
Foundations of ANNs:

Tolstoy’s Genius Explored

Using Transformer Architecture

Shahriyar Guliyev

Department of Electronics and Information Technology,
Nakhchivan State University, Nakhchivan, Azerbaijan

Abstract. Artificial Narrow Intelligence is in the phase of moving towards the AGN, which will attempt
to decide as a human being. We are getting closer to it by each day, but AI actually is indefinite to
many, although it is no different than any other set of mathematically defined computer operations in its
core. Generating new data from a pre-trained model introduces new challenges to science & technology. In
this work, the design of such an architecture from scratch, solving problems, and introducing alternative
approaches are what has been conducted. Using a deep thinker, Tolstoy, as an object of study is a source
of motivation for the entire research.

Keywords: AI, ML, ANN, artificial neurons, DL, NLP, NLG, Transformer, Generative Pre-trained
Transformer, Tolstoy, Computational Linguistics, Social Sciences, Neural Information Processing, Human
Language Technologies

Introduction

Why Tolstoy? He was a deep thinker, writer who had a great impact on Russians and
his passionate readers all over the world. Exploring his style and deep sentences and then
trying to regenerate an artificial-text in that style is a thrilling challenge to follow. This
can also help us experiment ins & outs of modern Artificial Neural Networks using one
of the most actively used algorithms – the Transformer, its Attention functionality, the
Generative Pre-trained Transformer algorithm, which is definitely the trend of the previous
year.
If the traditional Natural Language Processing paradigm involves the dataset’s Feature
Extraction by data engineers, it is now all operated by Deep Learning’s Hidden Layers,
and, as expected, we have not touched on Syntax, Linguistic or Semantic Analysis.

Research Objectives

People as an object of research By many, Tolstoy was the biggest representative of
realistic literature, having “people” as his main objective of research. And you’ll see in the
statistics provided in latter parts of the document that, one of the most steadily observed
statements by our ANN model is the “people” word (Figure 1, 1021 times). Using this
experimentation, we can also observe and determine the direction of his genius using a
non-subjective, non-biased computer model.

Related work

Prior to this research, have worked on Azerbaijani writer Suleyman Sani Akhundov’s
legacy [7]. Building on this experience, we encapsulate deeper knowledge into this docu-
ment (Figure 2). It was a set of plays that have been experimented on, and now we are

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

DOI:10.5121/ijaia.2024.15105 71

https://airccse.org/journal/ijaia/current2024.html
https://doi.org/10.5121/ijaia.2024.15105

approaching similarly, but to romans, stories, and novels of Tolstoy. Alongside the archi-
tectural establishments, RMSProp is chosen for optimizations, variants of learning rate (η)
is examined, dropping varying weight links. . . ; And all having been logged by statistical
libraries, then visualized in images..
Another exploration of the architecture with respect to the O(n) layer complexity alongside
performance analysis of the GPT networks and sample AI-text generation result compar-
isons have been carried out by T. Wang [15].
The use of Transformers in projects for this context, the challenges it encounters and over-
comes have been highlighted by NVIDIA fellow in his article [16].
And thorough performance benchmarks on Transfer Learning networks have been exam-
ined by E. Kotei and R. Thirunavukarasu in details [17].

Fig. 1: WordCloud of frequently encountered words in the training session of the ANN
model.

1 Artificial Neural Networks

The ANN tends to mimic the human brain’s decision-making procedure in biochemical
context. Conventional computers based on Von Neumann’s architecture cannot match the
human brain’s capacity for several tasks, such as speech processing, image processing, pat-
tern recognition, heuristic reasoning, and universal problem solving. The main reason for
this capability of the brain is that each biological neuron is connected to approximately
10,000 other neurons, which provides massively parallel computing capability. The brain
effectively solves certain problems that have two main characteristics. These problems usu-
ally require a very large amount of processing. The primary similarity between a biological
nervous system and an ANN is that each system typically consists of a large number of
simple elements that learn and are collectively able to solve complicated and ambiguous
problems [8].
Each day, ANNs continue to be abstracted from formal knowledge, but Explainable Neural
Networks offers tools to make it deterministic (in nature).

