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ABSTRACT 
 
This research aims to develop kernel GNG, a kernelized version of the growing neural gas (GNG) 

algorithm, and to investigate the features of the networks generated by the kernel GNG. The GNG is an 

unsupervised artificial neural network that can transform a dataset into an undirected graph, thereby 

extracting the features of the dataset as a graph. The GNG is widely used in vector quantization, 

clustering, and 3D graphics. Kernel methods are often used to map a dataset to feature space, with support 

vector machines being the most prominent application. This paper introduces the kernel GNG approach 

and explores the characteristics of the networks generated by kernel GNG. Five kernels, including 

Gaussian, Laplacian, Cauchy, inverse multiquadric, and log kernels, are used in this study. The results of 
this study show that the average degree and the average clustering coefficient decrease as the kernel 

parameter increases for Gaussian, Laplacian, Cauchy, and IMQ kernels. If we avoid more edges and a 

higher clustering coefficient (or more triangles), the kernel GNG with a larger value of the parameter will 

be more appropriate. 
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1. INTRODUCTION 
 
Today, the amount of data has grown enormously [1, 2]. To efficiently process such massive 
datasets, vector quantization methods are often used to reduce the number of data points. Thus, 
vector quantization methods have become increasingly important for handling large datasets. 
 

Self-organizing maps (SOMs) and their alternatives are widely used vector quantization methods 
commonly applied in various fields such as data visualization, feature extraction, and data 
classification. These approaches encode a dataset into a set of interconnected units. Kohonen’s 
SOM is the most popular and widely used of these methods. Kohonen’s SOM creates a network 
with fixed topology, such as a d-dimensional lattice. 
 
The growing neural gas (GNG) proposed by Fritzke [3] is an alternative to SOM. GNG can 

flexibly change the network topology during training. GNG can adapt not only the reference 
vectors but also the network topology to an input data set. GNG can gradually increase the 
number of neurons and reconstruct the network topology according to the input data. GNG is a 
useful method for extracting the topology of the input data. Thus, GNG can not only quantize a 
dataset but also preserve the topology of the dataset as the topology of the network. 
 
The kernel method is useful for projecting data into a high-dimensional feature space. The 
support vector machine [4] gains good performance for non-linear data, applied kernel method. 

The kernel Kohonen’s SOM can perform better than Kohonen’s network [5]. However, a kernel 

https://airccse.org/journal/ijaia/current2023.html
https://doi.org/10.5121/ijaia.2023.14503


International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.5, September 2023 

26 

version of GNG has not yet been developed, and the characteristics of networks generated by 
kernel GNG remain unknown. 
 
This study aims to develop the kernel GNG and investigate the characteristics of networks 

generated by the kernel GNGs with Gaussian, Laplacian, Cauchy, inverse multiquadric (IMQ), 
and log kernels. First, the method of the kernel GNG is derived as shown in Sec.3. Second, the 
paper shows the feature of networks generated by the kernel GNGs with these kernels in Sec.6. 
This paper shows that the kernel GNGs with these kernels can generate networks that effectively 
represent input datasets, similar to the original GNG algorithm. 
 

2. RELATED WORK 
 
The best-known and most widely used the SOM is Kohonen’s SOM. The SOM can project 
multidimensional data onto a low-dimensional map [6]. The SOM is used in various applications 
such as color quantization [7, 8], data visualization [9], and skeletonization [10]. The most 

popular SOM is Kohonen’s SOM [11]. However, the network structure generated by Kohonen’s 
SOM is static (generally an d-dimensional lattice) [12]. Thus, Kohonen’s SOM cannot flexibly 
change the network topology depending on the input dataset. 
 
The growing neural gas (GNG) [3] is a type of SOMs [13] and can find the topology of an input 
distribution [14]. The network of the GNG is flexible, and its structure represents the data 
structure. GNG has been widely applied to topology learning, such as the extraction of the two-

dimensional outline of an image [15, 16, 17], the reconstruction of 3D models [18], landmark 
extraction [19], object tracking [20], anomaly detection [12], and cluster analysis [21, 22, 23]. 
 
