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ABSTRACT 
 
Facial Recognition is integral to numerous modern applications, such as security systems, social media 

platforms, and augmented reality apps. The success of these systems heavily depends on the performance 

of the Face Recognition models they use, specifically Convolutional Neural Networks (CNNs). However, 

many real-world classification tasks encounter imbalanced datasets, with some classes significantly 

underrepresented. Face Recognition models that do not address this class imbalance tend to exhibit poor 

performance, especially in tasks involving a wide range of faces to identify (multi-class problems). This 

research examines how class imbalance in datasets impacts the creation of neural network classifiers for 

Facial Recognition. Initially, we crafted a Convolutional Neural Network model for facial recognition, 

integrating hybrid resampling methods (oversampling and under-sampling) to address dataset imbalances. 

In addition, augmentation techniques were implemented to enhance generalization capabilities and overall 

performance. Through comprehensive experimentation, we assess the influence of imbalanced datasets on 

the performance of the CNN-based classifier. Using Pins face data, we conducted an empirical study, 

evaluating conclusions based on accuracy, precision, recall, and F1-score measurements. A comparative 

analysis demonstrates that the performance of the proposed Convolutional Neural Network classifier 

diminishes in the presence of dataset class imbalances. Conversely, the proposed system, utilizing data 

resampling techniques, notably enhances classification performance for imbalanced datasets. This study 

underscores the efficacy of data resampling approaches in augmenting the performance of Face 

Recognition models, presenting prospects for more dependable and efficient future systems. 
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1. INTRODUCTION 
 

FR operates within the realm of computer vision, serving as a pivotal method in various 

biometric authentication applications like electronic payments, smartphone lock screens, and 

video surveillance. Its primary objectives involve face verification and face identification through 

a stored repository of facial data. FR systems demonstrate proficiency in accurately recognizing 

individuals within images and videos, verifying their identity based on facial features, even 

amidst challenging conditions such as variations in lighting, expression, and the angle of photo 

capture [1][2]. Compared to conventional Machine Learning (ML) methods, deep learning 

techniques have exhibited superior performance in terms of accuracy and processing speed, 

particularly in image recognition. The CNN stands out as a prominent deep learning approach 

used extensively in image and facial recognition [3]. CNNs are increasingly pivotal across 

various domains of ML applications, currently advancing the forefront of computer vision tasks 

like object detection, image classification, and segmentation [4]. Extensive research spanning 
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decades has been dedicated to FR. Certainly, neural network classifiers, notably CNNs, have 

gained immense popularity in the realm of FR, significantly elevating recognition accuracy in 

recent times. Nonetheless, numerous challenges persist within FR, including the classification of 

imbalanced data.  

 

During the ML algorithm's learning phase, certain classes within the dataset might exhibit either 

overrepresentation or underrepresentation. In simpler terms, the proportions of these classes vary 

significantly. This challenge is commonly referred to as classification with imbalanced datasets, 

posing a substantial issue in the domain of Machine Learning. Consequently, this imbalance can 

impede learning algorithms and prompt biased predictions from deep learning models [5][6]. In 

practical scenarios, imbalanced datasets are commonly generated, necessitating strategies to 

manage such data disparities. Two primary approaches exist for handling class imbalance: the 

algorithm-level and data-level approaches. The algorithm-level approach focuses on enhancing 

the current classifier by adjusting algorithms to better identify the smaller class. Conversely, the 

data-level approach aims to achieve a balanced distribution by modifying or altering the number 

of instances within the majority and minority classes before training a classifier [5]. The 

technique of rectifying imbalance by adjusting the number of instances in each class is termed 

resampling. Resampling involves two primary methods: under-sampling the majority class and 

oversampling the minority class data, both aiming to achieve a balanced data distribution [7]. 

However, oversampling can potentially trigger overfitting issues by repeatedly utilizing 

duplicated minority samples, whereas under-sampling might discard valuable information present 

in the majority of samples. While these methods primarily address imbalanced learning in binary 

classification, multi-class challenges are prevalent in certain applications. As a result, there is a 

growing research focus on effectively applying resampling techniques to address imbalanced 

multi-class data and attain satisfactory classification outcomes [5][7]. Crafting a learning method 

tailored for imbalanced datasets poses a significant challenge, especially in tasks where the cost 

of misclassifying a minority class instance is substantial [8]. Standard learning algorithms, 

optimized for balanced datasets, require supplementary procedures to effectively manage 

imbalanced datasets [9]. The impact of class imbalance intensifies with the scale of the task, 

particularly when working with extensive data. Although CNN-based approaches excel in 

classifying large, balanced datasets, they lack specific algorithmic strategies to address 

imbalanced data, as they were not initially designed for this purpose [10].  