The way Artificial Neural Networks work: This remains largely incomprehensible to
the general public. People with conventional statistical programming and computing prac-
tices with insufficient insight on inner workings of ANNs, often find it difficult to gain a
thorough understanding on modeling an appropriate architecture. In contrast to the past,
where one could derive a precise mathematical expression to generate predictable out-
comes, ANNs rely on a complex web of interconnected weights, represented by as matrices
that hold the state of the current model, comprising an enormous number of hyperparam-
eters. On the programming side, it is an object, an object of type Tensor. Across various

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

72

CE
Loss Estimation

Artificial Intelligence

Deep Learning

Transformer Architecture

NLPNLP

Pickling the model

Importing trained model

TensorBoard stats

CPU vs GPU & CUDA® tech

PyTorch on GPU

Preparing
 ANN model

10
0
%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

40
%

50
%

60
%

70
%

Overfitting issue

10
0
%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

40
%

50
%

60
%

70
%

Overfitting issue

Feedforward,
 Backpropogation

Encoding Text

6 Sequential
Transformer Block

6 Sequential
Transformer Block

Multiple
Heads of
Attention

Multiple
Heads of
Attention

Key

Query

Value

Key

Query

Value

Structure of a Head

Key

Query

Value

Structure of a Head

Decoding per mapping

Optimizing weightsOptimizing weights

Token
Generation

Exporting AI-text

Activation FunctionActivation Function

Input layer

Output layer

Hidden layersHidden layers

Fig. 2: System Context diagram.

Machine Learning libraries, every ANN model is of this type, regardless of using Tensor-
flow, PyTorch, high-level Keras, or even if none of those, a Tensor (or matrices of some
form) remains a ubiquitous component of ANNs. Currently, ANN modules inside these
ML libraries have become quite sophisticated over the course of years offering an impres-
sive range of capabilities and tend to be specialized, although pure Pythonic PyTorch is
relatively user-friendly and more appropriate especially for educative modeling. However,
that sophistication, complexity brings a rich feature set and extensive capabilities ready
on-request. Additionally, OO tools such as inheritance and polymorphism enable further
customization of bundled libraries facilitating designing of tailored models, as you would
definitely refer to while making a working model.

The way ANN’s Feature Extraction work: As an ANN consists of (multiple) layers
of artificial neuron sets, referred to as Hidden Layers, where each layer performs a distinct
function in constructing the ANN model. In each of these hidden layers, learns the specific
features of the input data, whether it be a textual, vision, or numerical problem; it all lands
down to the extraction of features and learning them. In each single hidden layer, different
Activation functions (AFs) can be employed and this is often the case. For instance, in
an ANN with 3 Sequential layers, the first layer may utilize a ReLU AF, the second
layer employs a Sigmoid AF, and the third layer uses a Hyperbolic Tangent (tanh) AF to
introduce nonlinearity.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

73

Understanding the question of “reasoning” in ANNs: What is the point, (in-
tended) objective of ANNs? May be asking what does the “ANNs” aim to achieve? It is
a trivial question with a straightforward answer: it is (handmade) human-made, and the
term “artificial” word stems from the French/Latin word of “artificiel/artificiālis” which
signifies something that is made or produced by human beings. Consequently, regardless of
whether they are implemented as traditional if-else conditional statements, ML statistical
modeling, or single-layer/multi-layer ANNs, it is always going to be handmade, defined
with Design Principles. In the past century, Isaac Asimov established three laws of robotics,
which dictate that robots must (strictly) follow the commands of its implementer (human)
and not vice versa. Therefore, any product that utilizes an ANN and has the ability to
act based on the knowledge it has acquired and stored/updated in its permanent memory,
then it is obviously prone to misbehave. This is an area of AI Ethics that is yet to be
well defined globally across countries worldwide. There is a growing need for international
agreement on the use of ANNs and other (future) forms of AI. Ultimately, any product of
any AI appliance cannot reason, cannot think, and definitely has no any purpose. It only
has a design principle it has been programmed with which it follows accordingly, and it
acts on as long as reaches absence of battery power.

Understanding the ins & outs of ANNs: What have you accomplished and what
can you do? In order to gain a comprehensive understanding of Artificial Neural Net-
works (ANNs) and Artificial Intelligence (AI) in general, there are several prerequisites
that must be fulfilled. These include a strong foundation in Advanced Mathematics, such
as Linear Algebra (for most) and Differential Equations (for advancement and under-
standing of concepts); as well as a thorough understanding of Neurological Biology with
some Chemistry, which are necessary for comprehending the electrochemical propagation
of electrical impulses across biological neurons; Additionally, proficiency in Computer pro-
gramming/Software Engineering & OOP concepts, as well as experience working with dis-
tributed parallel computing environments on cloud-based platforms (Cloud Computing),
such as IBM Cloud (its multi-CPUs offerings) or Google Compute Engine (GPU/TPU ma-
chines), as modern AI systems rely heavily on remote on-cloud processing power. Without
them, you would be having trouble, especially training the model for weeks. However, for
inference, it is optional to use localized systems with quite small latency; Graphics pro-
gramming on GPUs would be a welcomed skill for CUDA arch; Mathematical Statistics is
always a required knowledge even if not using statistical libraries, because Deep Learning
also uses all of them, but in the background- the difference is you have to understand
in order to optimize your model well; and problem-specific skills and research conducting
ability - for example, for the NLP project, you’d study Computational Linguistics...

