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ABSTRACT 
 
This paper addresses the vulnerability of deep learning models, particularly convolutional neural networks 

(CNN)s, to adversarial attacks and presents a proactive training technique designed to counter them. We 

introduce a novel volumization algorithm, which transforms 2D images into 3D volumetric 

representations. When combined with 3D convolution and deep curriculum learning optimization (CLO), it 

significantly improves the immunity of models against localized universal attacks by up to 40%. We 

evaluate our proposed approach using contemporary CNN architectures and the modified Canadian 

Institute for Advanced Research (CIFAR-10 and CIFAR-100) and ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC12) datasets, showcasing accuracy improvements over previous 

techniques. The results indicate that the combination of the volumetric input and curriculum learning holds 

significant promise for mitigating adversarial attacks without necessitating adversary training. 
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1. INTRODUCTION 
 
The security of any machine learning model is assessed in terms of the goals and capabilities 

associated with adversary attacks. Algorithmically crafted perturbations, even if minuscule, can 

be exploited as directives to manipulate classification outcomes [1]. Attacks can be classified as 
black-box or white-box [2] depending on the attacker's access to and knowledge of the model's 

information, which includes its architecture, parameters, training data, weights, and more. In a 

white-box attack, the attacker has complete access to the network's information, while a black-

box attack is characterized by the absence of knowledge regarding the model's internal 
configuration. Occasionally, a gray-box attack can be generated by employing a generative 

model, enabling the creation of adversarial examples without access to the victim model. 

Localized adversarial attacks [3] exploit spatial invariance of CNN-based image classifiers by 
introducing minimal perturbations to deceive the model into producing incorrect classifications. 

These attacks are usually constrained to a small contiguous portion of the image and are image-

agnostic (or universal) gray-box attacks.  
 

In this paper, we introduce a new training methodology (Figure 1) designed to fortify CNNs 

against localized attacks. Our primary approach incorporates deep curriculum optimization [4] 

and a volumization algorithm. We employ an information-theoretic representation of an image 
along with optimization procedure that merges batch-based curriculum learning (CL), patch  

https://airccse.org/journal/ijaia/current2024.html
https://doi.org/10.5121/ijaia.2024.15205


International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.2, March 2024 

78 

 
 

Figure 1. Overview of the proposed training process. The Curriculum Learning Optimization (CLO) 

component is used to generate a syllabus (input path) for the batch. It then volumizes each image, followed 

by feature extraction using 3D CNNs. The PAL loss function is applied to optimize parameters by 

calculating slice-wise errors. 

 
aggregate loss (PAL) function, and 3D convolution to train and proactively defend against 

effective localized attacks; one-pixel [5] and adversary patch attacks (APA) [6]. 

 

1.1. Background on Adversary Attack  
 

At its core, the purpose of adversary attack is to sabotage the generalization capability of a model 

by countering its learning objective. Given a CNN classifier 𝑓(𝑥;  𝜃), fully trained on a dataset 𝐷, 

its purpose is to map a source image 𝑥 to a set of probabilities 𝑓(𝑥). An adversarial attack seeks 

to perturb this source image, producing an altered image 𝑥′ such that the difference between 𝑥 

and 𝑥′ is minimal to human perception. However, the classifier 𝑓, when processing 𝑥′, produces 
an incorrect output that significantly deviates from the true label. This is achieved by exploiting 

the high-dimensional decision boundaries of the model, forcing it to misclassify 𝑥′ while 

maintaining a semblance of the original image structure in 𝑥.  

 

1.1.1. Attack Objective  

 

Adversarial image attacks involve adding a perturbation 𝑟 ∈  ℝ𝑚 to 𝑥, causing the maximized 

class probabilities to differ between the original and perturbed images. i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥 +
𝑟) ≠  𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥). These types of attacks can be categorized as targeted or untargeted.  

 

In a targeted attack, the adversarial image 𝑥′ =  𝑥 +  𝑟 is generated to induce the classifier to 

assign 𝑥′ to a specific target class 𝑐𝑡  ∈ 𝑌, where 𝑐𝑡 ≠ 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥)). The perturbation 𝑟 is 

selected such that 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖 (𝑥′))  =  𝑐𝑡 . Conversely, in an untargeted attack, the adversarial 

image 𝑥′ =  𝑥 +  𝑟 is crafted to cause the classifier to assign 𝑥′ to any incorrect class without a 

particular target. In this case, the perturbation 𝑟 is chosen to satisfy 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥′))  ≠
 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥)) without imposing additional constraints on the target class. Our research focus 

is untargeted attacks.  
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1.1.2. Défense Objective  
 

The defense objective is to train a model that is robust to adversarial image attacks without 

sacrificing the accuracy of the classifier on the original dataset. Formally, the objective is to find 

𝑔 that minimizes the following loss: 
 

𝑚𝑖𝑛
𝑔

1

|𝐷|
∑ 𝑚𝑎𝑥

𝑟 ∈ 𝑅
𝐿(𝑔(𝑥 + 𝑟), 𝑦)

(𝑥,𝑦)∈𝐷

1 

 

where 𝑅 is the set of possible adversary perturbations added to a local region of the input, and 𝐿 

is a loss function used to train the model 𝑔. The objective is to minimize the maximum loss over 

all possible adversarial examples 𝑥′ =  𝑥 +  𝑟 generated by any allowable perturbation in 𝑅. 𝑅 is 

constrained to be a set of localized attacks. Localized attacks are characterized by the property 

that the L2 norm of the perturbation vector 𝑟, denoted by ||𝑟||, is much smaller than the L2 norm 

of the original input image 𝑥, denoted by ||x||. Specifically, this condition can be expressed as ||r|| 
<< ||x||. These attacks modify only a small subset of pixels that are confined to a localized region 

of the image. 

 

1.1.3. Localized Universal Attacks Against Image Classifiers  

 

Localized universal attacks are a subset of adversarial attacks that specifically target image 

classifiers. They exploit spatial invariances of CNNs to introduce perturbations that lead to 
misclassifications. These perturbations are usually confined to small, contiguous portions of the 

input image and can cause the model to produce incorrect output classifications, even when the 

introduced changes are almost imperceptible to the human eye. Two predominant types of such 
attacks are the N-Pixel Attack and the Adversary Patch Attack. 