 

Driven by the aforementioned challenges, this paper introduces a deep learning model aimed at 

addressing the imbalanced dataset concern within FR tasks using real-world data. The primary 

contribution of this study lies in presenting a robust recognition model to enhance the 

effectiveness and accuracy of FR systems when operating with imbalanced datasets. Furthermore, 

this research expands existing binary class resampling methods to tackle multi-class imbalanced 

scenarios significantly, thereby improving the performance of minority classes while preserving 

the performance of majority ones. The proposed system comprises two key components. The 

development of the FR model and the creation of a balanced dataset. This process entails the 

construction of an efficient FR model utilizing a CNN-based classifier for effective classification. 

The CNN is chosen as the foundational technique owing to its exceptional performance in image-

related tasks, especially in challenging conditions. To the generation of a balanced dataset, a 

procedure is implemented based on the random balance framework, integrating random under-

sampling and random oversampling techniques. Furthermore, data augmentation techniques are 

employed to mitigate overfitting towards minority classes and enhance model generalization. The 

proposed model not only enhances classification accuracy but also effectively mitigates the 

inherent class imbalance observed in multiclass classification problems. The FR process in this 

paper comprises three phases: pre-processing, extraction of facial features, and classification 

based on the extracted feature set.  
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The subsequent sections of this paper are structured as follows: Section 2 introduces related 

works, Section 3 introduces CNN architecture, Section 4 describes dataset and delves into 

methodology, Section 5 presents the experimental results, Section 6 provides a discussion, and 

finally, Section 7 offers conclusions.  

 

2. RELATED WORKS 
 

In the last few decades, facial recognition technology has evolved significantly in research and 

practical applications, transitioning from simple geometric approaches to complex techniques 

utilizing ML. This section explores previous studies involving the development of FR models 

based on CNNs and other research centered on deep learning methods targeting class imbalance 

through data-level approaches. 

 

2.1.  CNNs-Based FR Models 
 

This section provides an overview of various CNN frameworks proposed for facial recognition 

tasks. In study [11], Wu et al. proposed a Light CNN framework aimed at learning a concise 

embedding from extensive face data characterized by substantial noisy labels. They introduced a 

Max-Feature-Map (MFM) activation within each convolutional layer of the CNN. This activation 

functions to differentiate between noisy and informative signals while also serving as a feature 

selector between two feature maps. Many studies and research endeavors in the domain of large-

scale FR tasks primarily concentrate on devising effective loss functions for feature learning 

using deep CNNs. In 2017, Liu et al. [12] introduced SphereFace, a significant advancement in 

FR. This model reinterprets the linear transformation matrix in the last fully connected layer as 

class centers within an angular space, effectively penalizing angles between deep features and 

their corresponding weights multiplicatively. SphereFace's primary contribution lies in 

optimizing loss functions. Hassan and Abdulazeez [13] commended this achievement, noting 

substantial improvements in addressing challenges related to occlusion, illumination variations, 

pose, expression, while highlighting persistent issues like high GPU usage and network depth. In 

addition, [14] proposed the Vision Transformer (ViT), surpassing many existing face recognition 

methods and establishing a potent baseline referred to as ViT. They leverage the intrinsic 

capability of transformers to handle information from irregular grids, leading to the creation of a 

pipeline resembling part-based face recognition methods. A current trend involves integrating 

margins into established loss functions to enhance class separability. In line with these 

advancements, Deng et al. [15] introduced the Additive Angular Margin Loss (ArcFace), 

providing a geometrically intuitive approach to generating highly discriminative features during 

CNN training. 

 

2.2. Imbalanced Data Learning 
 

This section provides an overview of studies focusing on data resampling techniques for training 

CNN classifiers using imbalanced data. In the paper [4], the authors conducted a thorough 

exploration into how class imbalance affects the classification performance of CNNs. They 

investigated various prevalent methods to tackle class imbalance, such as oversampling, under-

sampling, two-phase training, and adjusting thresholds to account for prior class probabilities. 

The authors assessed these methods using the MNIST, CIFAR-10, and ImageNet datasets. Their 

analysis revealed that class imbalance had a negative impact on classification performance, with 

this effect worsening as imbalance levels and task scales increased. Their findings indicated that 

ROS (Random Oversampling) surpassed both the baseline and RUS (Random Under-Sampling) 

methods across most cases, showcasing improved accuracy through thresholding, while RUS 

exhibited generally poorer performance. The authors' discoveries carry considerable weight in 
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comprehending and managing class imbalance within deep learning applied to facial recognition 

tasks. In a recent study [10], a novel adaptive sampling approach was proposed: Dynamic 

Curriculum Learning (DCL). This method devised a dynamic curriculum strategy for data 

sampling to rebalance classes. The fundamental concept revolves around adjusting the probability 

of sampling instances from a class as training progresses. Initially, random sampling is employed 

to acquire general representations. Subsequently, DCL uses a curriculum strategy, increasing the 

sampling of specific class instances to address the imbalance. In their research, Hensman and 