Understanding the benefits of Artificial Neural Networks: It has been suggested
that Statistical Modeling has become outdated with the emergence of Deep Learning. In-
terestingly, from a recent feature of IBM watsonx.ai, called AutoAI, offers a mechanism,
that takes into consideration the type of problem: its dataset prediction type (Multiclass
Classification (MC), Binary Classification, Regression, Time Series Forecast (TSF), Time
Series Anomaly Prediction), as well as the optimized metric (Precision Micro/Macro for
MC, Mean Absolute Error for TSF or Mean Squared Log Error for Regression problems),
and opts for the choice of algorithms, such as Decision Tree Regressor, Extra Trees Regres-
sor, Gradient Boosting Regressor (GBR), XGB Regressor, etc. The algorithm then studies
the sample data and determines the most efficient n ({1, 4} range) optimal algorithms and
their Accuracy scores listed in descending rate. The user is then given the option of choos-

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

74

ing a specific algorithm. In those trials, I have experienced some narrow-scoped simpler
problems that can be effectively solved using Linear Regression or Random Forest Regres-
sor algorithms, while more complex problems with larger amounts of data have produced
higher accuracy scores with algorithms that use ANNs such as GBR or XGB Regressor.
These trials were conducted on 8 CPUs with 32 GB of RAM (from a sample project) in
the IBM Cloud instances. The end line is that it may be efficient in certain cases to run
simpler Statistical Modeling instead of complicated ANN models, but the choice of algo-
rithm ultimately depends on the nature of the problem and dataset. However, for large
datasets, Deep Learning ANNs are generally the most effective solution.

Grasping the programming knowledge to build modern ANN architectures:
However, it is neither advanced nor basic. You would possess the ability to implement and
comprehend concepts to study on similar open-source projects to produce work tailored
to your specific needs. While it is unlikely that a project precisely aligned with your
objectives exists, possessing practical tools and relevant knowledge serves as a catalyst.
Moreover, if you have a Competitive Programming background or have experience solving
mathematical problems, utilizing matrix manipulation techniques, and become acquainted
with time and space complexity issues, then the door is fully open to you.

1.1 Deep Learning. Transformer Algorithm & Generative Pre-trained
Transformer

Deep Learning Started as multi-layered ML, that removed the fuss of feature extraction
and once a while has new terminologies, algorithms, and paradigms added, then merged
with different AI techniques to be Deep Reinforcement Learning, Deep Q Learning, etc.
In Feedforward models, information flows through the function being evaluated from x
(input), through the intermediate computations used to define f, and finally to the output
y. There are no feedback connections in which outputs of the model are fed back into itself.
When FNNs are extended to include feedback connections, they are called RNNs [2]. From
2018, large-scale pre-trained Language models (PLMs) such as BERT, RoBERTa, GPT,
T5 and mBART, have gradually become a new paradigm of NLP. Owing to its use of large
corpora and unsupervised learning based on the Transformer structure [11].

Transformer A model known as the Transformer, which is based on both Attention and
Self-Attention. It is still an Encoder-Decoder architecture [13]. Transformer architecture
was built to induct parallelism in RNN and LSTM’s sequential data where input tokens
are fed instantaneously and corresponding Embeddings are generated simultaneously via
the Encoder. This Embedding, maps a word (token) to a vector that can be Pre-trained
on the fly, or to conserve time [14]. The Decoder can attend over all positions of input
sequence. Computations over a sequence can be parallelized in this case and hence it is
faster [9]. Transformers used to be exclusively Attention based Networks. However, some
recent works have introduced two new variants i.e. Convolutional Vision Transformers
(CvTs) and hybrid CNN-Transformer models [10] for image problems. And moreover, in
2021, ViT directly.

1.2 Input & Output

From a book of Tolstoy’s works (ISBN 978-80-268-5243-8), extracted 92,789 lines of
text as raw input. AI-text generation starts by empty (1, 1) tensor, gets the next sample

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

75

by Multinomial distribution, then iterates over per token size; And in each iteration,
tensor fed is taken from the end of the token string split at word size. In procedure,
takes batch (e.g., 64) of inputs at word size (e.g., 8) for both input (x) and targets (y)
(Figure 3) variables. Target (y) is just a character (1 char) right-shifted expression (at word
length) by the input (x). Idea is that, we want to see the next original letter positioning
after the current expression (that encapsulates entire training). Input (x) is then passed
to the ANN model, its result (output) is a logit, will be used to find the loss (Cross
Entropy) compared by target (y) tensor. The logit vector has the same volume with the
targets (y) tensor (reshaped, tensor y.view(-1)), having e.g., 512 elements. All is done
by the Callable torch.nn.Module’s (subclass) object getting x and y values passing to
the subclass’s overridden forward method. So, input (x) is a stack tensor of word length
vectors (int), and their result (output) is also a tensor holding logit values (also reshaped
for loss estimation by target (y) tensor).