 

1.1.3.1. N-Pixel Attack 
 

Szegedy et al. introduced adversarial attacks through minor perturbations of pixels [7] to induce 

CNN image misclassification. These perturbations, often undetectable to the human eye (see 

Error! Reference source not found.above), expose the inherent vulnerabilities in the 

robustness of Convolutional Neural Networks (CNNs).  

 

Diving deeper into this, the N-Pixel Attack, which can be viewed as an extension or 
generalization of the ideas presented by Szegedy et al., specifically perturbs 'N' distinct pixels in 

an image to induce misclassification. The challenge and intrigue of this method arise from its 

seemingly benign nature; altering a minimal number of pixels in a high-resolution image 
intuitively appears harmless. Yet, such alterations can drastically alter CNN’s prediction, 

underscoring the intricate and potentially fragile decision boundaries upon which these networks 

operate. 
 

While the attack has profound implications for the integrity and reliability of image classifiers, it 

also catalyzes a renewed interest in understanding the foundational workings of CNNs. This 

understanding is crucial, especially in applications where trust in model predictions is paramount, 
such as in medical imaging or autonomous vehicles. 

 

The N-Pixel Attack serves as a pivotal reminder that even state-of-the-art models, trained on 
extensive datasets and exhibiting high accuracy, can be vulnerable to carefully constructed, 

minimal adversarial perturbations. As researchers and practitioners continue to deploy CNNs in 
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varied applications, it is imperative to develop strategies that not only enhance performance but 
also fortify against adversarial threats. 

 

 
 

Figure 2. One Pixel Attack. 

 

1.1.3.2. Adversary Patch Attack 

 
Introduced by Brown et al., the Adversary Patch Attack unveils a unique and potent vulnerability 

in deep neural network (DNN) based classifiers [6]. Unlike other adversarial attacks that perturb 

an image globally, this approach is localized and focuses on modifying a confined region of the 

image with an adversarial patch (Error! Reference source not found.), which can be 

recognized as a seemingly harmless object or pattern added to the image. Remarkably, this 

addition can dramatically alter the classifier's output, demonstrating a classifier's inability to 
discern genuine content from deceptive information. 

 

Central to the findings of Brown et al. was the realization that these adversarial patches were 
resistant to various changes, especially affine transformations such as translation, scaling, and 

rotation. Their methodology optimized the patches such that they were robust to these 

transformations. This means that the relative position, size, or orientation of the adversarial patch 
doesn't need to be precise for it to deceive the classifier effectively. This robustness elevates the 

potential real-world implications of this attack as the adversarial patch remains effective under 

different viewing conditions. 

 
The adversarial patch, crafted using a white-box approach, can be applied in a "universal" 

manner. This universality signifies that a single patch can be effective across different images and 

is not tied to a specific target image. The conspicuous nature of these patches (often visually 
distinct) contrasts with the often-imperceptible alterations in traditional adversarial attacks, 

making it an intriguing anomaly in adversarial research. 

 

 
 

Figure 3. Adversary Patch Attack (APA). 
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Furthermore, Brown et al.'s findings underscore the importance of understanding not just the 
global, but also the localized processing dynamics of CNNs. The attack challenges the prevalent 

notion of CNNs' spatial hierarchies, wherein larger spatial structures (like objects) are assumed to 

have a dominant influence over classification compared to smaller structures or patterns. The 

Adversary Patch Attack highlights that this might not always be the case, as a localized, 
conspicuous pattern can effectively override the neural network's perception of larger structures. 

In real-world scenarios, this type of attack could be employed in deceptive practices, such as 

placing adversarial stickers or objects in strategic locations to deceive AI systems in surveillance, 
autonomous driving, or even augmented reality applications. As such, the research by Brown et 

al. underscores the importance of defensive mechanisms that consider both global and local 

image features. 
 

Both Brown et al., and later Gittings et al. [8] backpropagate through the target model to generate 

‘stickers’ that can be placed anywhere within the image to create a successful attack. This 

optimization process can take several minutes for one single patch. Karmon et al. showed in 
LaVAN that the patches can be much smaller if robustness to affine transformation is not 

required [3] but require pixel-perfect positioning of the patch which is impractical for real APAs.  

 

1.1.3.3. Local Distortion Attack 

 

Local Distortion Attacks[9] focus on altering small, strategically chosen areas of an input image 
to deceive a classifier. Unlike adversarial attacks that introduce perturbations across the entire 

image, these methods pinpoint areas that disproportionately influence the classifier's decision. 

Identifying these critical regions often involves saliency maps and gradient-based analysis[9]. 

Once the key regions are determined, the attacker leverages optimization techniques to introduce 
subtle distortions, designed to mislead the classifier. These distortions include pixel intensity 

changes, targeted geometric transformations (like localized rotation or scaling), or the injection of 

meticulously crafted noise patterns. The distortion process frequently uses an iterative approach; 
the attacker modifies the image and observes the impact on the classifier's output, refining the 

distortions until misclassification occurs. 

 

 
 

Figure 4.GreedyFool: Local Distortion Attack. 

 

Once these influential regions are identified, the attacker employs optimization techniques to 
introduce subtle distortions designed to mislead the classifier (Figure X). These local distortions 

can manifest as pixel intensity changes, targeted geometric transformations (e.g., localized 

rotation, scaling, or shearing), or carefully crafted noise patterns. The optimization process is 

frequently iterative, with the attacker applying distortions, evaluating the impact on the 
classifier's output, and refining the manipulations until misclassification is achieved. 
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A fundamental goal of local distortion attacks is to induce misclassification while minimizing the 
overall perceptibility of the introduced alterations. This introduces a trade-off between attack 

efficacy and the visibility of the changes. Attackers may be constrained by specific limits on the 

allowable types of distortions or the total number of pixels they can manipulate.  In certain 

scenarios, the attacker can further refine the attack by exploiting knowledge of the target model's 
architecture or its underlying training data. 

 

Local distortion attacks pose unique challenges compared to other adversarial attack types. The 
localized nature of the perturbations necessitates a nuanced understanding of the model's internal 

decision-making processes. Unlike adversarial patches, they are often designed to be subtle and 

blend with the original image content.  This focus on minimizing human detectability raises 
concerns about the potential for these attacks to bypass security measures or mislead human 

inspection in real-world scenarios. 