The kernel method is often used for nonlinear separations. The most famous application of the 
kernel method is the support vector machine [4, 24]. Many researchers have used the kernel 
method to improve the performance of various methods. The kernel k-means [25] partitions the 
data points into a higher dimensional feature space and can partition a dataset non-linearly. 
Kohonen’s SOM has also been kernelized [26, 27, 28]. The kernel Kohonen’s SOM shows better 

performance. However, the kernel GNG is not yet proposed. 
 

3. KERNEL GROWING NEURAL GAS 
 
The kernel growing neural gas (kernel GNG) is a modified version of the GNG that uses a kernel 
function. The kernel GNG projects the dataset into a higher dimensional feature space using a 
non-linear function and converts it into a network. The kernel trick allows the kernel GNG to 
learn the topology of the input without the need for direct projection of the data into feature 
space. 
 

The kernel GNG consists of a set of units connected by a set of unweighted and undirected edges. 

Each unit 𝑖 has a weight 𝒘𝑖 ∈ 𝑅𝑑 corresponding to a reference vector in the input space and a 

cumulative error 𝐸𝑖. Given a data point from the dataset 𝑿 = {𝒙1, … , 𝒙𝑛, … , 𝒙𝑁}, where 𝒙𝑛 ∈ 𝑅𝑑 
at each iteration, the kernel GNG updates the unit and the network. 
 

Consider a data point 𝒙𝑛, a unit weight 𝒘𝑖, and a nonlinear mapping function 𝝓(⋅) that maps 𝒙𝑛 

and 𝒘𝑖  to 𝝓(𝒙𝑛) and 𝝓(𝒘𝑖) in feature space. The dot product of the two points, 𝝓(𝒙𝑛) and 

𝝓(𝒘𝑖), is denoted as 𝐾(𝒙𝑛, 𝒘𝑖)  =  𝝓(𝒙𝑛)T𝝓(𝒘𝑖), where 𝐾(⋅,⋅) is the kernel function. 
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The winning unit 𝑠1 of the kernel GNG is the one closest to an input data point 𝒙𝑛 in the feature 

space. The criterion to identify 𝑠1 is the squared distance between 𝒙𝑛 and the weight 𝒘𝑖 of unit 𝑖 
in the feature space. The squared distance 𝐷2(𝒙𝑛, 𝒘𝑖) in the feature space is defined as follows: 
 

𝐷2(𝒙𝑛, 𝒘𝑖) = ‖𝝓(𝒙𝑛) − 𝝓(𝒘𝑖)‖2 =  𝐾(𝒙𝑛, 𝒙𝑛)  −  2𝐾(𝒙𝑛, 𝒘𝑖)  +  𝐾(𝒘𝑖 , 𝒘𝑖  ). 
 
The kernel GNG identifies a winning unit by minimizing the squared distance between the 

mapped point and the mapped weight using the above equation. The winning unit 𝑠1with respect 

to an input 𝑥𝑛 is thus obtained by 
 

𝑠1  = argmini 𝐷2(𝒙𝑛, 𝒘𝑖). 
 

After that, the weight of the winning unit 𝒘𝑠1
 is updated according to the following rule: 

 

𝒘𝑠1
(𝑡 + 1) =  𝒘𝑠1

(𝑡) − 𝜀𝑠1

1

2

𝜕

𝜕𝒘𝑠1

𝐷2(𝒙𝑛, 𝒘𝑠1
), 

 

where 𝑡 is the iteration index and 𝜀𝑠1
 is the learning rate of the winning unit 𝑠1. This equation is 

based on gradient descent to minimize the squared distance 𝐷2(𝒙𝑛, 𝒘𝑠1
). Therefore, the update 

equation for the weight 𝒘𝑠1
 in the kernel GNG is as follows 

 

𝒘𝑠1
(𝑡 +  1)  =  𝒘𝑠1

(𝑡) − 𝜀𝑠1

1

2
(

𝜕

𝜕𝒘𝑠1

𝐾(𝒘𝑠1
, 𝒘𝑠1

) −
2𝜕

𝜕𝒘𝑠1

𝐾(𝒘𝑠1
, 𝒙𝑛)). 