Masko [16] investigated the impact of Random Oversampling (ROS) on imbalanced image data 

derived from the CIFAR10 dataset, employing deep CNNs. The authors crafted ten imbalanced 

distributions by manipulating class sizes, reaching a maximum imbalance ratio. They designated 

any class smaller than the largest as a minority class and employed random oversampling on 

these minority classes until a balanced distribution was attained. The findings indicate that Inf 

Syst Front models trained with ROS perform nearly as effectively as the baseline models trained 

with the original balanced distributions. Despite showcasing the effectiveness of ROS, the focus 

lies on scenarios with exceedingly high levels of class imbalance. Lee et al. [17] introduced a 

two-phase learning approach incorporating Random Under-Sampling (RUS) with transfer 

learning to classify highly imbalanced datasets, specifically the WHOI-Plankton dataset. This 

method involves initially pre-training a deep CNN with thresholded data and subsequently fine-

tuning it using the entire dataset. The comparison of the proposed model involved six alternative 

methods, which integrated transfer learning and augmentation techniques. The assessment used 

unweighted average F1-scores for result comparison. In contrast to plain RUS, which eliminates 

potentially valuable information from the training set, the two-phase learning method employed 

here selectively removes samples only from the majority group during the pre-training phase. 

This strategic approach allows the minority group to exert a more substantial influence on the 

gradient during pre-training, while still enabling the model to access all available data during the 

subsequent fine-tuning phase. 

 

The challenge of class imbalance has been a prominent subject within CNN and facial 

recognition research. Several studies offer detailed insights into the impacts of class imbalance 

and diverse mitigation approaches. While there is emphasis on oversampling, under-sampling has 

not received comparable attention, especially its specific implications in FR, notably within 

large-scale, real-world multi-class scenarios. Conversely, other studies offer a holistic perspective 

on FR disparities, particularly within critical sectors like law enforcement. Their discussion 

extended beyond imbalances in data representation but lacked an in-depth exploration of 

effective strategies to address these disparities. This gap is what our research endeavors to bridge. 

We aim to translate fundamental concepts into tangible real-world outcomes by amalgamating 

theoretical foundations from prior studies with innovative data resampling strategies tailored for 

FR. This approach aims to revolutionize the treatment of class imbalance, potentially setting new 

benchmarks for the capabilities of FR technology. 

 

3. CONVENTIONAL NEURAL NETWORK ARCHITECTURE 
 

Indeed, a distinct type of deep learning architecture tailored for handling spatial data is the CNN, 

also known as ConvNet. Inspired by biological beings' visual perception mechanisms, the CNN is 

a specialized feedforward neural network explicitly developed to handle multi-dimensional data, 

such as images [18]. A standard CNN architecture comprises one or multiple blocks featuring 

convolution and pooling layers, succeeded by one or more fully connected layers, culminating in 

an output layer. The convolutional layer, responsible for acquiring feature representations from 

the input, stands as the core component within a CNN. Within this structure, multiple learnable 

convolution kernels or filters are employed to compute distinct feature maps, each linked to a 

receptive field in the preceding layer. The resulting feature map is generated by convolving the 

input with these kernels and applying a non-linear activation function. Subsequently, the pooling 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024 

29 

layer down samples the output from the convolutional layer to yield a single output. Finally, one 

or more fully connected layers form the concluding segments of the CNN, producing the model's 

output [19]. Figure 1 provides a visual representation depicting the CNN structure for image 

classification.  

 

 
 

Figure 1. Convolutional Neural Network structure for image classification [20]. 

 

For image classification tasks, a CNN operates as a fusion of feature extraction (convolution and 

pooling layers) and classification (fully connected layers). Various convolutional layers are 

employed to detect diverse features within an image. Subsequently, fully connected layers are 

integrated as classifiers atop these extracted features, attributing probabilities to input images. 

Enhancements to CNNs can be achieved through several means, encompassing activation 

function choices, normalization techniques, loss function selection, regularization methods, 

optimization strategies, and enhancements in processing speed [19]. Despite the impressive 

performance seen in CNN models across various applications, there's ongoing development in 

our understanding of the reasons behind their effectiveness, necessitating further research into 

their fundamental principles. CNNs are well-known for their efficiency in image recognition and 

classification, primarily due to their ability to extract feature representations from images. After a 

thorough examination of existing architectures, our customized model underwent optimization to 

excel in handling large-scale datasets containing diverse images of individuals with variations in 

lighting, age, photography angles, facial expressions, and more. Subsequent sections elaborate on 

the specifics of this optimized model.  

 

4. DATASET AND METHODOLOGY 
 

This section commences with a discussion regarding the description of dataset. It subsequently 

delves into the description of the proposed system, providing comprehensive insights into its 

stages including pre-processing, data resampling and augmentation strategies, and the proposed 

CNN model architecture. Finally, it explores the performance metrics employed to evaluate the 

obtained results. 