1.3 Encoding & Decoding. Mapping Letters to Numbers

The Transformer architecture originates with the proposition that attentional systems
are sufficient tools to replace approaches that employ Recurrent Networks for machine
translation tasks. This architecture uses Multi-Head Attention as the cornerstone of the
Transformer Blocks contained in the Encoding and Decoding part. One of the main at-
tractions of this specific part of the Transformer is the high parallelization capacity due to
the nature of the Multi-Head Attention modules. During training, the Encoder acquires
the general understanding of the source language, considering the context in which each
word was initiated. At the same time, the Decoder is trained to map the words from the
source language to the target language [12].

1.4 Modules, Classes & Libraries

ANN module of PyTorch If it was ten years ago, we would implement the ANN
functions from scratch, but nowadays, TensorFlow, PyTorch or Keras make it possible
to use almost every function that ANN algorithms have to offer; it has Error functions,
Optimization functions, Logit function, Activation functions, Multi-Layer and Sequential
Layers support, etc. However, it is obvious that, to process any ANN model in the CPU
cores, one can write these functions using NumPy, but it can’t process on GPU. We used
GPU-enabled PyTorch which is optimal for educational purposes, is pure Pythonic, and
has almost the same performance as TensorFlow (unoptimized). The PyTorch torch.nn
module was used and our ANN model inherits its superclass of nn.Module later applying
polymorphism, extending by new methods, etc.

Main Runner class The OOP class’s instantiated object holds self attributes like batch
size, I/O locations, Cost-calculation-epoch, etc. Having methods like batch generator, cost
calculating, saving model state, word density identifier, dual loss plotting, program termi-
nator and runner ; Imported local modules as SIGINT handler (force-saving the model’s
active state).
Some static functions like timing, data extraction & cleaning, natural language structure
filtration (like articles by spaCy) is used.

Generative Pre-trained Transformer (subclass) The nn.Sequential module uses
a list or sequence of modules as its input. It then runs in a feed-forward fashion, using the

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

76

output of one Module as the input to the next, until we have no more Modules [3].
We obtained six Sequential Layers of the Transformer Block and weight initializer, forward
and generate methods [5]. In each Block, there’re multiple (six) Heads of Attention and
a forward method. In each Head, we obtained an RNN-like structure, Query, Key, Value
pairs, with each number of Embeds shared per Head.

Attention quantity equals the dot product of Value with Softmax result:

Attention(Q,K, V) = softmax(
QKT

√
dk

) · V (1)

For example, our dictionary of characters size can define the number of Embeds, or
it can be more than that arbitrarily. Each Head of Self-Attention has its own forward
method.
For example, the Attention scores are calculated by passing the activation function softmax
and then dropping out a certain amount of it randomly, multiplying that weight with the
value matrix before returns, etc.

Libraries Used built-in time, math, re, random libs alongside torch main module, ben-
efiting NumPy, using Pickle for model state serialization, Matplotlib, TensorBoard for
visualizations, and WordCloud with spaCy for text manipulation operations. In addition,
signal lib for SIGINT handling.

2 Actuation

2.1 Preparing Batch of Data to Process

Today’s computers are still based on Von Neumann architecture: execution is done in
sequential order. If there are 2 ALU bound (not I/O bound) operations, one of them is
going to be stacked up into the wait list as the next instruction to be executed. Thus, the
technology beyond this- on multi-processing arch computers, arithmetic operations can be
run in parallel, and ALU can be consumed by multiple operations simultaneously. Subse-
quently, multiple CPUs can be used to solve a single problem. It is practically challenging
with the existing single-processing ISAs. Also have to update billions of lines of code to
support the new paradigm and then comes new programming techniques to be trained..
It’s the future; for now, we have one option- do your considerations for the sequential
order. Computer is going to wait (a lot) before the big chunk of data is being processed
in the CPU. To reduce time, dividing data into multiple smaller chunks, feeding into the
processing units is being done. It’s called a “batch” and a batch of data is processed
in parallel (I/O bound) because modern processors’ features such as, pipelining enables
efficient use of resources.