 
This equation is consistent with that of the kernel SOM update rule proposed by [26]. This 
method eliminates the need to maintain the transformed weights and the transformed data points, 
allowing direct updating of the weights in the input space without updating the high-dimensional 
weights in the feature space. 

 
Five kernel functions are used in this study, including Gaussian, Laplacian, Cauchy, inverse 

multiquadric (IMQ), and log kernels. Table 1 shows the kernelized 𝐷2(𝒙, 𝒘)and 
𝜕

𝜕𝒘
𝐷2(𝒙, 𝒘). 

The code for the kernel GNG is openly available on GitHub (https://github.com/ KazuhisaFujita/ 
KernelGNG). 
 

Table 1: 𝐾(𝒙, 𝒘), 𝐷2(𝒙, 𝒘), and differentiations of 𝐷2(𝒙, 𝒘) 

 
kernel 𝐾(𝒙, 𝒘) 𝐷2(𝒙, 𝒘) 𝜕

𝜕𝒘
𝐷2(𝒙, 𝒘) 

Gaussian 
exp (−

‖𝒙 − 𝒘‖2

2𝛾2
) 2 (1 − exp (−

‖𝒙 − 𝒘‖2

2𝛾2
)) −2

𝒙 − 𝒘

𝛾2
exp (−

‖𝒙 − 𝒘‖2

2𝛾2
) 

Laplacian 
exp (−

‖𝒙 − 𝒘‖

𝛾
) 2 (1 − exp (−

‖𝒙 − 𝒘‖

𝛾
)) −

2

𝛾

𝒙 − 𝒘

‖𝒙 − 𝒘‖
exp (−

‖𝒙 − 𝒘‖

𝛾
) 

Cauchy 1

1 + ‖𝒙 − 𝒘‖2/𝛾2
 2 (1 −

1

1 + ‖𝒙 − 𝒘‖2/𝛾2
) −

4

𝛾2

𝒙 − 𝒘

(1 + ‖𝒙 − 𝒘‖2/𝛾2)2
 

IMQ 1

√‖𝒙 − 𝒘‖2 + 𝛾2
 2 (

1

𝑐
−

1

√‖𝒙 − 𝒘‖2 + 𝛾2
) −2

𝒙 − 𝒘

(‖𝒙 − 𝒘‖2 + 𝛾2)3/2
 

log − log(
∥ 𝒙 −  𝒘 ∥𝛾+  1) 

2 log(∥ 𝒙 −  𝒘 ∥𝛾 +  1) 
−2𝑑(𝒙 − 𝒘)

‖𝒙 − 𝒘‖𝛾−2

‖𝒙 − 𝒘‖𝛾 + 1
 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.5, September 2023 

28 

3.1. Algorithm of the Kernel GNG 
 
The kernel GNG, based on the same principles as the original GNG algorithm, extracts the 

network structure from the input data, but uses kernelized equations. The algorithm is formulated 
as 
 
1. Initialize the network with two connected neurons. Their weights are two randomly selected 
data points. 

2. Randomly select an input data point 𝒙𝑛 from the dataset. 

3. Identify the winning unit 𝑠1, the one closest to 𝒙𝑛, as defined by 
 

𝑠1  = argmini 𝐷2(𝒙𝑛, 𝒘𝑖). 
 

where 𝐷2 is shown in table1. At the same time, find the second nearest unit, 𝑠2. 

4.Increment the ages of all edges connected to the winning unit 𝑠1. 

5.Increase the cumulative error 𝐸𝑠1
(𝑡) by the squared distance between the input data point 𝒙𝑖and 

the weight of the winning unit 𝒘𝑠1
: 

 

𝐸𝑠1
(𝑡 + 1) = 𝐸𝑠1

(𝑡) + 𝐷2(𝒙𝑛, 𝒘𝑠1
). 