 

4.1. Dataset Description 
 

In the realm of FR, assembling and curating a fitting, high-quality dataset from the ground up 

presents a notable challenge. This dataset must possess ample size to effectively train the CNN 

model and encompass a broad range of variations in human facial features and expressions. The 

dataset used in this study was sourced from the Pins Face Recognition dataset [21], comprising 

over 100 celebrities and approximately 17,000 facial images collected and cropped from 

Pinterest. The decisive factor in choosing this dataset over others, such as VGGFace2 and LFW, 

was its abundance of images for each individual and a substantial number of classes, well-suited 

to address the computational resource challenges we encountered. These images encompass 
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various lighting conditions, capturing diverse facial expressions and orientations, which 

contribute to the dataset's complexity and resilience. Merely amassing a large volume of facial 

data is not sufficient; accurate labeling is imperative for data utility. In FR tasks, this entails 

linking each image to the corresponding individual's identity. Figure 2 provides an illustrative 

example from the Pins dataset.  

 

 
 

Figure 2. Pins FR dataset example [21]. 

 

4.2. The Proposed System 
 

Within this section, we will further explore our proposed system tailored to tackle the 

complexities of FR tasks utilizing CNNs. This model is specifically engineered to handle large-

scale datasets encompassing diverse conditions, such as discrepancies in lighting, age, 

photography angles, a spectrum of facial expressions, and class imbalances—common challenges 

encountered in FR scenarios. Figure 3 illustrates the phases comprising the proposed FR system. 

 

 
 

Figure 3. Workflow of the proposed FR system. 

 

4.2.1. Data Pre-processing  

 

The pre-processing phase stands as the foundational framework within our system's architecture, 

transforming raw images into a structured format conducive to efficient model input. This phase 

directly influences the model's performance and the reliability of its outputs. During the initial 

phase of pre-processing, facial detection within each image is executed using the Haar Cascade 

classifier. This machine learning-based approach is trained utilizing both positive and negative 

images. Upon detection, individual faces are cropped from the image, isolating the focal features 

and minimizing the inclusion of extraneous information fed into the model. 
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Subsequently, the classifier is employed to identify objects within other images. Following facial 

detection, all non-RGB images undergo conversion to RGB format, ensuring uniformity across 

all images. Inconsistencies in color formats can introduce conflicts in the input data, potentially 

resulting in a significant decline in model performance. Simplifying the model's complexity is a 

crucial stage that contributes to a streamlined and more efficient CNN model. Post-face detection, 

cropping, and color conversion, the images undergo transformation into grayscale images. This 

format is easier to process, containing fewer color channels compared to colored images. Each 

grayscale image undergoes quality assessment using a Histogram of Oriented Gradients (HOG) 

feature descriptor [22]. This descriptor offers a quantified measure of the image's quality. For 

instance, in this scenario, any image falling below the 0.05 threshold is excluded from the dataset. 

Following that, facial alignment is conducted using dlib's shape predictor, identifying 68 (x, y)-

coordinates corresponding to facial structures. This pivotal step ensures proper centering and 

alignment of faces, making the model invariant to scale and rotational variations. Subsequent to 

facial alignment, all images are resized to a standardized dimension of 124x124 pixels, ensuring 

consistent input size for the model. Normalization and standardization of the images are carried 

out, resulting in pixel values within the range of [0, 1] and data characterized by a zero mean and 

unit variance. These measures are crucial as they diminish the likelihood of getting trapped in 

local optima and expedite the model training process. Figure 4 shows the stages of image pre-

processing. 

 

 
 

Figure 4. An overview of the pre-processing stages. 

 

4.2.2.   Data Resampling and Augmentation 

 

Data-level approaches aim to rectify the class distribution imbalance in a pre-processing capacity. 

This approach holds appeal as it necessitates modifying solely the training data, eliminating the 

need to alter the learning algorithm. These methodologies can be categorized into oversampling, 

under-sampling, and a hybrid data-level approach. In our model, we employed a combined 

strategy of oversampling and under-sampling to generate a balanced dataset (Hybrid method). 

The Pins face dataset used in this study exhibited significant imbalance, with some face images 

having as few as 86 instances, while others had as many as 200. 

