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ABSTRACT 

Classifying the ECG dataset is the main technique for diagnosing heart disease. However, the focus of this 

field is increasingly on prediction, with a growing dependence on machine learning techniques. This study 

aimed to enhance the accuracy of cardiovascular disease classification using data from the PhysioNet 
database by employing machine learning (ML). The study proposed several multi-class classification 

models that accurately identify patterns within three classes: heart failure rhythm (HFR), normal heart 

rhythm (NHR), and arrhythmia (ARR). This was accomplished by utilizing a database containing 162 ECG 

signals. The study employed a variety of techniques, including frequency-time domain analysis, spectral 

features, and wavelet scattering, to extract features and capture unique characteristics from the ECG 

dataset. The SVM model produced a training accuracy of 97.1% and a testing accuracy of 92%. This work 

provides a reliable, effective, and human error-free diagnostic tool for identifying heart disease. 

Furthermore, it could prove to be a valuable resource for future medical research projects aimed at 

improving the diagnosis and treatment of cardiovascular diseases. 
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1. INTRODUCTION 

Cardiovascular diseases (CVDs), the primary cause of the global death rate, impose a significant 

socioeconomic burden on society. According to both the American Heart Association (AHA) and 
the World Health Organization (WHO), approximately 31% of all fatalities are attributed to 

CVDs. A staggering 75% of these fatalities occur in countries with modest to moderate income 

levels. Additionally, it is projected that the number of CVD-related deaths will increase to 23.6 
million by 2030[1].One of the most prominent tools for the classification of cardiovascular 

problems is the electrocardiogram (ECG). It refers to a diagnostic tool that is used to routinely 

assess the muscular functions and electrical activity of the heart[2]. Moreover, the ECG is a 

noninvasive method for monitoring CVD function by diagnosing the activity of cardiac muscles.  
Even though it is a relatively simple test to perform, the interpretation of ECG charts requires a 

considerable amount of training. Thus, manually examining ECG paper records can often be a 

time-consuming and daunting operation[1]. Furthermore, it offers cardiologists comprehensive 
information on CVD conditions, making ECG a valuable tool for detecting a wide range of 

cardiac disorders. Heart failure and arrhythmia are the main causes of CVD. Over 26 million 

adults worldwide suffer from congestive heart failure (HFR), a serious cardiac illness that 

accounts for 3.6 million new cases each year and significantly increases global mortality [3]. 
Another dangerous heart condition is arrhythmia (ARR), which results in abnormal heart 

rhythms. Cardiologists must undertake a time-consuming evaluation to ensure the accurate 

diagnosis of ARR and HFR. Diagnostic technologies are desperately needed to detect heart 
conditions, allowing cardiologists to diagnose patients with ECG recordings more quickly and 
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accurately while also saving money. Machine learning-based diagnostic systems have been 

developed in recent decades to differentiate between different heart disorders[4].ML research 
identified diverse metrics effective in diagnosing NHR and distinguishing ARR based on heart 

rate variability. Some approaches have combined time-domain features with Renyi entropy 

exponents, achieving better NHR classification accuracy than using time-domain features 
alone[5]. 

 

The study's major contributions are: 
 

1. Proposed a wavelet-based scattering transform method that can accurately separate several 

kinds of ECG classes of cardiovascular disease. 

2: Extracted other features such as spectral features, time domain, and frequency-time domain. 
3: Analyze the results of the proposed methods on multi-class signals. 

4: compare the results with other work. 
 

The remaining sections of the study are organized as follows: Section 2 covers related work and 

Section 3 presents the proposed work, including a description of the dataset, pre-processing, and 

feature extraction. Section 4 discusses the results and provides an analysis. 
 

Finally, Section 5 limitations ,6 conclusion and outlines the future scope. 
 

2. RELATED WORK 

A significant amount of research on cardiovascular prediction has concentrated on predicting 

diseases based on variables such as age, gender, and diet. In contrast, our work focuses on disease 

prediction using the ECG database. The prediction approach is enhanced by employing 
appropriate classifiers and features. Diagnosing the ECG database from MIT-BIH ARR is 

challenging due to the high within-class variability in ECG signals. With its vast and complex 

data resources, machine learning offers flexible solutions for the classification of dependent 

variables from independent variables, especially in the healthcare field. Ismail, A.R., et al[6]. 
Introduced an ML model for the ECG prediction of five heart diseases using a 1D TCN 

architecture designed for cost-effective remote health monitoring. Their approach outperformed 

existing methods, achieving 91.33 an accuracy of approximately 96.12%. 