 

6.Adapt the winning unit 𝑠1  and its neighbors 𝑗  to better reflect the input data point 𝒙𝑛  by 
updating their weights: 

𝒘𝑠1
(𝑡 +  1) = 𝒘𝑠1

(𝑡) − 𝜀𝑠1

1

2

𝜕

𝜕𝒘𝑠1

𝐷2(𝒙𝑛, 𝒘𝑠1
), 

𝒘𝑗(𝑡 +  1) = 𝒘𝑗(𝑡) − 𝜀𝑛

1

2

𝜕

𝜕𝒘𝑗
𝐷2(𝒙𝑛, 𝒘𝑗), 

where 
𝜕

𝜕𝒘
𝐷2(𝒙, 𝒘)is in table1. 

 

7.If the units 𝑠1 and 𝑠2 are connected, reset the age of their connecting edge to zero. Otherwise, 
create an edge between them. 

8.Discard any edges whose ages exceed the maximum age 𝑎max. If this leaves any units isolated, 
remove them. 

9.Insert a new unit after every 𝜆 iteration: 
 

•Identify the unit 𝑞 with the largest cumulative error 𝐸𝑞 . 

•Among the neighbors of 𝑞, find the node 𝑓 with the largest error. 

•Insert a new unit 𝑟 between 𝑞 and 𝑓 as follows: 
 

𝒘𝑟 = (𝒘𝑞 + 𝒘𝑓)/2. 

 

•Create edges between neurons 𝑟 and 𝑞, and between 𝑟 and 𝑓, while removing the edge 

between 𝑞 and 𝑓. 

•Decrease the cumulative errors of 𝑞 and 𝑓 by multiplying them by a constant 𝛼, and 

initialize the cumulative error of 𝑟 to the updated error of 𝑞. 
 

10.Multiply all cumulative errors by a constant 𝛽 to reduce them. 

11.Repeat from step 2 until the number of iterations reaches 𝑇. 
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In this study we used 𝑁max = 100, 𝑎max = 50, 𝜆 = 100, 𝛼 = 0.5, 𝛽 =  0.995, 𝜀𝑠1
= 0.2, and 

𝜀𝑛 = 0.006. These parameter settings are based on [3]. 
 

4. EVALUATION METRICS FOR KERNEL GNG PERFORMANCE AND 

NETWORK TOPOLOGY 
 

4.1. Evaluation metrics for kernel GNG 
 
The effectiveness of the kernel GNG is evaluated using two different metrics. 
 
The first metric, mean square error (MSE), evaluates the average of the squared distances 
between each input data point and its nearest unit in the input space. This metric is expressed as 
 

MSE = ∑ min
𝑖

‖𝒙𝑛 − 𝒘𝑖‖2

𝑁

𝑛=1

, 

 

where 𝑥𝑛 is an input data point, 𝑤𝑖 is the weight of neuron 𝑖, and ‖⋅‖ is the Euclidean norm. 
 

The second metric, kernel mean square error (kMSE), extends the MSE by measuring the squared 
distance between the data points and their corresponding weight vectors in the transformed 
feature space defined by the kernel function. The kMSE is expressed as 
 

kMSE = ∑ min
𝑖

𝐷2(𝒙𝑛, 𝒘𝑖)

𝑁

𝑛=1

. 

 

In the above equation, 𝐷2(𝒙𝑛, 𝒘𝑖) is the distance metric computed in the feature space between 

the input data point 𝒙𝑛 and the weight vector 𝒘𝑖 . For more information about the kernel distance 

metric 𝐷2(𝒙𝑛, 𝒘𝑖), see table1. 
 

4.2. Network Analysis Metrics for Topology Evaluation 
 
In the field of complex network research, measures are used to study the structure of networks. In 
this study, two measures are used to examine the generated networks: the average degree and the 
average clustering coefficient. 
 