 

The hybrid approach initiates with under-sampling the majority classes and subsequently 

oversampling the minority classes based on a parameter established through iterative processes 

until achieving an equal number of images across all classes. The oversampling process involves 

using diverse methods such as duplicating images or extracting small sections from images of 

other individuals. Indeed, the process of under-sampling classes may result in the loss of valuable 

images within the class, potentially undermining the model's predictive robustness in diverse 

real-world situations. Conversely, when oversampling classes to a specific quantity, there is a risk 

of unintentionally fostering an overly optimistic perception within the model. The recurrent 
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exposure to identical images can prompt the model to overgeneralize from these duplicates, 

potentially leading to overfitting. Overfitting occurs when the model excessively conforms to the 

training set, causing diminished performance on unseen, new data [23]. Intensified data 

augmentation for minority classes can aid in mitigating overfitting. Data augmentation is a 

strategy employed in both Machine Learning and deep learning models, artificially broadening 

the diversity of the training dataset through various transformations like rotations, scaling, and 

flips. 

 

4.2.3. The Structure of The Proposed CNN Model 

 

The primary objective of the proposed model is to execute a multi-class classification, 

specifically tailored for FR task in our system. At the heart of the proposed CNN model for FR 

lie the convolutional layers. Operating on grayscale face images as input, the model aims to 

discern and glean features by employing distinct convolutional filters. In fact, the model's 

structure commenced with fewer layers and underwent gradual layer increments through 

experimentation until reaching 22 layers: comprising an input layer, 20 hidden layers, and an 

output layer. In addition, the proposed model uses pooling, normalization, and dropout layers to 

reduce spatial dimensions, standardize inputs to each layer, and mitigate overfitting possibilities. 

Dropout layers, as detailed in reference [24], randomly nullify a fraction of input units to 0 during 

updates in training. Following this, a flatten layer is employed to flatten the extracted 2D arrays 

(features), facilitating their transfer to fully connected layers responsible for executing advanced 

reasoning and classification. The architecture uses four fully connected layers, referred to as 

Dense layers. Moreover, the model integrates data resampling methodologies to tackle the class 

imbalance issue within the dataset. The parameters utilized in the proposed model are described 

in Table 1. 

 
Table 1. The parameters of the proposed CNN-based model. 

 

Layer Type Output Shape Parameters Activation Regularization 

Conv2D (124,124,32) 320 ReLU L2(0.01) 

MaxPooling2D (62, 62, 32) 0 - - 

BatchNormalization (62, 62, 32) 128 - - 

Conv2D (62, 62, 64) 18496 ReLU L2(0.01) 

MaxPooling2D (31, 31, 64) 0 - - 

BatchNormalization (31, 31, 64) 256 - - 

Conv2D (31, 31, 128) 73856 ReLU L2(0.01) 

MaxPooling2D (15, 15, 128) 0 - - 

Conv2D (15, 15, 256) 295168 ReLU L2(0.01) 

MaxPooling2D (7, 7, 256) 0 - - 

BatchNormalization (7, 7, 256) 1024 - - 

Dropout (7, 7, 256) 0 - 0.3 

Flatten (12544) 0 - - 

Dense (512) 6423040 ReLU L2(0.01) 

Dropout (512) 0 - 0.3 

BatchNormalization (512) 2048 - - 

Dense (256) 131328 ReLU L2(0.01) 

BatchNormalization (256) 1024 - - 

Dense (128) 32896 ReLU L2(0.01) 

BatchNormalization (128) 512 - - 

Dense (60) 7740 Softmax L2(0.01) 

 

As indicated in Table 1, individual layers are characterized by specific neuron counts; the 

Conv2D layers encompass 32, 64, 128, and 256 neurons, while the Dense layers consist of 512, 
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256, and 128 neurons, culminating in the final output layer comprised of 60 neurons. For 

activation, the Conv2D layers and the initial three Dense layers leverage the Rectified Linear 

Unit (ReLU) activation function. This selection is based on the advantageous characteristics of 

ReLU in enhancing the training efficiency and overall performance of deep networks, as 

referenced in [25]. Nonetheless, in the final Dense layer, the Softmax function is employed to 

generate a probability distribution across the 60 output classes, aligning with the requirements of 

multi-class classification tasks. The model's input comprises images sized 124 x 124 with a 

single-color channel, which undergo processing via a sequence of Conv2D, MaxPooling2D, 

Batch Normalization, and Dropout layers. This process concludes with a Flatten layer that 

transforms the tensor to suit the Dense layers, ultimately leading to the 60-neuron output layer, 

corresponding to the 60 classes within the dataset. Each layer, along with its associated 

parameters, performs a distinct function in handling the image data, identifying distinctive 

features, and ultimately categorizing the input into one of the 60 classes. The architecture of the 

proposed model capitalizes on CNNs to address image classification tasks, offering a robust and 

efficient tool aligned with our objectives. Figure 5 visually delineates architecture of proposed 

CNN model. 

 

 
 

Figure 5. Architecture of proposed CNN model. 