 

1.1.3.4. TnT Attack: Universal Naturalistic Adversarial Patches Against Deep Neural 

Network Systems 

 

The TnT Attack (Transformers 'n' Trojans) presents a sophisticated adversarial patch 
methodology designed to disrupt DNN-based image classifiers [10]. Unlike traditional 

adversarial patches, TnT Attack patches are crafted to mimic natural textures and patterns, 

making them less conspicuous. The attack leverages a Transformer architecture, often a Vision 
Transformer (ViT), and a separate external image dataset to generate its patches. The 

Transformer's attention mechanisms play a crucial role in identifying patterns and textures that 

have a potent adversarial effect when selectively introduced into images. Furthermore, the TnT 

Attack emphasizes universality, meaning a single patch can be placed in various locations across 
a wide range of images and still cause the target classifier to misclassify. This flexibility 

increases the potential threat in real-world scenarios with less constrained patch placement. 

 

 
 

Figure 5.Random color and flower patches generated by TnT attack and applied to PubFig dataset. 

 

At the heart of the TnT Attack lies a Transformer architecture, Vision Transformer (ViT). 
Transformers have become prevalent in image processing tasks due to their ability to model long-

range dependencies. The Transformer is fed images from a separate external dataset, unrelated to 

the dataset used to train the target classifier. Critically, the Transformer's attention mechanisms 

analyze these external images to identify patterns and textures that have a potent adversarial 
effect when selectively introduced into images the classifier was designed to process. 

 

The TnT Attack further emphasizes the concept of universality. Unlike adversarial attacks 
tailored to a specific target image, the goal is to generate a single patch that can be placed in 

various locations across a wide range of images and still cause the target classifier to misclassify. 

This lack of specificity increases the potential threat in real-world scenarios where an attacker 
might have limited control over the exact context and placement of the adversarial patch. 
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2. RELATED WORK 
 
Goodfellow et al. proposed a method to enhance the robustness of neural networks against such 

attacks. This approach, known as adversarial training [1], involves using adversarial examples as 

inputs during training to teach the network how to accurately classify them, thus improving its 

ability to defend against attacks. Adversary training methods require access to the target model to 
backpropagate gradients to update pixels, inducing high frequency noise that is fragile to 

resampling. In 2016 Papernot et al. proposed a defensive mechanism called defensive distillation 

[11], in which a smaller neural network learns and predicts the class probabilities generated by 
the original neural network’s output. Despite growing number of defense approaches, several 

attacks remain effective – particularly attacks generated using generative architectures [12], [13]. 

 

2.1. N-Pixel Attack Defences 
 

Brown et al. demonstrated that adversarial patches could be used to fool classifiers; they 
restricted the perturbation to a small region of the image and explicitly optimized for robustness 

to affine transformations [6]. Su et al. in 2017, which generates fooling images (adversarial 

examples) by perturbing only one pixel or few pixels, has proven to be difficult to defend [5]. To 

date, the most successful defense against this attack is a method presented by Chen et al. [14]. 
The authors propose Patch Selection Denoiser (PSD) that removes few of the potentially attacked 

pixels in the whole image. At the cost of image degradation, the authors achieve a successful 

defense rate of 98.6% against one-pixel attacks. Similarly,  
 

Liu et al. [15] proposed a three-step image reconstruction algorithm to remove attacked pixels. 

The authors report protection rate (defense success rate) of up to 92% under for N-pixel attack for 
N chosen from the range (1, 15). Shah et al. [16] proposed the usage of an Adversarial Detection 

Network (ANNet) for detection of N-pixel attacks where N is 1, 3 or 5 and report up to 97.7 

adversarial detection accuracy on MNIST Fashion dataset. Husnoo and Anwar [17] proposed an 

image recovery algorithm based on Accelerated Proximal Gradient (APG) [18] approach to 
detect and recovered the attacked pixels.  

 

2.2. Adversary Patch Defences 
 

Defenses for patch attacks are typically viewed as a detection problem [19], [20]. Once the 

patch’s location is detected, the suspected region would be either masked or in-painted to 
mitigate the adversarial influence on the image. Hayes [21] first proposed DW (Digital 

Watermarking), a defense against adversarial patches for nonblind and blind image inpainting, 

inspired by the procedure of digital watermarking removal. A saliency map of the image was 
constructed to help remove small holes and mask the adversarial image, blocking adversarial 

perturbations. This was an empirical defense with no guarantee against adaptive adversaries. 

 

Naseer et al. [22] proposed LGS (Local Gradient Smoothing) to suppress highly activated and 
perturbed regions in the image without affecting salient objects. Specifically, the irregular 

gradients were regularized in the image before being passed to a deep neural network (DNN) 

model for inference. LGS could achieve robustness with a minimal drop in clean accuracy 
because it was based on local region processing in contrast to the global processing on the whole 

image as done by its counterparts.  

 
Chou et al. [23] proposed SentiNet for localized universal attacks to use the particular behavior of 

adversarial misclassification to detect an attack, which was the first architecture that did not 

require prior knowledge of trained models or adversarial patches. Salient regions were used to 
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help observe the model’s behavior. SentiNet was demonstrated to be empirically robust and 
effective even in real-world scenarios. However, it evaluated adversarial regions by subtracting 

the suspicious region, which might at times cause false adversarial region proposals. Moreover, 

the suspicious adversarial region was placed at random locations in the preserving image, which 

possibly occluded the main objects in the scene resulting in incorrect predictions.  
 

Chen et al. [24]  proposed Jujutsu to detect and mitigate robust and universal adversarial patch 

attacks by leveraging the attacks’ localized nature via image inpainting. A modified saliency map 
[25] was used to detect the presence of highly active perturbed regions, which helped to place 

suspicious extracted regions in the least salient regions of the preserved image and avoid 

occlusion with main objects in the image. Jujutsu showed a better performance than other 
empirical defenses in terms of both robust accuracy and low false-positive rate (FPR), across 

datasets, patches of various shapes, and attacks that targeted different classes. 

 

2.3. TnT Attack Defences  
 

Developing robust defences against TnT attacks is a critical area of active research. Current 
defence strategies can be broadly categorized into several key approaches, texture analysis, and 

anomalous pattern detection. 