The average degree, denoted as 𝑘 , quantifies the average number of edges per node. It is 
calculated using the following formula 
 

𝑘 =
1

𝑁
∑ 𝑘𝑖

𝑁

𝑖 = 1

, 

 

where 𝑘𝑖 is the degree (the number of edges) of node 𝑖. 
 

On the other hand, the average clustering coefficient 𝐶 indicates how much nodes in the network 
tend to form connected triangles on average. It is given by 
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𝐶 =
1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1

, 

 

where 𝑐𝑖 is the clustering coefficient of node 𝑖. The clustering coefficient 𝑐𝑖  for node 𝑖 [29] is 
given by 
 

𝑐𝑖 =
2𝑡𝑖

𝑘𝑖(𝑘𝑖 −  1)
, 

 

where 𝑡𝑖 is the number of triangles around 𝑖 and ki is the degree of 𝑖. If 𝑘𝑖 <  2, ci is set to zero. 
These metrics are derived using NetworkX, a comprehensive Python library tailored for network 
analysis. 

 

5. EXPERIMENTAL SETTING 
 

For this research, we used several Python libraries, namely NumPy for calculations related to 
linear algebra, NetworkX for handling network operations and computing coefficients, and scikit-
learn for generating synthetic data. 
 
Synthetic and real-world data sets are used to evaluate the characteristics of the network 
generated by the kernel GNG. The synthetic datasets include Square, Blobs, Circles, Moons, 
Swiss_roll, and S_curve. Square dataset is constructed using NumPy’s random.rand function, 

which generates two-dimensional data points uniformly distributed between 0 and 1. Blobs 
dataset is constructed using scikit-learn’sdatasets.make_blobs function, which uses a Gaussian 
mixture model of three isotropic Gaussian distributions with default parameters. Circles dataset, 
created using the datasets.make_circles function with noise and scale parameters of 0.05 and 0.5, 
respectively, contains two concentric circles of data points. The Moons dataset, a distribution 
mimicking the shape of crescents, was created using the datasets.make_moons function with a 
noise parameter of 0.05. Swiss_roll and S_curve datasets are generated using 
datasets.make_swiss_roll and datasets.make_s_curve, respectively. Each synthetic dataset 

contains 1000 data points. In addition to these synthetic datasets, we also use two-dimensional 
datasets such as Aggregation [30], Compound [31], Pathbased [32], Spiral [32], D31 [33], R15 
[33], Jain [34], Flame [35], and t4.8k [36]. The real-world datasets used are Iris, Wine, Ecoli, 
Glass, Yeast, Spam, CNAE-9, and Digits from the UCI Machine Learning Repository. 
 

In all experiments performed, the pre-processing includes normalizing each data point 𝒙𝑛 =
(𝑥𝑛1, … , 𝑥𝑛𝑑 , … , 𝑥𝑛𝐷) in a dataset 𝑿 = {𝒙1, … , 𝒙𝑛, … , 𝒙𝑁} using the following formula:  
 

𝒙𝑛 = (
𝑥𝑛1 − �̅�1

𝜎1
, … ,

𝑥𝑛𝑑 − �̅�𝑑

𝜎𝑑
, … ,

𝑥𝑛𝐷 − �̅�𝐷

𝜎𝐷
), 

 

where  �̅�𝑑 =
1

𝑁
∑ 𝑥𝑛𝑑

𝑁
𝑛=1 , and 𝜎𝑑  = √1/𝑁  ∑ (𝑥𝑛𝑑  −  �̅�𝑑)2𝑁

𝑛=1 . 

 

6. RESULTS 
 
In this section, we present four experimental results that demonstrate the effectiveness of kernel 
GNGs. First, we provide a 2-dimensional visualization of the networks generated by kernel 
GNGs, illustrating their structure and connectivity. Second, we present the evolution of MSE and 

kernel MSE over iterations 𝑡. Third, we explore the dependence of MSE and network structure on 
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the kernel parameter 𝛾, revealing the role of this parameter in shaping the network. Finally, we 
describe the characteristics of the network generated by kernel GNGs. 
 