 

4.2.4. The Performance Evaluation 

 

In assessing our proposed model, we conduct a comparative analysis between the classification 

performances of two models: the proposed CNN model trained and tested on the original dataset, 

and the proposed model trained and tested on the dataset after resampling. For evaluating the 

proposed model's FR capabilities, five metrics—accuracy, precision, recall, F1-score, and the 

error rate—are selected as performance measures, as outlined in reference [26]. It is important to 

note that the evaluation metrics should ensure equal treatment for each class. Specifically, the 

model's performance was assessed for each individual class, and subsequently, an average result 

for the entire subset was computed. 

 

5. EXPERIMENTS AND RESULTS 
 

Two experiments were conducted to explore the effect of data imbalance on the performance of 

the proposed model. These experiments involved utilizing both the original (imbalanced) dataset 

and a balanced dataset. The original dataset comprised 10,800 images across 60 classes. For our 

experiments, this dataset was divided into training and testing sets, with an 80% allocation for 

training and a 20% allocation for testing. Throughout the training phase, a random selection of 
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20% from the training set was employed to form the validation set. The purpose of incorporating 

a validation set was to aid in monitoring the model's performance on unseen data while training 

and to manage the risk of overfitting. Both sets included samples from the pool of 60 distinct 

classes. The images underwent resizing to dimensions of (124, 124) pixels. To ascertain the ideal 

number of epochs, we conducted training iterations, commencing with 50 epochs and 

incrementally progressing to 100, 200, and beyond up to 500 epochs. Unfortunately, due to 

limitations in hardware resources, we were unable to proceed with further training beyond 500 

epochs as it demanded extensive time and processing power. As a result, the model underwent 

500 epochs of training with a batch size of 32, a size previously validated in prior studies. To 

mitigate overfitting in complex, multi-layered networks, a dropout rate of 0.3 was introduced as a 

regularization technique. Furthermore, L2 regularization, set at 0.01, was implemented 

specifically on the convolutional layers to further address overfitting concerns. The non-

saturating ReLU activation function, commonly used in CNNs, was employed to expedite 

training by mitigating the vanishing gradient issue. The choice of the Categorical Cross Entropy 

as the loss function is based on its suitability for multi-class classification tasks, as referenced in 

[27]. Consequently, this loss function assesses the alignment between the model's predictions and 

the true values in the context of the proposed model. For optimization purposes, the Adaptive 

Moment Estimation (Adam) optimizer was employed, leveraging a learning rate of 0.0001 due to 

its recognized efficiency. Consistency in the network parameters for the CNN was maintained 

across both experiments. The proposed system was developed using the Tensorflow, scikit-learn 

and Keras packages in Jupyter Notebook with Python language. The specific hyperparameters for 

the model, derived through experimentation, are detailed in Table 2. 

 
Table 2. Hyper-parameters for the proposed model. 

 

Hyperparameters Value 

Optimizer ADAM 

Learning Rate 0.0001 

Loss Categorical Cross Entropy 

Activation Function ReLU 

Metrics Accuracy, F1-score, Recall, Precision and Error Rate. 

L2 Regularization 0.01 

Epochs 500 

Batch Size 32 

Training Split 6912 Images 

Validation Split 1728 Images 

Testing Split 2160 Images 

 

5.1.  Experiment I: Performance Proposed Model with Imbalanced Dataset 
 

In the first experiment, the proposed CNN model underwent training using the original 

(imbalanced) dataset. The outcomes highlighted the influence of class imbalance on the training 

of the CNN model, showcasing a decline in performance when data resampling techniques were 

not applied. Throughout each epoch, the loss and accuracy for both training and validation sets 

were closely tracked to observe the model's learning progress. The learning outcomes, 

encompassing training and validation accuracy alongside their respective losses, are illustrated in 

Figure 6. Notably, the model attained an overall accuracy of 88.77% on the training data. On the 

validation set, the accuracy and loss curves display suboptimal behavior. Specifically, the 

validation accuracy fluctuates between 0.70 and 0.76 across the majority of epochs, while the 

validation loss exhibits an initial sharp decrease, followed by a gradual decline throughout most 

epochs. It's important to emphasize that the testing data remained entirely separate and were not 

incorporated into the training process.  
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Figure 6. The learning curves of the proposed model before resampling: (a) The accuracy learning curves 

of the model; (b) The loss learning curves of the model.  

 

Following the training phase, the model underwent evaluation using the testing dataset, resulting 

in a test accuracy of 81.17% and a loss value of 1.8329. Figure 7 depicts a bar chart illustrating 

the precision, recall, and F1-score pertaining to each class. The outcomes from experiment I are 

succinctly summarized in Table 3.  

 
Table 3. The results of experiment I. 

 
Metrics Value 

Training Accuracy 88.770% 

Training Loss 2.3582 

Validation Accuracy 71.321% 

Validation Loss 3.0188 

Test Accuracy 81.171% 
Test Loss 1.8329 
Precision 83.411% 

Recall 81.712% 

F1-score 81.351% 

Error Rate 18.828% 

 

 
 

Figure 7. The performance evaluation of the proposed model for experiment I. 
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This experiment thoroughly evaluated the model's performance when trained without data 

resampling. These results will act as a baseline for comprehending the impacts of data resampling 

techniques, which will be further investigated in the subsequent experiment. 