 

Texture Analysis focuses on detecting subtle textural anomalies introduced by TnT patches. 
Even when designed to mimic natural patterns, adversarial textures may exhibit subtle statistical 

deviations or atypical characteristics compared to textures found in genuine images[2]. 

Researchers employ a variety of techniques including statistical measures, specialized filters, and 
image processing methods sensitive to textural irregularities to expose these anomalies. However, 

a potential limitation lies in highly sophisticated TnT attack generation, where adversaries could 

craft patches exceptionally difficult to distinguish based on texture alone. Carefully calibrated 
thresholds are also important in texture-based defences to avoid excessive false positives on 

legitimate images, which often possess diverse and sometimes unusual natural textures. 

 

Anomalous Pattern Detection detects anomalous patterns to circumnavigates these attaches.  
Since TnT patches originate from unrelated image datasets, they introduce the risk of 

incorporating visual patterns that are contextually out of place within the images they are applied 

to [26]. Defence strategies capitalize on this by developing algorithms designed to detect these 
contextually unusual or anomalous patterns. A key challenge in this approach is defining what 

constitutes "normal" patterns for a given image class, as real-world images can exhibit significant 

visual diversity. An adaptive adversary could also potentially modify TnT attacks to introduce 

patterns that are less jarringly out of context, decreasing the effectiveness of such defences. 
 

2.4. Distortion Attack Defences  
 

Defending against local distortion attacks is inherently challenging due to the subtle and highly 

targeted nature of the introduced perturbations. Strategies generally focus on detecting anomalous 

regions within the image and subsequently mitigating their impact on the classifier's decision. 
 

One defence approach relies on gradient-based detection, exemplified by the LGS method [22]. It 

operates under the assumption that local distortions introduce irregular gradient patterns that are 
distinct from the natural variations found in benign images. By identifying and suppressing these 

irregular patterns within localized regions, LGS can potentially neutralize the adversarial effect. 

Another detection strategy leverages saliency maps to pinpoint areas of the image that exhibit 
unusual activation patterns or deviate from the expected distribution of saliency in clean images 

[27], [28]. These flagged regions might indicate the presence of a local distortion. Defence 
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methods like SentiNet [23] take a behavioural analysis approach, monitoring the classifier's 
actions when presented with potentially manipulated images. Pronounced changes in predictions, 

particularly when the modified regions are not semantically significant, can be a powerful signal 

of the presence of a local distortion attack. 

 
Once a potentially distorted region is identified, mitigation techniques are employed. Methods 

like Jujutsu [26] use inpainting techniques to replace the suspicious region with image content 

that seamlessly blends with the surrounding areas. This aims to neutralize the distortion while 
maintaining the overall coherence and natural appearance of the image. In some cases, a simpler 

approach of masking out the suspect region may be sufficient to prevent the classifier from 

processing the manipulated content. However, the effectiveness of masking is contingent on the 
distorted area not occluding critical components of the image for classification. 

 

Many defenses are designed with specific assumptions about how distortions manifest. An 

adaptive attacker might modify their techniques to circumvent existing detection mechanisms. 
Furthermore, defenses must strike a delicate balance between detecting subtle distortions and 

maintaining accuracy on clean, unmodified images. Overzealous detection strategies can lead to 

false positives where benign image regions are incorrectly flagged as adversarial. Evaluating the 
robustness of local distortion attack defenses across varying distortion types, target models, and 

datasets is an essential component of the defense development process. Instead of relying on 

patch or pixel detection and removal techniques, our method uses deep curriculum learning 
optimization (Deep-CLO) [29] and 3D convolutional neural networks [30] to proactively defend 

against these attacks. An overview of our proposed training methodology is shown in Figure 1. 

 

3. METHOD  
 

Our aim is to develop a defended classifier,Ġ, that inherently defends against localized attacks 
without relying on adversarial training or prior knowledge of the attacks. To realize this 

objective, we propose a proactive defense approach characterized by following key steps:  

 

 Volumization: For each image in the batch, we convert it to a 3D volume to capture the 
spatial information of the input. 

 3D Convolution: We modify the contemporary CNN model architectures to do 3D 

convolution, which enables the model to extract features from the 3D input volumes. 

Details of the modifications are below.  

 Deep curriculum learning optimization[4]: For each batch taken from the training dataset 

𝐷, we generate a syllabus that determines the input order of the samples in the batch. 
 

The combination of 3D convolution, Deep-CLO, and the volumization algorithm empowers Ġ to 

maintain high performance on both clean and adversarial inputs. These techniques ensure that the 

model remains resilient to perturbations and that it maintains accurate classification and 

verification of both the original images 𝑥 and adversarial images 𝑥′ =  𝑥 +  𝑟. Refer to analysis 

section for detailed justification.  

 

When used as a preprocessing step, the algorithm allows Ġ to extract spatial relationships from 
the volumized data, resulting in enhanced robustness against localized attacks. The employment 

of Deep Curriculum Optimization as the training procedure further bolsters the Ġ’s resilience to 

adversarial attacks. The resulting classifier not only defends against the targeted attacks but also 

retains high performance on non-adversarial images, achieving classification accuracy 
comparable to state-of-the-art models. Consequently, our approach demonstrates a unique 
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balance between robustness and accuracy without relying on adversarial training, making it a 
significant contribution to the field of image classification under adversarial conditions. 