6.1. Visualization of Networks Generated by GNG and Kernel GNGs 
 

Figure 1 shows the networks generated from synthetic datasets by the GNG and kernel GNGs. 

The kernels used for the kernel GNGs include the Gaussian kernel with 𝛾 = 1.8, the Laplacian 
kernel with 𝛾 =  1.8, the IMQ kernel with 𝛾 = 1.8, the Cauchy kernel with 𝛾 = 1.8, and the log 

kernel with 𝛾 =  3. All networks are derived with END = 2 × 104, and the random seed is set 

to 1.In all cases, the networks generated by kernel GNGs accurately reflect the input topology. 
However, the Laplacian kernel produces a significantly more complex network structure, but it 
spreads the units over the input topology. This result shows the ability of kernel GNGs to 
effectively extract the topology of the dataset. 
 

 
 

Figure 1.  This figure shows networks generated from synthetic data by the GNG and the kernel GNGs 

with Gaussian, Laplacian, IMQ, Cauchy, and log kernels. Data points are shown as gray dots, while the 

network units are shown as black dots, with their positions indicating the reference vectors. Black lines 

mark the edges of the networks. 
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6.2. Convergence of MSE and kMSE for Kernel GNGs 
 
Figure 2 shows the convergence patterns of both the MSE of the kernel GNG and the GNG over 

iterations. For Blobs and Iris, the MSEs corresponding to all kernel GNGs begin to converge at 
about 104 iterations. In contrast, for Wine, the MSE of the kernel GNG using the Laplacian and 

the log starts to converge at about 2 × 104iterations, while the others continuously and slowly 

decrease even after 2 × 104 iterations. For Wine, the MSEs of the kernel GNGs are larger than 

that of the GNG, except when the log kernel is used. For Ecoli, the MSEs associated with the 

kernel GNGs with the Laplacian, Cauchy, and IMQ kernels converge at 4 × 104iterations. The 

kernel GNGs with Gaussian and logarithmic kernels converge at 2 × 105  and 105  iterations, 
respectively. For Ecoli, the convergence values of the kernel GNGs with all kernels are larger 
than those of the GNG. 
 

Figure 3 shows the convergence behavior of the kMSE over iterations for the kernel GNGs. For 

Blobs and Iris, the kMSE for all kernel GNGs starts to converge at about 104  iterations. In 

contrast, for Wine, the kMSE approaches a low value at about 2 × 104iterations. For Ecoli, while 

the kMSE reaches low values at 104iterations, it exhibits a slow and continuous decline after this 

iteration. These observations suggest that the kernel GNGs reach appropriately low MSE and 

kMSE values around 2 × 104iterations. 
 

 

 
 

Figure 2.  Evolution of the MSE over iterations. Subfigures (A) to (D) show the MSE for different data 

sets: (A) Blobs, (B) Iris, (C) Wine, and (D) Ecoli, respectively. Each data point represents the average 

kMSE obtained from 10 independent runs, all initialized with random values. 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.14, No.5, September 2023 

33 

 

 
 

Figure 3.  Evolution of the kernel mean square error (kMSE) over iterations. Subfigures (A) to (D) show 

the kMSE for different data sets: (A) Blobs, (B) Iris, (C) Wine, and (D) Ecoli, respectively. The values 
shown are the averages derived from 10 independent runs, each initialized with random values. 

 

6.3. Influence of Kernel Parameters on Network Characteristics in kernel GNGs 
 
Figure 4 shows the dependence of the kernel parameters on the MSE, the average degree, and the 
average clustering coefficient of the networks generated by the kernel GNG with Gaussian, 
Laplacian, Cauchy, and IMQ kernels. The MSE, average degree, and average clustering 

coefficient are computed from the network at 4 × 105  iterations. Interestingly, as the kernel 

parameters increase, the MSE, the average degree, and the average clustering coefficient 
decrease. The kernel GNG with the Laplacian kernel tends to generate a network characterized by 
a higher degree and a higher clustering coefficient than the others. 
 