 
Liu, F., et al[7]. These authors apply the wavelet scattering transform to acquire coefficients,  

which are subsequently expanded based on the wavelet scale dimension to derive features. 

Classification is carried out employing a support vector machine (SVM) along with the wavelet 
scale dimension voting strategy. Furthermore, the presented approach attains a precision of 

92.23%, a sensitivity of 96.62%, a specificity of 90.65%, and an accuracy measure of 93.64% on 

the PhysioNet database. These outcomes illustrate the efficacy of the proposed method in 
accurately distinguishing between normal and abnormal heart sound samples. 

 

Janani, K.S.et al[8]. focused on the classification of ECG signals using transfer learning and 

wavelet scattered features. Moreover, a comparative analysis shows that the classification 

performance based on the raw signals' scalogram achieves high accuracy at 98.02%. The 

ResNet18 achieves good performance metrics for wavelet scattered data, while the DenseNet 
model performs better for raw data. The study demonstrates the effectiveness of transfer learning 

and wavelet scattered features for ECG classification, providing a potential solution for accurate 

and efficient diagnosis of arrhythmia. 
 

Ahmed, A.A., et al[9]. presented a deep-learning approach to classify arrhythmias from ECG 
signals using a 1D-CNN model. The model demonstrates superior accuracy compared to 
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traditional machine learning methods, eliminating the need for feature engineering and achieving 
excellent performance on the MIT-BIH dataset. 

 

Papadogiorgaki, M., et al.[10] Introduced novel methodologies for efficiently classifying cardiac 

rhythm using ECG signals. It employs traditional ML and deep learning techniques for feature 
extraction and evaluation. The paper showcases high statistical metrics, indicating the potential of 

deep learning for ECG signal classification. 
 

N. O. Geng, Q., et al.[11] Suggested was a novel multi-task deep neural network for efficient 

arrhythmia detection in ECG feature sequences. The method combines low-level feature 
extraction with task-specific classification and leverages hierarchical class information. Testing 

on public datasets demonstrates its potential for early cardiovascular disease diagnosis. 

 

O. Elbashir et al[12]. introduced ConvXGB, a model that integrates CNN and XGBoost for 

efficient ECG classification. The model simplifies the process by reducing parameters and 
avoiding weight readjustment during backpropagation. Evaluation on established datasets 

demonstrates its superiority over standalone CNN or XGBoost for ECG signal classification. The 

achieved scores in accuracy (0.9938), recall (0.9836), precision (0.9839), specificity (0.9911), 
and F1-score (0.9837) surpass expectations. This paper concludes that ConvXGB shows promise 

in monitoring patients and identifying various heart diseases and severe CVD syndromes, such as 

myocardial infarction and arrhythmia. 

 
P. Ahmed et al[13]. Achieved accurate heartbeat classification using machine learning on 

enriched ECG datasets (PTB and MIT-BIH Arrhythmia Diagnostic ECG). They addressed class 

imbalance by assigning weights during training with LSTM and ANN. Comparative analysis 
showed high accuracy scores of 98.06% and 97.664% for MIT-BIH ARR in the ECG dataset. 

The paper discusses ensemble methods and LSTM for dataset analysis. 
 

Q. Zhang, D., et al[14].introduced a CNN-based method for predicting ECG arrhythmia using 

MIT-BIH ARR signals. The optimized CNN model, similar to VGGNet, successfully classifies 

ECG signals into five beat types with a notable accuracy rate of 90.04%. Future work suggestions 
include employing data augmentation techniques and exploring deep-learning optimization 

methods for enhanced ARR classification. According to Nguyen et al[15]. presented a deep 

learning framework to improve CVD classification accuracy. Their approach involves kernel size 
calculation based on specific waves, wavelet transform, and convolutional layers, achieving a 

remarkable 99.4% classification accuracy for five different CVD. 

 
Goharrizi et al[16].T propose a novel approach to classify heart diseases using multi-lead ECG 

signals. They employ the histogram of oriented gradients method, applying Fully Connected NN 

and SVM methods for prediction. The method achieves high accuracy in classifying 15 lead ECG 
databases. 

 

The presented approaches have limitations. Existing ECG classification methods fall short, 
motivating the proposed method using wavelet scattering with SVM for a generalized and 

effective ECG class CVD classification model. 