 

3.1. Volumization Algorithm  
 

The volumization algorithm, is a pixel-preserving and reversible transformation operator denoted 

as a function: 
 

𝑉 ∶  (𝑥, 𝐻, 𝑊, 𝐶) →  (𝑥𝑖
′ , 𝑝ℎ, 𝑝𝑤 , 𝐶, 𝑍 ).                2 

 

Given an input image 𝑥 ∈  𝐷 of shape (𝐻, 𝑊, 𝐶), the algorithm uses a configurable 

hyperparameter, patch size 𝑆(𝑝ℎ , 𝑝𝑤) - where 𝑝ℎ and 𝑝𝑤 are the height and width of 

each slice - to split 𝑥 into 𝑍 non-overlapping slices 𝑥𝑖
′of size 𝑃 satisfying the pixelconservation 

condition: 

 

𝑥 =  ⋃ 𝑥𝑖
′𝑍−1

𝑖=0                        3 

 
This states that the original image x is equivalent to the union of all its extracted slices (see the 

image at the bottomof Figure 1). Here, ∪ denotes the union operation. The algorithm extracts a 

list of slices and proceeds to rank each slice according to a prespecified metric m – a configurable 

hyperparameter. The chosen metric can be of type distance or standalone (Table 1). If 𝑚 is a 

distance-based metric, a reference slice 𝑃𝑟𝑒𝑓 is selected, which can be user-definedor 

automatically determined by choosing the most salient slice. On the other hand, m is considered 
standalone if it measures some characteristics of a given slice. All slices are then ordered based 

on their individual metric scores or their distances from the reference slice. The ordering 𝑜𝑟𝑑 is 

user define configurable hyperparameter that can be either descending or ascending. Finally, the 

ranked slices are stacked along the depth axis to create a 3D volume 𝑥𝑣 =  𝑉 (𝑥) ofshape (𝑝ℎ , 𝑝𝑤, 

C, N), where 𝑍 (depth of the volume) isthe total number of slices. Refer to Ghebrechristos et. al. 

[4] for detailon the ranking and ordering process, which is identical for both the volumizer and 

CL when generating a syllabus for a batch.  
 

By breaking the image into smaller patches, we localize the region of analysis, making the 

training process more sensitive to adversarial attacks that affect only a small portion of the image. 
This localization often aligns with the attack region of localized adversarial attacks, enhancing 

the models’ ability to detect and respond to them. 

 

3.2. Model Architecture  
 

Given a conventional CNN classifier architecture 𝑓 designed to learn from 2D images, we 

perform the following modifications to construct Ġ - a 3D counterpart 𝑓.  
 

3.2.1. Input Layer  

 

𝑓’s input layer, denoted as 𝐼2𝐷 , is designed to accept a 2D input data 𝑥 with dimensions 𝐻 × 𝑊 ×
 C such that  𝐼2𝐷 : 𝑥 ∈ ℝ𝐻×𝑊×𝐶. In order to extract features from the volumized images, the input 

layer of model Ġ is adjusted to be 3-dimensional, 𝐼3𝐷 , where the input to this layer 𝑥𝑣 is a 4D 

tensor with dimensions 𝐻′ × 𝑊′ × C × Z, such that 𝐼3𝐷 : 𝑥𝑣 ∈ ℝ𝐻′×𝑊′×𝐶×𝑍. In shorthand notation, 

this reversible transformation can be represented as: 

 

𝑓(𝐼2𝐷: 𝑥 ∈ ℝ𝐻×𝑊×𝐶)   ↔ Ġ(𝐼3𝐷 : 𝑥 ∈ ℝ𝐻′×𝑊′×𝐶×𝑍),                   4 
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where 𝐻’ and 𝑊’ are prespecified width and height of the individual patches within the volume 

and 𝑍 signifies the total number of patches. This enables the classifier to learn features from the 

volumized data 𝑥𝑣. 

 

3.2.2. Convolution Layer  

 

For CNN, convolution represents the interaction between an input (image or feature map) and a 

kernel (filter). The kernel is a small matrix that slides over the input data, performing an element-
wise multiplication and summing the results to generate a new feature map. In a 2D convolution, 

the input data and the kernel are both two-dimensional. 

 

(𝐾 ∗ 𝑥)(𝑖, 𝑗) = ∑ ∑ 𝐾(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛)
𝑛𝑚

5 

Here, 𝐾 represents the 2D kernel, 𝑥 represents the 2D input and (𝑖, 𝑗) are the coordinates in the 

output feature map. The summation is performed over all spatial dimensions (𝑚, 𝑛) of the 2D 

kernel.  
 

For a given classifier, 3D counterpart of the above operation is:   

 

(𝐾3𝐷 ∗ 𝑥𝑣)(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐾3𝐷(𝑚, 𝑛, 𝑝)𝑥𝑣(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘 − 𝑝)
𝑝𝑛𝑚

6 

 

where 𝐾3𝐷represents the 3D kernel, 𝑥𝑣 is the 3D input data and (𝑖, 𝑗, 𝑘) are the coordinates in the 

output feature map. The summation is performed over all spatial dimensions (𝑚, 𝑛, 𝑝) of the 3D 
kernel. This modification enables the classifier to learn features from the volumized data by 

processing spatial information across height, width, and depth dimensions simultaneously.  

 
Note that the optimal kernel size depends on the size of the individual slices within the volume 

and the desired level of spatial information capture. For example, if f consists of 1 × 1, 3 × 3, 

and 5 × 5 2D convolution layers, we adjust these layers to be 1 × 1 × 𝑍, 3 × 3 × 𝑍, and 5 × 5 ×
𝑍 3D convolution layers, respectively. To ensure compatibility, we enforce the constraint that the 
kernel size is much smaller than the size of the individual slices and that the kernel operates on 

each slice in the volume. That is, 𝐻′ ≪  𝐻, and 𝑊′ ≪  𝑊. The stride and padding values are also 

adjusted accordingly. 

 

3.2.3. Pooling Layer  

 

All pooling layers of 𝑓 are modified to handle the 3D volume representation of the input data. In 

𝑓, the 2D pooling layers denoted as 𝑃2𝐷: 

 

𝑃2𝐷: ℝ𝐻𝑖𝑛×𝑊𝑖𝑛×𝐶𝑖𝑛 → ℝ𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡×𝐶𝑜𝑢𝑡                           7 
 

Where 𝐻𝑖𝑛, 𝑊𝑖𝑛 and 𝐶𝑖𝑛 represent the height, width, and number of channels of the input feature 

maps, while 𝐻𝑜𝑢𝑡 , 𝑊𝑜𝑢𝑡  and 𝐶𝑜𝑢𝑡  denote the height, width, and number of channels of the output 

feature maps, respectively. 

