5], MC- Dropout [1], and Bayesian linear regression 

ensemble (BLR) [32]. The entire training set is used to train each network in the ensemble, since 
NNs typically perform better with more data. We use the experimental setup proposed in [5], 

which is also adopted in [1] and [3] to evaluate MC-dropout and deep ensembles, respectively. 

 
We use a 1-hidden layer NN with 50 hidden units for smaller datasets and 100 hidden units for 

larger datasets. The hidden layers are given rectified linear unit (ReLU) activation in both the 

base and uncertainty networks, and output layers 

 
Table 1: Results on regression real-world datasets comparing RMSE and NLL performance metrics 

 

    RMSE  NLL  

Datasets N I PBP  MC- 

dropout 

Deep 

Ensembles 

Proposed 

Approach 

PBP  MC- 

dropout 

Deep 

Ensembles 

Proposed 

Approach 

Boston 

housing 

506 13 3.01 

0.18 

± 2.97 

0.85 

± 3.28 

1.00 

± 2.96 

0.16 

± 2.57 

0.09 

± 2.46 

0.25 

± 2.41 

0.25 

± 2.01 

0.32 

± 

Concrete 

strength 

1030 8 5.67 

0.09 

± 5.23 

0.53 

± 6.03 

0.58 

± 5.03 

0.76 

± 3.16 

0.02 

± 3.04 

0.09 

± 3.06 

0.18 

± 2.82 

0.62 

± 

Energy 

efficiency 

768 8 1.80 

0.05 

± 1.66 

0.19 

± 2.09 

0.29 

± 2.03 

0.22 

± 2.04 

0.02 

± 1.99 

0.09 

± 1.38 

0.22 

± 1.11 

0.21 

± 

Kin8nm 8192 8 0.10 

0.00 

± 0.10 

0.00 

± 0.09 

0.00 

± 0.09 

0.01 

± -0.90 

0.01 

± -0.95 

0.03 

± -1.20 

0.02 

± -1.14 

0.01 

± 

Naval 

Propulsion 

11,934 16 0.01 

0.00 

± 0.01 

0.00 

± 0.00 

0.00 

± 0.00 

0.00 

± -3.73 

0.01 

± -3.80 

0.05 

± -5.63 

0.05 

± -2.65 

0.00 

± 

Power 

plant 

9568 4 4.12 

0.03 

± 4.02 

0.18 

± 4.11 

0.17 

± 4.20 

0.21 

± 2.84 

0.01 

± 2.80 

0.05 

± 2.79 

0.04 

± 2.71 

0.17 

± 

Protein 

structure 

45,730 9 4.73 

0.01 

± 4.36 

0.04 

± 4.71 

0.06 

± 4.34 

0.00 

± 2.97 

0.00 

± 2.89 

0.01 

± 2.83 

0.02 

± 2.56 

0.00 

± 

Wine 

quality 

1599 11 0.64 

0.01 

± 0.62 

0.04 

± 0.64 

0.04 

± 0.52 

0.05 

± 0.97 

0.01 

± 0.93 

0.06 

± 0.94 

0.12 

± 0.29 

0.05 

± 

Yacht 308 6 1.02 

0.05 

± 1.11 

0.38 

± 1.58 

0.48 

± 0.82 

0.43 

± 1.63 

0.02 

± 1.55 

0.12 

± 1.18 

0.21 

± 0.64 

0.34 

± 

YearPrediction 

MSD 

515,345 90 8.88 

NA 

± 8.85 

NA 

± 8.89 

NA 

± 8.90 

NA 

± 3.60 

NA 

± 3.59 

NA 

± 3.35 

NA 

± 2.48 ± 

NA 
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are given linear and exponential activation for the base and uncertainty networks, respectively. 
We trained an ensemble of five NNs to minimize the MSE, and finetuned using another ensemble 

of five NNs, trained to minimize the NLL as given in equation (1), for a better learning of 

uncertainty, without compromising on the quality of predictions. These are implemented in 

Tensorflow, using default weight initializations. We used a batch size of 32 and Adam optimizer 
with a default learning rate. 

 

In order to have a less biased estimate of the model skill and to prevent data leakage, we used k-
fold cross validation (CV), where the dataset is split into 20 folds, after the dataset is shuffled 

randomly. The datasets are normalized so that the input features and the targets have zero mean 

and unit variance in the training set. Also to be noted that, only input features are normalized. The 
results of 20fold CV are summarized with the mean of the model scores obtained for prediction 

and uncertainty estimates. We did the train-test splitting approach only for year prediction and 5-

fold CV on protein structure since they are large datasets. 

 
Here we compare the quality of predictive uncertainty estimation as well as predictive accuracy 

on supervised regression tasks only. We analyzed the results using a proper loss criterion like 

NLL, since NLL is the popular metric for reflecting both the accuracy and quality of predictive 
uncertainty [31]. In table 1, we provide the results for test accuracy, NLL error on real-world 

datasets along with all the baselines’ results reported in their respective papers. The best results 

are shown in bold for each dataset. We demonstrate that our framework is superior to obtaining 
predictive accuracy and uncertainty estimation. We can observe from the results that our method 

can outperform or equally compete with other baselines for all the datasets. 

 

5. CONCLUSIONS 
 
In this paper, a simple and extensible method to estimate the uncertainty of the output of a 

network by exploiting multi-task learning framework is proposed. This is achieved by exploiting 

the learned features from the base task to another network that captures the corresponding 
uncertainties. Training such a network by integrating the base and uncertainty subnetworks using 

a well-defined loss criterion will enable it to capture y along with its ambiguities for a given x. 

Intuitively, by using ensemble learning. the proposed method captures both the aleatoric (data) 

and epistemic (model uncertainty by averaging predictions over multiple models) uncertainties. 
Hence, such an approach works as a supporting tool that can augment any pretrained network 

with uncertainty estimation capability, without impacting their predictive performance. The 

superior prediction capability and well calibrated uncertainties of the proposed approach has been 
demonstrated on a series of benchmark experiments for supervised learning task. We hope this 

algorithm has a significant potential and commercial impact towards practical and accurate deep 

learning methods for quantifying predictive uncertainty and paves the way for future research in 

this direction. 
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