 

3. METHODOLOGY 

In this study, the proposed approach for ECG multi-class classification consists of several stages. The 

first stage involves the ECG database, while the second stage preprocesses signals. The third stage 

involves feature extraction after splitting the dataset into training and testing sets. Finally, the study 

presents the classification and comparison results. The framework's structure is illustrated in Figure1. 
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Figure 1. proposed approach of this study. 

 

 ECG Data Description and Processing 

In this study, 162 ECG signals from lead II were assessed to evaluate the framework's efficiency 

(Figure 2). Signals were obtained from PhysioNet standard databases, featuring 96 Arrhythmia 

(ARR), 30 heart failure rhythms (HFR), and 36 normal heart rhythms (NHR) recordings. All 
signals were normalized and resampled to a constant 128 Hz frequency. To enhance classification 

efficiency, various filters were applied to remove unwanted artifacts and noise from the raw ECG 

signal while preserving essential characteristics. Post-preprocessing, the signal was segmented 
into 6 segments, each 10,000 samples long, totaling 972 signals. These signals underwent an 80% 

training and 20% testing split, with training consisting of 59.2308% ARR, 18.4615% HFR, and 

22.3077% NHR, and testing comprising 59.3750% ARR, 18.7500% HFR, and 21.8750% NHR. 
 

 

Figure 2. ECG signals(NHR,ARR,NHR) 
 

The key parameters crucial for achieving good performance in a wavelet time scattering network 

are the number of wavelet coefficients, the scale of the time-invariant, and the number of 

wavelets per octave in every wavelet filter bank. These parameters play a vital role in classifying 
cardiovascular disease ECG signals using the WST and SVM models. The conversion of raw 

signals into a smaller set of attributes simplifies the problem of signal prediction, allowing for 

effective differentiation among several classes. 
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Figure 3. ECG prepossessing 

 

This study utilizes preprocessed signals that include noise sources such as electromagnetic 

interference, power line interference, and baseline wander caused by patient movement and 

respiration activity. To mitigate these noises, the study employs a combination of a smooth filter, 
resampling, denoising, and detrending, which is crucial for minimizing potential information loss.  

The Signal Analyzer is employed for preprocessing, integrating various functions and actions, 

including a smooth filter, detrend, resampling, and denoise (Figure 3a). The smooth filter, applied 
with a window factor of 0.25, is complemented by detrending using linear methods (Figure 3b), 

resampling with an auto rate (Figure 3c), and denoising with a level of 8 using the Bayes method 

and fk wavelet (Figure 3d). 

 

 Feature Extraction 
 

 Wavelet Scattering Transform (WST) 
 

In signal processing and data analysis, wavelet scattering is a mathematical transform used for 

signal analysis and processing. Based on wavelets, which are mathematical operations altering 

signal representation[1]. it employs a fixed, translation-invariant signal accuracy method. 

Effective for ECG signal prediction, it maintains class discriminability and deformation 
robustness. The WST summarizes signal characteristics through repeated wavelet decomposition, 

local averaging, and complex modulus. At each decomposition level, low-frequency features are 

recovered, the wavelet filter detects high-frequency components, and the scaling function records 
lower-frequency details. Fixed-frequency features are determined through local averages after 

calculating the modulus of high-frequency coefficients. Restoring lost detail due to local 

averaging, the high-frequency complex wavelet transform is calculated over time. A balance 
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between discrimination and invariance is achieved by routing the signal through different 
scattering paths[2]. 

 

Let X(t) be the signal that has to be examined. The the low-pass filter Ø and wavelet function Ψ 

are considered to provide filters that cover every the signal frequencies. Let Øj(t), j ∈ N be the 
low pass filter that produce descriptions of X   that are locally translation-in variant at a given 

scale T . The ʌk indicate the wavelet represent with an octave frequency resolution Qk. By 

dilating the wavelet, the multi-scale high pass filter-banks Ψ λK 
can be created[1]. 

 

WST consist of the three steps: firstly convolution process by complex Wavelet 

transform,secondly nonlinear operation by methods process thirdly convolution average by scale 

function. 
 

convolution operation by complex Wavelet of signal X is registered as follows: 

 

𝑥 ∗ 𝑇𝜆(t)=x*𝑇𝜆𝑎(t)+jx*𝑇𝜆𝑏(t) ( 1) 

 

The wavelet modulus coefficients are structure by complex wavelet: 
 

U[λ]x = |𝑥(𝑡) ∗ 𝑇𝜆| (2) 

nonlinear operation by methods operation complex wavelet transform and to obtain nonzero 

wavelet coefficient. 