 
To effectively process volumized inputs, we replace the 2D pooling layers with 3D counterparts: 

 

𝑃3𝐷: ℝ𝐻𝑖𝑛×𝑊𝑖𝑛×𝐶𝑖𝑛 → ℝ𝑝ℎ𝑜𝑢𝑡×𝑝𝑤𝑜𝑢𝑡×𝐶𝑜𝑢𝑡× 𝑁𝑜𝑢𝑡         8 
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where 𝑝ℎ𝑖𝑛
, 𝑝𝑤𝑖𝑛

, 𝐶𝑖𝑛  𝑎𝑛𝑑 𝑁𝑖𝑛 represent the height, width, number of channels, and number of 

patches of the input volume, while 𝑝ℎ𝑜𝑢𝑡
, 𝑝𝑤𝑜𝑢𝑡

, 𝐶𝑜𝑢𝑡  𝑎𝑛𝑑 𝑁𝑜𝑢𝑡  denote the height, width, number 

of channels, and number of patches of the output 3D volume, respectively. 

 

3.2.4. Normalization and Activation Layers  

 

These layers usually play an essential role in maintaining a stable and efficient training process 

and introducing non-linearity to the model. For normalization layers, we transition from 2D 

normalization methods of 𝑓, such as Batch Normalization (BN) and Instance Normalization (IN), 

to their 3D counterparts in 𝑔. Given 3D input tensor, 𝑥𝑣 ∈ ℝ𝐇×𝐖×𝐂×𝐍, the 3D normalization 

layer computes the mean 𝜇 and standard deviation 𝜎 across the specified dimensions (usually 

height, width, and depth) and normalizes 𝑥𝑣 as follows: 

 

𝑥𝑣−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  =  
𝑥𝑣 − 𝜇

𝜎
,                 9 

 

where μ and σ are broadcasted to match the dimensions of 𝑥𝑣. 

 

For activation layers, the transition from 2D to 3D input data is more straightforward. Common 

activation functions, such as 𝑅𝑒𝐿𝑈 and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, can be directly applied to the 3D input data, 

with minor tweaking, as these functions perform element-wise operations on the input tensor. The 

output tensor 𝑦𝑣 ∈ ℝ𝑯×𝑾×𝑪×𝑵, by applying the activation function 𝐴𝑓 elementwise to the input 

tensor 𝑥𝑣: 

 

𝑦𝑣 =  𝐴𝑓(𝑥𝑣[𝑖, 𝑗, 𝑐, 𝑛]), ∀ 𝑖 ∈  [0, 𝐻), 𝑗 ∈  [0, 𝑊), 𝑐 ∈  [0, 𝐶), 𝑛 ∈  [0, 𝑁).     10 

 

By ensuring that normalization and activation layers are compatible with the 3D input data, we 

maintain the stability and efficiency of the training process, while enabling the model to 
effectively learn non-linear features from the volumized input data. 

 

3.2.5. Fully Connected and Output Layers  

 

To perform patch-wise error calculation and enhance model’s robustness, we modify 𝑓’𝑠 fully 

connected layer function F: ℝ(𝑀,𝑁)→ ℝ(𝐿,𝑍) where 𝑀 represents the number of input features, 𝐿 

denotes the number of output features, and 𝑍 is the total number of patches. The fully connected 

layer function 𝐹′ now maps each patch's input features to its respective output features, allowing 
for patch-wise error calculations during backpropagation. 

 

The output layer function 𝑂: ℝ(𝐿,𝑁) →  ℝ(𝑘,𝑁), where 𝑘 is the number of classes. To ensure 

compatibility with the 3D input data, the output of the preceding layers must be reshaped or 

flattened before connecting to the fully connected layers. This modification allows 𝑔 to map each 

patch's output features to its respective class probabilities, further enabling patch-wise error 
calculations during the training. 

 

3.2.5.1. Patch Aggregate Loss (PAL) Function 

 

PAL is designed to enable backpropagation on individual patches. During training, the loss for 

each patch is calculated separately. The patch-wise losses are then aggregated to obtain the 

overall loss for the image. Given the modified output O: ℝ(𝐿,𝑁)→ ℝ(𝑘,𝑁), we define PAL as 

follows: 
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Patch-wise Error Calculation: Computes the loss for each patch separately using a suitable loss 

function  𝐿𝑝: ℝ( 𝑁′,𝑘)→ ℝ(𝑁′). For a given patch 𝑛 ∈  {0, 1, . . . , 𝑍 − 1}, the patch-wise loss is 

calculated as 𝐿𝑝(𝑦𝑛, 𝑦), where 𝑦𝑛 represents the predicted class probabilities for patch n, and 

𝑦 denotes the true class labels of the original input. 

 

Loss Aggregation: Aggregate the patch-wise losses to obtain the overall loss for the image. This 
function, termed Patch Aggregate Loss (PAL) function, computes the overall loss of an image by 

summing up the individual patch-wise losses: 

 

𝑃𝐴𝐿 =  ∑ 𝐿𝑝(𝑦𝑛, 𝑦

𝑁−1

𝑛=0

)                11 

 

Using the sum of slice-wise losses directly emphasizesthe importance of minimizing the error for 

each individualslice, driving the model to learn more robust features from 
each slice. This increased emphasis on localized featuresresults in a more robust model that is 

better equipped tocounteract attacks. 

 

3.3. Training Methodology  
 

We incorporate deep curriculum learning optimization (CLO) as described in Ghebrechristos et. 

al. [4] at a batch level to enhance the training process. Given a batch 𝐵 ⊆  𝐷, we define a 

syllabus 𝑆 as a function 𝑆: 𝐵 →  𝐵′, where 𝐵′ is a reordered version of the original batch B. 𝑆 

describes an input order of the samples in 𝐵′ such that thelearning process progresses from 

simpler to more complex samples as quantified by a concrete metric 𝑚 taken from Table 1.  
 

Table 1. List of measures used in this study. Given samples 𝑥, 𝑥1, 𝑥2 ∈  𝐵 where 𝑏𝑥 is normalized 

histogram of pixel intensities and 𝑖 is an index of a pixel value in the image’s vector. 𝜎 is standard 

deviation and µ  is mean or average pixel intensities. 