 

5.2. Experiment II: Performance with Balanced Augmented Dataset 
 

In this experiment, the proposed system underwent training and evaluation subsequent to 

implementing a preprocessing procedure involving resampling techniques. This adjustment 

aimed to alter the distribution of classes within the dataset, mitigating the existing class 

imbalances. Following resampling, an augmentation technique was applied to both the training 

and validation datasets to prevent overfitting. Further details outlining these procedures are 

expounded upon in the subsequent sections. 

 

5.2.1.  Data Resampling 

 

 Figure 8(a) illustrates the high imbalance present within the dataset, with 60 classes exhibiting 

dominance. Conversely, Figure 8(b) displays the outcome of the data resampling process, 

showcasing a balanced dataset where each class contains an equal number of images per identity. 

The imbalance concern was tackled by employing a combination of random oversampling and 

random under-sampling techniques, resulting in the generation of a balanced dataset. This 

approach equalized the classes by ensuring a specific number of images per class, determined by 

a user-defined parameter. Throughout this process, various values were experimented with, 

ultimately leading to the optimal outcome when all classes were equalized with 180 images each. 

In our system, the hybrid sampling method starts by decreasing the size of the majority classes by 

10% (20 images). Subsequently, the minority classes are oversampled until all classes possess an 

identical size, comprising 180 images each. This guarantees uniform representation of all classes 

in the dataset, preventing any bias toward the majority classes within the model. 

 

 
 

Figure 8. Class frequency: (a) Class frequency before resampling. (b) Class frequency after resampling. 

 

5.2.2. Data Augmentation  

 

In our model, on-the-fly data augmentation was used to combat model overfitting. This technique 

facilitates improved generalization to unseen data by generating new data in each epoch. 

Augmenting the training and validation sets with diverse samples helps the model make more 

robust and generalizable predictions, while the testing dataset remains unchanged. This approach 

ensures the preservation of the testing dataset's integrity, aimed at replicating real-world, 

unaltered data as accurately as possible. In addition, maintaining the original state of our testing 

dataset allows for a fair and unaltered benchmark, enabling an assessment of the model's ability 
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to generalize predictions to unseen data. In this paper, data augmentation involves horizontal 

flipping and slight rotation of randomly selected face images. The augmentation process uses the 

Image Data Generator layer in Keras. The specified augmentation parameters in this paper 

consist of zoom_range=0.1, brightness_range=(0.9, 1.1), rotation_range=10, 

width_shift_range=0.2, horizontal_flip=True, and height_shift_range=0.2. 

 

5.2.3.  Classification  

 

In this experiment, the proposed CNN-based classifier was trained once more, this time utilizing 

the balanced augmented dataset, and subsequently evaluated on the unprocessed test set. The 

learning progress of the model with the balanced data was monitored by tracking the training and 

validation loss and accuracy across all epochs. The training concluded with a training accuracy of 

91.108% and a validation accuracy of 85.392%. Figure 9 illustrates the learning curves of the 

proposed model, highlighting its response to the balanced and augmented data throughout the 

training process.  

 

 
 
Figure 9. The learning curves of the proposed model after resampling: (a) The accuracy learning curves of 

the model; (b) The loss learning curves of the model. 

 

The training and validation accuracy exhibited swift initial increments followed by gradual 

improvements over multiple epochs, while the loss learning curves in this experiment indicated 

lower values compared to the first experiment. Following the model's training, evaluation was 

conducted using the testing dataset. Table 4 indicates an increase in test accuracy, reaching 

91.296% in comparison to the basic dataset. Moreover, it showcases an enhancement in the 

classification performance, evident in the overall accuracy, precision, recall, and F1-score (as 

outlined in Table 4). Figure 10 displays the visualized results of other computed metrics, while 

Table 4 summarizes the outcomes of experiment II.  

 
Table 4. The results of experiment II. 

 
Metrics Value 

Training Accuracy 91.108% 

Training Loss 2.0366 

Validation Accuracy 85.392% 

Validation Loss 2.2409 

Test Accuracy 91.296% 
Test Loss 1.3913 
Precision 92.035% 

Recall 91.296% 

F1-score 91.304% 

Error Rate 8.703% 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024 

38 

 
 

Figure 10. The performance evaluation of the proposed model for experiment II. 

 

This experiment validates that through this dataset transformation, we achieve improved accuracy 

and reduced loss rates, leading to enhanced test results. 