 

|𝑥(𝑡) ∗ 𝑇𝜆| = √𝑥 ∗ 𝑇𝜆𝑎(t) + jx ∗ 𝑇𝜆𝑏(t) (3) 

The third step amount to calculating the average convolution scale[8]. All that's required is an 

iterative combination of a Deep Convolution Network(DCN) with modulus operation, complex 

wavelet transform, and low-pass filter averaging[17]. Another way that WST operates for a 
particular time-domain signal, x, can be explained as follows: 

 

1. To compute the WST, x is first convolved with the dilated mother wavelet ψ, whose center  

frequency is λ. 

 
The formula for this operation is x*ψλ. In this case, the convolved signal's average, which 
fluctuates on a 2j scale, is zero. 

 

2. To remove these oscillations, a nonlinear operator such as a modulus is then applied to the 

convolved signal such as |x*φλ|. By doubling the frequency, this process compensates for  

the information lost as a result of down sampling in the specified signal. 
 

Lastly, the resulting absolute convolved signal, or |x*ψλ|*φ, is subjected to a low-pass filter φ. 

 

Consequently, the average absolute amplitudes of wavelet coefficients over a half-overlapping 

time window of size 2j are used to calculate the first-order scattering coefficients for any scale 

(1≤j≤J). One way to write : 
 

From equation 4 For each scale (1≤j≤J), first-order scattering coefficients are calculated as 

average absolute amplitudes of wavelet coefficients over a half-overlapping time window of size 

2j. 
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𝑆1𝑋 

(t,λ1)=|X*Ψλ1|*Ø (4) 
 

The invariance decreases when restoring high-frequency components with the aforementioned 

approach. By repeating the steps on |x*ψλ1|, the second-order scattering coefficients can be 

calculated using equation (5): 
𝑆2𝑋 

(t,λ1,λ2)=||X*Ψλ1|*Ψλ2|*Ø (5) 
 

Higher-order wavelet scattering coefficients (m ≥ 2) are computed by iterating the mentioned 

process, as shown in equation (6): 
𝑆𝑚𝑋 

(t,λ1,λ2,…,λm)=||X*Ψλ1|*Ψλ2|….λm|*Ø (6) 
 

The resulting scattering coefficients, obtained by combining sets from the 0th to the mth order in 

the scattering transform, are expressed in Equation (7). The fundamental steps for calculating 
wavelet scattering coefficients up to level 2 are illustrated in Figure 4. The final feature matrix 

aggregates components from levels S0x, S1x, and S2x. Specifically, S0x denotes the zero-order 

scattering coefficients, assessing the local translation invariance of the input signal. Although 

high-frequency components are lost in each stage's averaging operation, they can be restored in 
the subsequent stage's convolution operation with the wavelet. 

 

𝑆𝑋={𝑆0𝑥,𝑆1𝑥...,𝑆𝑚𝑥}(7) 
 
 

 
Figure 4. Feature extraction process schematic diagram of WST. 

 

 

Figure 5. Wavelet filter first time 
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Figure 6. Wavelet filter second time 
 

Figures 5 and 6 depict wavelet filters generated by wavelet scattering in the network. The 

sampling frequency is 200 Hz, and the invariance scale is one second. The default quality factor 
for the second filter bank is 1, while it is 8 for the first. The two filter banks have quality factors 

of 1 and 2, respectively, with six rotations each. 
 

Figure 7. Spectrum of ECG database 

 

In Figure 7, the frequency spectrum of an ECG signal is depicted, representing the distribution of 

various frequencies present in the signal [18]. The persistence spectrum refers to a representation 
that captures the persisting features or patterns in ECG signals over time. Analyzing the 

persistence spectrum could potentially offer insights into long-term trends or recurring patterns in 

the data. 
 

Figure 8. Scalogram of ECG database 

 

A scalogram is a visual depiction of a signal, illustrating its frequency components at various 

time points. This graphical representation is frequently employed in signal processing and 
analysis, particularly within the realm of time-frequency analysis[18]. 