 

 

Metric Implementation Category 

Entropy  
𝐻(𝑥) =  ∑ 𝑏𝑥(𝑖) 𝑙𝑜𝑔

𝑁

𝑏𝑥(𝑖)
𝑖 ∈ 𝜒,𝑥 ∈ 𝐷

 
standalone 

Joint Entropy (JE) 𝐽𝐸(𝑥1, 𝑥2) =  ∑ 𝑏𝑥(𝑖) 𝑙𝑜𝑔 𝑏𝑥(𝑖)

𝑖

 distance 

Mutual Information (MI or 

I) 
𝑀𝐼(𝑥1, 𝑥2) =  𝐻(𝑥1) + 𝐻(𝑥2) − 𝐽𝐸(𝑥1, 𝑥2) distance  

KL-Divergence (KL) 𝐷𝑘𝐿(𝑥1 || 𝑥2) =  ∑ 𝑥1𝑖
𝑙𝑜𝑔

𝑥1𝑖

𝑥2𝑖𝑖

 
distance  

Structural Similarity index 

(SSIM) 
𝑆𝑆𝐼𝑀(𝑥1, 𝑥2)

=
(2µ

𝑥1
𝜇𝑥2

+ 𝐶1)(2𝜎𝑥1𝑥2
+ 𝐶2)

(µ
𝑥1

2 + µ
𝑥2

2 + 𝐶1)(𝜎𝑥1

2 + 𝜎𝑥2
2 + 𝐶2)

 

distance 

Max Norm (MN) 𝑥∞ = max (𝑥1, 𝑥2) distance 

Peak signal to noise ratio 

(PSNR) 
𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10(

𝑀𝐴𝑋

√𝑀𝑆𝐸
) 

distance 

Mewan Squared Error 

𝑀𝑆𝐸(𝑥1, 𝑥2) =  
1

𝑁2
∑ ∑ (𝑥1𝑖𝑗

− 𝑥2𝑖𝑗
)

2
𝑁

𝑗

𝑁

𝑖

 

na 
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Ordering of samples for the batch is done in the sameway the volumizer algorithm orders slices 

to create a volume. Given 𝐵 =  {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a batch of 𝑛 samples (or a set of patches 

belonging to 𝑥), let 𝑆𝑀(𝑥𝑖) be the standalone metric value of xi and 𝐷𝑀(𝑥𝑖 , 𝑃𝑟𝑒𝑓) be the distance 

metric value of the sample or slice 𝑥𝑖 with respect to a reference image (or patch) 𝑃𝑟𝑒𝑓, 

respectively. We define order relations 𝑅𝑆𝑀 ⊆  𝐵 and 𝑅𝐷𝑀 ⊆  𝐵, such that: 

 

(𝒙𝒊, 𝒙𝒋) =  {
𝑅 𝑆𝑀  𝑖𝑓  𝑆𝑀(𝑥𝑖) ≤ 𝑆𝑀(𝑥𝑗)

𝑅𝐷𝑀𝑖𝑓 𝐷𝑀 (𝑥𝑖 , 𝑃𝑟𝑒𝑓) ≤ 𝐷𝑀(𝑥𝑗, 𝑃𝑟𝑒𝑓)
     12 

 

Thus, the syllabus (or volumizer) algorithm transforms 𝐵 (set of slices) into an ordered one 𝐵′: 

𝑆𝑆𝑀(𝐵) = { 𝑥1
′ , … . , 𝑥𝑛

′ , 𝑤ℎ𝑒𝑟𝑒 (𝑥𝑖
′, 𝑥𝑗

′) ∈ 𝑅𝑆𝑀}      13 

𝑆𝐷𝑀(𝐵) = { 𝑥1
′ , … . , 𝑥𝑛

′ , 𝑤ℎ𝑒𝑟𝑒 (𝑥𝑖
′, 𝑥𝑗

′) ∈ 𝑅𝐷𝑀}      14 

 

The learning process progresses from simpler to more complex samples based on a specific 

metric, which enhances model performance and speeds up convergence. This method also 
strengthens models against localized attacks by ordering patches based on their features. 

Adversarial perturbations in a single patch have less impact on the model’s image understanding 

due to this arrangement.  

 

4. EXPERIMENTS & RESULTS  
 

Our approach is evaluated on EfficientNet-B0, InceptionV3, ResNet50, and VGG19 architectures 

modified for 3D input compatibility. These modifications result in a significant but tolerable 
increase in the number of parameters: approximately 20M for VGG, 49M for ResNet, 44M for 

Inception, and 10M for EfficientNet. The models, implemented via open-source TensorFlow [31] 

library, are tested on CIFAR10, CIFAR100, and ILSVRC12 datasets under different attack 
settings. CIFAR10 facilitates comprehensive study, while CIFAR100 and ILSVRC12 test the 

approach’s generalizability.  

 

We measure the classification accuracy – of the models on both clean images (𝑎𝑐𝑐clean) and 

adversarial images 𝑎𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘. We calculate robustness score (δ) as the difference between 

model’s classification accuracy on clean images and its classification accuracy on adversarial 

images, δ = (𝑎𝑐𝑐𝑐𝑙𝑒𝑎𝑛 − 𝑎𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘). A smaller δ demonstrates greater proactive robustness 
against adversarial attacks. We also measure defense success rate β – the percentage of 

successfully defended adversarial attacks. A higher defense success rate indicates a better 

proactive defense against adversarial attacks. 
 

We contrast performance with a baseline defense approach using similar datasets. We used 

adversary stickers (Error! Reference source not found.) synthesized by A-ADS method of 

Brown et al. [6] and flower patches extend the adversary benchmark library, FoolBox’s [32] to 

implement N-pixel attacks. 
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Figure 6 Patch Attack Stickers (bottom) and TnT Flower Patches (top) Used in this Study. 

Table 2. Number of Parameters for different models; original (𝑓) and  with modifications (𝑓3𝐷 ). 

 
Model  Original (f)  Modified (𝒇𝟑𝑫 𝒐𝒓  𝑮) 

   

VGG16 143,357,544 183,021,512 

ResNet50  25,636,712 74,203,245 

InceptionV3 23,851,784 68,104,050 

EfficientNetB0 5,330,564  15,900,000 

 

4.1. Défense Success Rate  
 

Error! Reference source not found.7 shows the defense success rate of model trained with 

our method surpasses 80% after 300 epochs, indicating effective defense against 1-pixel attacks 

at each validation run. After 50 epochs, the classifier rapidly learns to resist the attacked pixel, 

increasing Ġ’𝑠 success rates while those of 𝑓 stagnate below 72%. This confirms that the 

approach delivers models that match the undefended model’s performance on clean datasets 
while resisting localized attacks. 