 

6. DISCUSSION 
 

In this study, two experiments were carried out to investigate the impact of an imbalanced dataset 

on the performance of CNN techniques for FR, one involving a resampling strategy and the other 

without. The initial experiment involved training the model using a basic dataset without 

employing any data resampling techniques. The training and validation losses and accuracies 

followed a conventional learning curve. However, despite the model achieving an overall test 

accuracy of 81.17%, it is crucial to note the varied performance across different classes due to the 

inherent class imbalance in the dataset. Conversely, in the second experiment, the proposed CNN 

model was trained on a balanced dataset achieved through hybrid oversampling and under-

sampling techniques. The objective of this resampling was to rectify the inherent class 

imbalances within the dataset. Through the same training protocol employed in the initial 

experiment, the training and validation losses and accuracies indicated an enhanced learning 

curve. As a result, the model achieved a substantial improvement in overall accuracy, reaching 

91.29%. Moreover, the model showcased a more balanced performance across classes, signifying 

its effective generalization across the entire spectrum of classes. The summary of the model's 

performance on the testing dataset for both experiments is provided in Table 5.  

 
Table 5. Performance evaluation on testing dataset before and after resampling. 

 
Metrics Proposed CNN Model + Imbalanced 

Dataset 

Proposed CNN Model + Balanced 

Dataset 

Accuracy 81.171% 91.296% 

Loss 1.8329 1.3913 

Precision 83.411% 92.035% 

Recall 81.712% 91.296% 

F1-score 81.351% 91.304% 

Error Rate 18.828% 8.703% 

 

Figure 11 displays the performance analysis of both experiments concerning accuracy, precision, 

recall, and F1-score using the Pins dataset. It's important to note that the average performance of 

the proposed CNN model trained on imbalanced datasets was compared to the performance 

achieved through the same training method when the data was balanced. The comparison 

between the two experiments underscores the substantial and noteworthy impact of class 
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imbalance on the CNN model's performance in FR. The Avg. F1-score is specifically adopted as 

the primary evaluation metric due to its significance in assessing imbalanced data, representing 

the trade-offs between precision and recall. These metrics demonstrate that the proposed model 

not only enhances predictions for individual minority classes but also improves overall 

performance. The performance analysis for the proposed model is outlined as follows: First, 

regarding accuracy, the proposed CNN model achieved 91.108% accuracy when trained on 

balanced data. In contrast, when trained on the original dataset, the proposed model attained an 

accuracy of 88.770%. Upon testing the dataset, the proposed classifier showcased the highest 

accuracy, achieving 91.296% and 81.171% on the balanced and imbalanced datasets, 

respectively. Second, the precision value for the proposed model stood at 83.411% when trained 

on the basic dataset. In contrast, the best precision result of 92.035% was achieved with the 

balanced dataset. Third, concerning recall, the proposed model attained 81.712% on the 

imbalanced dataset and improved to 91.296% after implementing resampling techniques. Finally, 

in terms of F1-score, the assessment yielded 81.351% and 91.304% without and with a balanced 

dataset, respectively. The CNN proposed in this paper achieved an error rate of 18.828% on the 

original data. Table 5 indicates consistent precision, recall, and F1-score across imbalanced 

classes, accompanied by a notably small error rate of 8.7%. These findings highlight that the 

performance of the proposed FR system exhibits approximately 10% higher accuracy compared 

to the performance the proposed CNN model with imbalanced data.  

 

 
 

Figure 11. Comparison of model metrics with and without data resampling. 

 

The findings indicate that the proposed system demonstrates effective performance, enhancing 

the classification accuracy on the Pins Face Recognition dataset. This improvement can be 

attributed to three key factors: the designed CNN network structure, the utilization of hybrid data 

resampling techniques, and the implementation of augmentation method. The integration of these 

three techniques collectively enhances the model's classification performance, especially on 

imbalanced datasets. 

 

7. CONCLUSION 
 

In this study, we delved into the creation and assessment of a CNN model designed for FR. In 

addition, we explored the influence of imbalanced datasets, a crucial issue particularly notable for 

CNNs when dealing with extensive datasets, emphasizing the significant concern regarding 

accuracy and performance. Our experiments involving the direct utilization of imbalanced 

datasets revealed notable accuracy levels when compared with the results obtained from the same 

dataset post-balancing. The application of resampling techniques led to a 10.12% improvement in 

accuracy outcomes for our model. From our conducted experiments, we highlighted the crucial 
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role of data resampling in mitigating the prevalent class imbalance within FR tasks. These 

findings suggest the importance of considering data distribution when employing such techniques 

for image classification, as a pronounced imbalance can detrimentally impact the obtained 

results. While this study contributed to comprehending the significance of data resampling in a 

CNN Face Recognition model, it is crucial to acknowledge the multitude of elements influencing 

the performance of these models. Various factors can impact the effectiveness of such models, 

prompting the necessity for ongoing research and adaptation. Within ML, especially in Face 

Recognition tasks, there exists a perpetual need for advancements and further exploration.  
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