 

 Time Domain features 
 

In ECG signals reveal insights into cardiac activity. The wavelet transform, a stable and multi- 

scale time-frequency analysis tool, effectively extracts local features from signals, despite 
susceptibility to temporal changes and potential exclusion of significant features. 
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Table 1: Time Frequency Domain Features 

 
FEATURS&CLASS ARR HFR NHR 

RMS 72.4779 84.2717 111.7525 

Mean -63.9844 -50.6324 -9.2469 

Standard Deviation 34.0493 67.3787 111.4128 

Shape Factor 1.0313 1.0861 1.9628 

Crest Factor 2.6491 2.6937 5.2348 

Peak Value 192 227 585 

Impulse Factor 2.7321 2.9255 10.2747 

Clearance Factor 2.7752 3.0654 13.825 

SNR -9.6401 5.296 -7.6421 

SINAD -10.4089 -4.5429 -8.2576 

THD 2.5119 4.0698 -0.47474 

 

Table 1 presents distinct characteristics and properties of ECG signals in different classes based 

on the measured values. The NHR class exhibits the highest values for RMS, Mean, Standard 
Deviation, Shape Factor, Peak Value,Crest Factor, Impulse Factor, SNR, Clearance Factor, and 

SINAD when compared to the HFR and NHR classes. Additionally, THD values for the ARR 

and HFR classes are positive, signifying the presence of harmonic distortion, while the THD 
value for the NHR class is negative, indicating the absence of harmonic distortion. These 

measurements provide insights into the different classes and can be utilized for further analysis 

and comparison. 

 

 Spectral Features 
 

Spectral features encompass attributes and insights derived from examining the frequency 

domain representation of the signal. Analyzing the spectrum is essential for gaining an 

understanding of the frequency constituents within the ECG waveform. 
 

Table 2: Spectral feature for ECG signals class 

 

CLASS ARR HFR NHR 

Mean Frequency 0.055117 0.067744 0.52587 

Median 
Frequency 

0.0040038 0.039319 0.47635 

Band Power 5406.0231 6503.6187 12679.3252 

Occupied 
Bandwidth 

0.43899 0.32229 1.1139 

Power Bandwidth 0.0042349 0.0070078 0.029728 

 

The values in the table represent the mean values for each parameter in each class. Mean 

frequency signifies the average frequency of a specific phenomenon. Median Frequency 
represents the mode or most common frequency of a certain phenomenon. Bandpower represents 

the power or intensity within a specific frequency band. Occupied bandwidth signifies the width 

or range of frequencies occupied by a certain phenomenon. Power Bandwidth represents the 
width or range of frequencies with significant power or intensity for a certain phenomenon. 

 

 Support Vector Machine (SVM) 
 
The machine learning algorithm utilizes an effective separation method with a kernel-based 
approach for regression and classification datasets. The algorithm is generalized and advanced for 
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nonlinear and multi class datasets, dividing them into a high-dimensional feature space with a 

kernel function. Moreover, SVM can overcome challenges posed by confused datasets and 
overfitting[19]. 

 

The most popular representation of the SVM equation 
 

𝑓(𝑋) = 𝑊𝑡Ø(X)+b (8) 

 

Where Ø(X) is feature map, W belong to 𝑅𝑛, and b blongto R. 

 

 Confusion Metrics 

To appreciate the performance of the suggested model, employed accuracy, Precision, and recall. 

These are presented as follows: 

Accuracy: It measures the proportion of correctly identified diseased signals and normal. 
 

Accuracy = (TP + TN)/(TP + FN + TN + FP) ∗ 100% (9) 

 

Precision: It is the probability that the test outcome of a diseased signals truly reflects the 

condition[2]. additionally its a class of the number of correct positive results divided by the 

number of positive results. In other words, of all the records that the classifier assigns a given 
label, what proportion actually belong to the class 

 

Precision = (TP/(TP + FP)) ∗ 100% (10) 
 
Recall: is defined as the number of correct class divided by the number of class for a given class. 

Recall = (TP/(TP + Fn)) ∗ 100 % (11) 

 
F1-score: It is indicated as the harmonic mean of recall and precision. its computed at the class, 
giving all classes the same weight[2]. 

 

F1 − score = 2 ∗ (Precision ∗ Recall)/(Precision ∗ Recall) ∗ 100 (12) 
 

4. RESULTS 

In this study, 162 ECG signals were categorized with multi-class information, allocating 80% for 

training and the rest for testing. We initially evaluated various parameters of the Wavelet 

Scattering Transform (WST) to determine the number of wavelets per octave, the necessary time 
windows, and the invariance scale for the proposed model. After transforming the data into 

feature vectors for each signal, we employed these vectors to classify the ECG signals using the 

Support Vector Machine (SVM) classifier. WST generated four time windows for each ECG 
signal, forming classes to accommodate the range of time windows. A plurality vote combined 

the selections from each time window to assign a class to the chosen ECG signal, with an 

additional preference for rule-breaking ties in case of encountering two fragments with the same 
class. 