Figure 5 shows the effect of the kernel parameters on the MSE, the average degree, and the 
average clustering coefficient of the networks generated by the kernel GNG with log kernel, with 

the computations ending at the 4 × 105 iterations. A noteworthy observation is the absence of 
any discernible dependence of the network features on the kernel parameter of the kernel GNG 

with log kernel. 
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Figure 4.  Dependence of various network metrics on kernel parameters for networks generated by kernel 

GNG with Gaussian, Laplacian, Cauchy, and IMQ kernels for Blobs, Iris, Wine, and Ecoli datasets. 

Subfigures (A), (D), (G), and (J) show the dependence of the MSE on the kernel parameter. Subfigures (B), 

(E), (H), and (K) show the average degree, while subfigures (C), (F), (I), and (L) show the average 

clustering coefficient. Each value shown represents an average derived from 10 independent runs, each 

initialized with random values. 
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Figure 5.  Dependence of various network metrics on kernel parameters in networks generated by kernel 

GNG with log kernel and GNG for Blobs, Iris, Wine, and Ecoli datasets. Subfigures (A), (D), (G), and (J) 

show the influence of kernel parameters on the MSE. Subfigures (B), (E), (H), and (K) show the average 

degree, while subfigures (C), (F), (I), and (L) show the average clustering coefficient. Each displayed value 

represents the average derived from 10 independent runs, each initialized with random values. 

 

6.4. Comparison of Network Characteristics in kernel GNGs 
 

Table 2 gives a comprehensive overview of the average degree 𝑁𝑑 of the networks generated by 
the GNG and the kernel GNGs with the Gaussian, Laplacian, Cauchy, IMQ, and log kernels. The 

Gaussian, Laplacian, Cauchy, and IMQ kernels use a 𝛾 parameter value of 1.8. In contrast, the 

log kernel uses a 𝛾 parameter value of 3. Each row represents a dataset, and the corresponding 

data dimension is documented in the second column, denoted by 𝐷. For networks generated by 
the kernel GNG using the Gaussian, Cauchy, and IMQ kernels, Nd is less than or equal to that of 
GNG. While the Laplacian kernel often produces a larger Nd than the GNG, especially for two-

dimensional datasets, it produces a smaller 𝑁𝑑 for datasets such as CNAE and Digits. In many 

cases, the log kernel’s 𝑁𝑑 is equal to or smaller than the GNG’s, although it is larger than the 
GNG’s values for datasets such as Wine, Spam, Glass, Yeast, and Digits. 
 

In parallel, table 3 shows the average clustering coefficient 𝐶 of the networks generated by the 

GNG and the kernel GNGs. The values of 𝐶 for the kernel GNGs using Gaussian, Cauchy, and 
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IMQ kernels are often less than or equal to those of the GNG. The Laplacian kernel often 

produces a 𝐶 larger than the GNG’s for lower dimensional data. In addition, the log kernel’s 𝐶 
tends to be higher than the other kernels for data points with larger dimensions.  
 
In summary, Gaussian and Cauchy kernels typically produce networks of equal or reduced 
complexity compared to the GNG. The IMQ kernel tends to produce simpler networks, the 

Laplacian kernel produces more complex networks, and the log kernel produces more complex 
networks, especially for high-dimensional data. 
 

7. CONCLUSIONS 
 
This paper describes the kernel growing neural gas (GNG) and investigates the characteristics of 
the networks it generates. Several kernel functions are tested, including Gaussian, Laplacian, 
IMQ, Cauchy, and log kernels. The results show that the reference vectors produced by the 
kernel GNG match the input dataset, which is confirmed by the sufficiently small mean square 
error (MSE) values. However, the topology of the network generated by kernel GNG depends on 

the kernel function parameter 𝛾 . The average degree and the average clustering coefficient 

decrease as 𝛾 increases for Gaussian, Laplacian, Cauchy, and IMQ kernels. 
 