2.2 Word Size for Forming ANs

Again, to speed up the training process, we split the input text into smaller units, which
can be longer in size that would produce higher training rates. However, with the existing
processing capability, we must use a size that fits best with the computer’s resources.
We used a word length of eight (Figure 3). In addition, it does not have to be an exponential
of 2; it is just more computer-friendly to use it, feel free to use any number like 5 or 11.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

77

2.3 Matrices, Tensors & Linear Operations

It is numbers, many numbers in multi-columns being a vector, many vectors in multi-
rows being a matrix, and many matrices in multi-dimensions being a tensor. All-round
it is numbers in different forms, but this way, we can also use the power of the supreme
Mathematics area of Linear Functions and have all of their operations enabling us to
solve complex multi-dimensional, non-visualizable arrays of objects. As Tensors are the
main utility in ANNs, every ANN object is a tensor object in PyTorch and relatively in
TensorFlow as you can see even from its name.
We feed a tensor and obtain a tensor, manipulate it, multiply it, subtract its matrices,
find transpose, inverse it, and many more operations are trivial in daily usage. Actually, it
could be true to say that it encapsulates almost half of workflow in Artificial Intelligence,
even more than Calculus.

2.4 Activation on ANs. Non-linearities

Sigmoid activation function Because the data output can be within an infinite range,
it is incomparable and unusable for probability estimation. To make it possible to be an
element of the state space of the P function, must make it into the (0, 1) range. This is
effectively achieved by using the Sigmoid function with the power of the irrational number
e, which produces a unique conversion of any unique number into the (0, 1) range.

Rectified Linear Unit activation function Here, the neuron remains inactive if the
net input is less than or equal to zero, and then increases linearly with netk.

f(netk) =

{
0, if netk ≤ 0

netk, if netk > 0
(2)

An alternative expression for the ReLU activation is given as f(netk) = max{0, netk}
[1]. Here, netk is the transfer function.
Sigmoid AF is mostly used for teaching purposes; however, in real, modern ANN models
use ReLU as its activation function (2) in many layers. This efficiently adds nonlinearity
to the transfer function.

Fig. 3: Sample content of generated batch (64 len.) with words (8 len.) inside.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

78

Logit function As every layer’s artificial-neurons are activated by an activation function
like Sigmoid AF, and in the final stage it re-establishes itself into (−∞, ∞) range, that
is done by the Logit function which is normally used in the last layer before presented to
the model’s designer.

Softmax activation function We’ve got the non-linearity AFs and de-collapse them
into real range by logit function and then there is another one which is also an AF that
takes our big-ranged logit values in batch and produces each element of it in again (0, 1)
range.

Softmax is a generalization of Sigmoid:

σ(z⃗)i =
ezi∑K
j=1 e

zj
(3)

Instead, this time, the sum of the Softmax value of those elements must be equivalent
to number of 1. It’s used in model for the last steps of the forward methods, too.

2.5 Weights & Differentiation

This aligns with the central computation of Deep Learning: Training the network = op-
timizing the weights [6]. Human brain has neurons, call biological neurons are linked
together. With dendrites that pass the input signals, it is represented in the AI ANN as a
weight or bias. As bias is scalar, the other is a vector in an artificial neuron. It is fact that
input neurons are static; therefore, in each epoch, it can only change- optimize the value of
the weight vector in order to make the ANN produce intended decisions. Calculating the
new weights introduces the use of Calculus into ANN. The dependency or rate of change
of the output layer (or a single perceptron) with respect to the kth neuron of the nth layer
is purely a differential equation in its basic form. The chain rule applies.
The weights are optimized by subtracting the old weight value by the negative gradient
(partial derivative of its function with respect to the weight) multiplied by the η learning
rate value.

2.6 Estimating Loss & Finding Cost

Loss function There is an input fed in multi-neurons in multi-layers and that produces
an output, the simple loss function to be Mean Squared Error takes that output value
subtracted by expected value taking square of it and find mean of it for all of the outer
layer.

LCE = −
n∑

i=1

tilog2 pi (4)

We used Cross Entropy (Figure 4). Loss function is denoted by L. It is defined in (4),
where ti is the truth label, and pi is the softmax probability for the ith class.

Cost (of Error) function If we take n epoch runs, and in those executions, take mean
of their loss function values, it gives us basic cost function’s value. It then moves towards
optimization and finds the minimum of the function in convex functions or local minima
in others.

The Gradient of this Cost function with respect to the output of a Neural Network
and some sample r:

∇aCCE =
aL − Er

aL(1− aL)
(5)

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

79

Fig. 4: Dual plotting losses.

2.7 Optimization Functions & Techniques

Overall, Neural Network optimization is an iterative process. Ideally, in each iteration
we compute the gradient of the loss with respect to the current parameters (weights and
biases) and obtain improved values for them by moving in the direction of the negative
gradient [4].
All are correlated topics, but the basic optimization technique can be represented as finding
the point in space where the derivative of the function equals 0. Taking negative gradient
which always is a vector perpendicular to the tangent line, so forth. But this method of
derivations cannot help in all situations. There are efficient optimization methods, such as
Adagrad, Adam, and its newer form AdamW (used previously) optimization algorithms.