 

To assess performance, we estimated the misclassification rate using the entire dataset and 

generated a confusion matrix. The overall 5-fold classification error was 8.0247, achieving a 

correct classification rate of 91.98%. Misclassifications included two ARR classes as HFR, eight 
HFR classes as one each of NHR and ARR, and two NHR classes as ARR. 
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Table 3 and Figure 8 demonstrate good precision and recall for NHR and ARR, while precision 

and recall are notably lower for the HFR class. The HFR class achieved a higher accuracy of 
97.143% compared to others in the training test. 

 
Table 3: Training for ECG signals class 

 

Class Precision (%)  Recall(%) F1_Score(%) Accuracy(%) 

NHR 97.143 94.444 95.775 97.143 

ARR 90.291 96.875 93.467 90.291 

HFR 91.667 73.333 81.481 91.667 

 

 

Figure9. Training ECG signals 
 

Both precision of good for the NHR and ARR classes, but recall is significantly reduced for the 

HFR class. 
 

Table 4: Tastingfor ECG signals class 

 

Class  Precision 

(%)  

 Recall(%)   F1_Score(%) Accuracy(%) 

NHR  100   85.714   92.308  92.00 

ARR 86.364 100 92.683 91.5 
HFR 100 66.667 80 76.471 

 

 

Figure10. Tasting ECG signals 

 

In figure 10 and table 4 The model shows exceptional performance for the NHR and ARR classes, 
achieving perfect precision in both. However, there is room for improvement in the recall for 

HFR, indicating that the model misses some instances of this class. The overall accuracy of 

tasting NHR IS 92%. Table 5 shows that the proposed method, utilizing the PhysioNet dataset 
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with three classes, processed 10-second ECG signals using the WST-SVM methodology, 

achieving 92% accuracy. This percentage reflects the effectiveness of the proposed method in 
ECG signal classification compared to other studies . 

Table 5: Comparison of Performance Based on Accuracy for ECG Signal Classification 

 
Author Dataset Used No of 

Class 
SignalLength Methodolog 

y 
Accuracy 

Erogul,et al[20]. MIT-BIH ARR 5 30 s CNN 
 

82.30% 

Tsaiet, et al[21]. PhysioNet 2 2- hours SVM 90.44% 

Pałczyn 
´ski et al[22]. 

PTB Dataset 2  CNN (1D) 90.04% 

Jiaoet al[23]. 
MIT-BIH 5 

10 s 
LSTM-CNN 

67.01% 

Cheng et al[24]. MIT-BIH 5 - FSL-SVM 79.00% 

proposed PhysioNet 3 10 s WST-SVM 92% 

 

5. LIMITATIONS 

The research paper has Constrained by a dataset of only 162 ECG signals, the paper could benefit 

from the inclusion of larger and more diverse datasets. Future studies should delve into deep 
learning for improved Arrhythmia (ARR) classification, incorporating techniques like data 

augmentation and diverse architectures. Addressing noise and artifacts in ECG signal 

classification is crucial. Although the paper mentions the use of filters, further research should 
concentrate on advanced noise reduction techniques to enhance accuracy. 

 

6. CONCLUSION 

Our approach efficiently analyzes ECG signal fragments, providing simplicity, speed, and 

accuracy. By leveraging the deformation-invariant characteristics of WST, we minimize intra and 

inter-patient variation, achieving a training accuracy of 97.1% and a testing accuracy of 92% for 
three CVD types in 10-second ECG signals. WST demonstrates effectiveness across diverse 

signal classes, eliminating the need for feature engineering and QRS detection. The model excels 

in classifying ECG signals, offering valuable insights into time-varying data. Encouraging results 
prompt further research on scattering transform with alternative time-frequency representations. 

Future work can refine heart disorder classification by analyzing ECG fragments with multiple 

classes, assessing model efficacy with more fragments, and evaluating efficiency with other 
physiological signals. A proposed framework could integrate beat-level and fragment models for 

real-time ECG analysis, exploring a subject-oriented approach. Additionally, an attention-based 

RNN in the CNN model captures critical ECG features, emphasizing anomalous pattern locations 

for improved focus. 
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