The choice between kernel GNG and GNG is complex, mainly because the only discernible 
difference from our results is in the metrics of the network topology. However, if we avoid more 
edges and a higher clustering coefficient (or more triangles), kernel GNG with a larger value of 

𝛾 will be more appropriate. Such a feature will be particularly valuable for 3D graphics 
applications, where the kernel GNG may be able to simplify the mesh structure of polygons for a 

more efficient rendering. 
 

Table 2: The average degree of a network, Nd, generated by GNG and kernel GNGs 

 

dataset D GNG Gaussian Laplacian Cauchy IMQ Log 

Square 2 4.24 3.97 6.58 4.09 3.92 4.18 

Blobs 2 4.09 3.85 10.89 3.91 3.70 3.94 

Circles 2 2.78 2.63 4.89 2.70 2.59 2.61 

Moons 2 3.06 2.83 6.76 3.02 2.79 2.93 

Swiss_roll 3 4.14 3.90 4.84 4.01 3.80 4.25 

S_curve 3 4.19 3.98 4.92 4.07 3.82 4.16 

Aggregation 2 3.99 3.73 7.29 3.87 3.67 3.83 

Compound 2 3.18 2.77 6.59 3.06 2.51 2.82 

t4.8k 2 4.09 4.05 6.55 3.98 4.08 4.06 

Iris 4 1.97 1.83 3.11 1.88 2.07 1.79 

Wine 13 2.91 2.55 3.05 2.63 2.51 3.16 

Spam 57 11.52 10.46 11.76 11.94 11.86 12.02 

CNAE 857 8.36 2.13 4.70 2.04 2.09 7.24 

Ecoli 7 4.28 3.62 4.76 3.86 3.37 4.11 

Glass 9 2.49 2.19 2.94 2.36 2.33 2.67 

Yeast 8 9.03 8.95 9.33 9.19 8.63 11.20 

Digits 64 5.07 4.24 4.61 5.31 5.05 6.45 

 

D indicates the dimension of a data point. The Gaussian, Cauchy, and IMQ kernels are used with 

a 𝛾parameter set to 1.8, while the logarithmic kernel uses a 𝛾parameter set to 3. The purities are 
the mean of 10 runs with random initial values. The largest and the smallest values are bold and 
italic, respectively. 
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Table 3: Average clustering coefficient of a network generated by GNG and kernel GNGs 

 

dataset D GNG Gaussian Laplacian Cauchy IMQ log 

Square 2 0.32 0.28 0.47 0.31 0.26 0.32 

Blobs 2 0.38 0.30 0.55 0.34 0.28 0.33 

Circles 2 0.34 0.29 0.59 0.31 0.26 0.27 

Moons 2 0.37 0.28 0.65 0.34 0.27 0.31 

Swiss_roll 3 0.33 0.27 0.41 0.30 0.26 0.34 

S_curve 3 0.34 0.30 0.42 0.31 0.28 0.32 

Aggregation 2 0.46 0.37 0.62 0.41 0.38 0.42 

Compound 2 0.28 0.22 0.55 0.27 0.18 0.23 

t4.8k 2 0.33 0.30 0.50 0.30 0.31 0.32 

Iris 4 0.08 0.05 0.30 0.08 0.08 0.04 

Wine 13 0.16 0.12 0.18 0.13 0.11 0.18 

Spam 57 0.28 0.25 0.27 0.27 0.26 0.28 

CNAE 857 0.26 0.04 0.21 0.02 0.03 0.38 

Ecoli 7 0.25 0.19 0.29 0.24 0.19 0.24 

Glass 9 0.14 0.10 0.30 0.13 0.12 0.14 

Yeast 8 0.37 0.34 0.34 0.34 0.32 0.38 

Digits 64 0.30 0.25 0.23 0.29 0.27 0.39 

 
D indicates the dimension of a data point. The purities are the mean of 10 runs with random 
initial values. The largest and the smallest values are bold and italic, respectively. 
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