E[g2](t) = βE[g2](t− 1) + (1− β)(
∂c

∂w
)2

wij(t) = wij(t− 1)− η√
E[g2]

∂c

∂wij

(6)

However, in this study, we opted to use the RMSProp algorithm (6) optimizing weights,
which produced similar results as AdamW but faster.

3 Results

3.1 Token Generation & Preserving Model

Sequentially, sort of initiating a mechanism like, feeding an input and constantly passing
the output as a new input. This custom-designed Generative Pre-trained Transformer
model has a generator method that receives number of tokens to produce as a new result
previously unmatched. It is able to generate as much as requested.
For example, our dataset consists of 92,789 lines of input text, and by generator, we can
either request 5 lines of artificial-text or a million lines of it (Table 1).

Preserving Trained Model’s State Trained data should be preserved for future use
or further training, and we can specifically store the optimization data; but for ease and
smaller program code, stored the entire class object in local storage (around 40 MB in

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

80

Table 1: Steps to generate artificial-text

i. We’re passing through an empty tensor.
ii. Iterating over the number of requested token size.
iii. Getting the current tensor of empty or active one in length of word size from its tail.
iv. Passing it to the callable class (callable method of nn.Module) of our ANN model to return

logits and loss tensors.
v. Take logits and feed it into Softmax function to get the probabilities vector.
vi. Get 1 sample (character) from that Multinomial Probability Distribution which fits best.
vii. Add it to the already generated or empty (starter) sequence.

size). To dump/load into/from the external storage, used the Pickle serialization library.
Because, storing an object using normal I/O tools would make it lose its structure.

3.2 Logging & Plotting Statistical Data

– Tensoboard initially is written for TensorFlow, it has been supporting PyTorch in
recent years, with many features enabled. Other than Matplotlib and similar libs, real-
time statistical data can be viewed, such as Scalar plots, Histograms, Distribution
Centers, and can import Matplotlib Figures as images.

– Matplotlib is the most advanced plotting library for Python and is among the Data
Science programmable tools. It has been used for the basic dual-scalar figure of loss
values.

– WordCloud is used as our theme of study being text, this Matplotlib extension helps
us to make a nice statistical word cloud graph which says many words on our model’s
training state.

– TorchViz shows the ANN model as in visual blocks.

3.3 Results over Time

– Start of run: As generated at the start of the learning process, the output (Figure 5a)
is a simple batch of letters stacked together expressing nothing.

– Dropout 0.5: It has generated syntactical data (Figure 5b), but has had too much noise
there almost words had no meaning at all in statements.

– Learning rate 0.66: Produces a nonsense data; The learning rate is better changed by
examining the Hessian matrix that describes the curvature of the graph of the function.

– Learning rate 3e − 4 & Dropout 0.27: Actually, lesser learning rate is going to pro-
duce accurate output in every project but the lesser it is, the more time-consuming it
becomes. And the dropout rate should be in the middle range.

3.4 Statistical Analysis by Visualizations

The packages can be installed by PyPI, NPM, Yarn or Conda. But for Python’s usage,
must be installed as modules for importing.

Running TensorBoard Executing: “tensorboard –logdir = ./local-runs” shell command,
starts a webserver, serves its interface in a web page accessible through the HTTP port
6006 (default) in localhost. Although it is a modular Python package, you can export its
plotted figures as external images to local files in many formats and DPIs by using the
pyplot.savefig method. In its web UI, figures exported by Matplotlib are located in the
“Images” navbar (other plots similarly). Overfitting anomality can be viewed in VL plots
which should be optimized.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

81

(a) Data generated with less training.

(b) Data generated at dropout 0.5.

Fig. 5: Artificial-text generation examples.

4 Extras

4.1 Architectural Choice on Computational Processing

– CPU & CUDA GPU: A general-purpose (G/P) computer has a G/P CPU intended
to perform general operations. A typical GPU has specifications, such as display-
targeted features. A display is logically a multi-vector matrix and modern GPUs’ arch
blocks enabling direct matrix operations isn’t viable by G/P CPUs.
The basic bone of a modern ANN modeling is the CUDA GPU by NVIDIA. It has a
Global & Constant memory, Kernel Grid and its Blocks, each having a Shared memory.
Blocks also have Local memory.

– NPU: Neural Processing Units have been a must-have unit in motherboards or SoCs.
Today it has less resources that can only be used to run AI tools. But for training ANN
models it has to be backed with more resources like processing power and dynamic
memory.
It is possible the NPU would surpass GPU in technologies to be used for the ANNs in
future.

– TPU: An ASIC to accelerating ML workloads speeding up operations in ANN algo-
rithms offloading from MPUs..

– FPGA: The same principles for NPU apply. Also, comparatively, FPGA has very less
resources; However, for certain designs, where specific implementation is intended, it
can be used.
Although, it’s less likely that FPGAs would be redesigned for ANN modeling sophis-
tication because of the higher expenses in their production which makes it impossible
to be in the ANN hardware market any soon.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

82

CUDA-branded GPUs are specifically supported by PyTorch, but as we did train this
model in an HP Intel® Core™ i7 generation laptop with only internal graphics, we used
CPU processing power to train our model.

4.2 Similarity to traditional programming (e.g. statistical algorithms in AI)

Undoubtedly, a significant departure from the traditional approach of constructing Ar-
tificial Neural Networks (ANNs) from scratch lies in the realm of Foundational Models,
characterized by their increased level of abstraction. It sets modeling apart from the con-
ventional process of designing and arranging the hidden layers. Now, you do not coun-
terpart with hidden layers- setting, ordering, and regulating them – instead, they are
pre-built and tailored to solve specific problems; requiring only the optimization of their
hyperparameters to achieve optimal performance. For instance, in NLP problems, hy-
perparameters such as Temperature, Random Seed, Repetition Penalty, Stopping Criteria,
and Top P (Nucleus Sampling) play a crucial role in refining the model’s output. One
such example of a Foundational Model is the IBM watsonx.ai model- flan-t5-xxl-11b,
which holds impressive 11 billion parameters (see IBM triplet1). This model belongs to the
FLaN-T5 (Fine-tuned LAnguage Net and T5 is a language model) family and is provided
by Google, with the source available in Hugging Face.

4.3 Understanding how Foundational Models abstract the work

Foundational Models are the next step towards Artificial Intelligence. The building stone of
this paradigm is the Transformer architecture. If we split the history of AI into major cat-
egories, it can be chained as: Traditional AI → Machine Learning → Deep Learning →
Foundational Models.

4.4 How ANN libs can be extended?

How does PyTorch’s ANN module as nn (Neural Networks) function at its core? What
required functions, classes, and static constants are included in its operation?
Most of the time, you would not necessarily modify the nn main module directly by
subclassing. Instead, it is more common to work with and design sequential models and
build required modules using class encapsulation, then you would hardly need to dive
into imported modules and libraries to extend them. However, it is the best practice to
understand how the nn module works, including its return types, formal arguments, and
built-in methods. This can be helpful for debugging purposes, efficient use of existing code,
and ensuring that projects use up-to-date code, as the module is constantly updated.

4.5 Added information on Explainable AI

This is a future trend in AI research. Recently, IBM has also included one of its major prod-
ucts in the watsonx suite- watsonx.governance with this headline: it has explainable
interfacing where external, built-in, shipped bias is transparently exposed to the stake-
holders, business owners, and ANN Model Lead, whoever concerns the ANN model’s core
decision-making spinal cord- its bias. If views the latest related papers from highly-rated
publishers indexed in Scopus, WoS, PubMed or Compendix bibliographic DBs, you’d defi-
nitely see many new articles on Explainable AI. It is good for expanding the AI integration
into businesses and governmental/public services where transparency, privacy and security
are crucially important.

1 Cloud service, Quantum Computing (investments), and dedicated AI systems (e.g., the watsonx suite).
Mainly IBM is in the NLP business; they are no longer in CV- they’ve tried once, but quit).

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

83

Future Research Directions

Training an ANN model is one of the most computationally hungry processes ever. There
is almost no I/O operation in-between; all of time, just using CPU’s registers, Li caches
(Shared & Local memory for GPU), DRAM, and almost always it is ALU – adding,
subtracting, multiplying matrices’ elements. Imagine a CPU having no direct matrix vector
operations support. It performs a single operation up to n of the size of that vector with
O(n) time complexity versus the O(1) of a GPU.
Therefore, to support newer projects, aims in the following directions:

– Train in higher computational power, dedicated hardware or in PaaS like Google Com-
puter Engine or IBM Cloud.

– Explore more of Deep Learning to find more patterns in the world, especially Trans-
formers and ViT for objects.

– Correlate them with decision making in real-world applications backed by Fuzzy Neural
Networks.

Conclusion

We have come into several phases of results with different parameters like learning rate,
dropout amount, batch size, word size, cost calculation range, epoch length, RMSProp
optimization algorithm. Generated artificial-text is very informative, successful regarding
sentence structure is kept, having meaning in some of sentences, misspelled words count
is rare (Figure 6).

Fig. 6: Artificial-text generated by the refined ANN model.

The smooth slope of loss over time (Figure 7) and the obvious concentration depicted
in the histogram verify our hypothesis.
By the results so far, running tremendous amount of training epochs in a computer hav-
ing higher processing power and by also, optimizing the algorithm of our ANN model, we
can reduce the Cross Entropy loss amount from 1.5s to much lower values which would
generate more and more accurate artificial-text.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

84

Fig. 7: Smooth training over time.

Acknowledgment

I’d like to thank my mother and teacher Zahra Seyidova for all the motivation and financial
support during the research and publishing it.
And must mention that, this work owes a lot to Dr. Andrej Karpathy of the University of
Stanford. In his open-source manuscripts, he has explained the theory and applications of
modeling modern NLP architectures [5].

References

1. J. Mohammed Zaki and Jr. Wagner Meira, Data Mining and Machine Learning, Cambridge University
Press, 2020, p. 650.

2. I. Goodfellow, J. Bengio and A. Courville, Deep Learning, MIT Press, 2016, p. 186.

3. E. Raff, Inside Deep Learning: Math, Algorithms, Models, Manning Publications, 2022, p. 45.

4. K. Chaudhury, Math and Architectures of Deep Learning, Manning Publications: Version 10, 2021, p.
346.

5. A. Karpathy, “Train Deep Neural Nets ten large datasets,” Github, 2022.

6. G. Strang, Linear Algebra and Learning from Data, Wesley, Cambridge Press, 2019, p. 404.

7. Shahriyar Guliyev, “Artificial text generation using Deep Neural Networks: training of Suleyman Sani
Akhundov’s plays,” Scientific Work: Volume: 17 Issue 6, DOI: 10.36719/2663-4619/91/82-96, 2023, pp.
82–96.

8. R. Raol Jitendra and J. Singh, “Flight Mechanics Modeling and Analysis / Appendix B: Artificial
Neural Network-Based Modeling,” CRC Press: 2023.

9. S. Prabhumoye, A. W. Black and R. Salakhutdinov, “Exploring Controllable Text Generation Tech-
niques,” Proceedings of the 28th International Conference on Computational Linguistics, Barcelona,
Spain, 2020, pp. 6–7.

10. M. Abdul Hafiz, P. Shabir Ahmad, B. Rouf Ul Alam, et al, “Attention mechanisms and Deep Learning
for Machine Vision: A survey of the state of the art,” Research Square, DOI: 10.21203/rs.3.rs-510910/v1,
June 2021, p. 15.

11. H. Zhang, H. Song, S. Li, M. Zhou and D. Song, “A Survey of Controllable Text Generation using
Transformer-based Pre-trained Language Models,” J. ACM 37, 4, Article 111, 2023, pp. 2–3.

12. R. Castro, I. Pineda, W. Lim and M. E. Morocho-Cayamcela, “Deep Learning Approaches Based
on Transformer Architectures for Image Captioning Tasks,” IEEE Access, vol. 10, DOI: 10.1109/AC-
CESS.2022.3161428, 2022, pp. 33679–33694 (4).

13. M. Ekman, Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, NLP,
and Transformers using TensorFlow, Addison-Wesley Professional, ISBN: 9780137470198, 2021, p. 446.

14. S. Singh and A. Mahmood, “The NLP Cookbook: Modern Recipes for Transformer Based Deep Learn-
ing Architectures,” IEEE Access, vol. 9, DOI: 10.1109/ACCESS.2021.3077350, 2021, pp. 68675–68702
(4-5).

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

85

15. T. T. Wang, “GPT: Origin, Theory, Application, and Future,” ASCS CIS498/EAS499 Project and
Thesis, School of Engineering and Applied Science, University of Pennsylvania, April 2021, pp. 13–14,
31.

16. R. Merritt (2022, March). “What is a Transformer Model?,” Accessed on: December 14, 2023. [Online].
Available: https://blogs.nvidia.com/blog/what-is-a-transformer-model/.

17. E. Kotei and R. Thirunavukarasu, “A Systematic Review of Transformer-Based Pre-Trained Language
Models through Self-Supervised Learning,” Information, 14(3), 187, DOI: 10.3390/info14030187, March
2023, pp. 7–10, 12–19.

Authors

S. Guliyev is doing Bachelor’s in Information Technol-
ogy in Nakhchivan State University, and studied Com-
puter Science in Baku State University, during that time,
worked in Republican Seismic Survey Center of Azerbai-
jan National Academy of Science as Systems Adminis-
trator. His research interests is Complex Systems: Infor-
mation Technology, Computer Science, Electronics Engi-
neering, Fluid-Aero Dynamics, Mathematical Modeling,
Agrochemistry, Networking, Fuzzy Systems and the AI
paradigm. Certified by IBM as Professional AI Instruc-
tor (2023).

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.1, January 2024

86