 

4.2. Défense Effectiveness  
 

We evaluate the performance of our defense in reducing the effectiveness of N-Pixel and patch 

attacks. We use 1, 2, up to 16-pixel coverage for N-pixel. We use adversarial patches – Toaster, 
School-Bus, Lipstick and Pineapple - synthesized by attack methods A-ADS, covering up to 25% 

of the entire image. Our approach is compared with existing defense strategies in terms of clean 

accuracy and defense success rate β. We mount such attacks against our defense (I, KL, H, MN, 

and PSNR syllabi), and an undefended model as a control. The patch size(𝑝ℎ, 𝑝𝑤) of the 

volumization algorithm for all syllabi is set to 16 × 16 pixels. We take reported results of all 

baseline defenses for comparison. 

 

 
 
Figure 7. CIFAR10 Training losses and Success Rates of Defense on EfficientNet. (Left) Shows the Losses 

of Defended Model G Using Different Syllabus Configurations and Undefended Model F. (Right) Shows 

the Training Success Rates of Both Models Under 1-Pixel Attack. 

 

Table 3 presents a comparison of generalization performance of EfficientNet on CIFAR10, 

CIFAR100 and ImageNet datasets, with and without our defense mechanisms, 
for both clean and attacked test sets. Though the undefended model exhibits good performance 

clean data, its performance significantly deteriorates under adversarial attacks. In contrast, 

models defended using our approach show resilient performance under adversarial scenarios, 

with minimal trade-offs in clean data accuracy.  
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Notably, the model defended using measure MI outperforms other models under N-Pixel attack 
across all datasets. For instance, the model defended using mutual information (I) achieves attack 

accuracies of 91.3 (N-Pixel) and 61.6 (APA) on CIFAR10, remarkably higher than the 

undefended model’s 43.2 and 44.3, respectively. Similarly, the KL-defended model yields 

considerably better attack accuracy on CIFAR100 (73 and 43.2 for N-Pixel and APA 
respectively) compared to the undefended version (32.5 and 22.1).  

 

Error! Reference source not found.7 illustrate the overall robustness (δ) of EfficientNet and 

Inception against N-pixel and patch attacks, respectively. The plots highlight the dependence of 

model robustness on attack size for both defended and undefended models, with the undefended 

model being 40% less accurate at worst. Our defense is effective for both architectures at all 
attack magnitudes. However, like the undefended model, the performance of our method 

degrades as the size of the attack increases, indicating a shared vulnerability to larger-scale 

attacks. 
 

Table 3. Generalization accuracy of EfficientNet on CIFAR10, CIFAR100, and ILSVRC12 datasets with 

and without our defence mechanisms. The performance is compared under three scenarios: Clean Test Sets, 

Test Sets Under One-Pixel Attack (N-Pixel Where N=1),Test Sets Under Patch Attack with a Toaster 

Sticker (APA). 

 

 

As presented in Tables 3 & 4, our proposed defense demonstrates a significant performance 
against N-Pixel attack compared to the undefended models. The undefended models exhibit sharp 

decline when under attack (𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌column). Our proposed method (I) not only achieves high 

𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 of 96.3% for EfficientNet and 99% for VGG and Inception but also shows a minor 

degradation when under attack; by 5%, and 0.4% for Efficient and VGG respectively.  
 

Table 4. Generalization accuracy of EfficientNet on CIFAR10, CIFAR100, and ILSVRC12 datasets with 

and without our defence mechanisms. The performance is compared under three scenarios: Clean Test Sets, 

Test Sets Under TnT Flower Attack and Distortion Attack. 

 

 

Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑵 − 𝒑𝒊𝒙𝒆𝒍) 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑨𝑷𝑨) 

 CIFA

R10 

CIFAR

100 

ISLV

RC12 

CIFA

R10 

CIFAR

100 

ISLVR

C12 

CIFA

R10 

CIFAR

100 

ISLVR

C12 

Entropy(H) 94 90.5 76.8 85 74 56.8 79 55.2 58.2 

MI 96.3 98 79 91.3 70 69 61.6 53 61.2 

KL 93 93.2 75 63 73 62.1 65 43.2 36.8 

PSNR 89 90.3 76 83.6 51 56 52 53 48.3 

Norm(MN) 92 86 75.4 74 51 49.5 42 38 32 

Undefended 99 96.8 78.3 43.2 32.5 12.4 44.3 22.1 10.8 

Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑻𝒏𝑻) 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑫𝒊𝒔𝒕𝒐𝒓𝒕𝒊𝒐𝒏) 

 CIFA

R10 

CIFA

R100 

ISLV

RC12 

CIFA

R10 

CIFAR

100 

ISLVR

C12 

CIFA

R10 

CIFAR

100 

ISLVR

C12 

Entropy(H) 94 90.5 76.8       

MI 96.3 98 79       

KL 93 93.2 75       

PSNR 89 90.3 76       

Norm(MN) 92 86 75.4       

Undefended 99 96.8 78.3       
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Comparing mutual information (MI) with the PSD method, our approach has a slightly lower 

𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏for VGG, with a difference of 0.53%, but delivers a better 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 for the same 

model, with an improvement of 1.2%. When comparing I to Liu et al.’s method, our 

methoddemonstrates a substantial improvement in 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 for VGG, with a difference of 9.2%, 

and a higher 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 as well, with an improvement of 4.6%. PSD and Liu et al. do not provide 
results for EfficientNet. 

 

Table 5 presents defense success rates (β) for various defense methods and ours against APA on 
three datasets. For CIFAR10, our methods achieved 95.6% and 96.12% success rates, while 

Jujutsu and LGS obtained only 86.5% and 93.2%, respectively. Similarly, for CIFAR100, our 

methods reached success rates of 95.43% and 94.3%, outperforming Jujutsu’s 55.7% and LGS’s 

73.7%. In the ImageNet dataset, ours (MI) achieved the highest defense success rate of 89.1%, 
while PSNR obtained 83.2%, both surpassing Vax-a-Net’s 86.8% and DW’s 65.2% and66.2% for 

VGG and Inception models, respectively. Not all methods have reported results for every dataset, 

limiting a comprehensive comparison of their effectiveness. 
 

 
 

Figure8. (a) EfficientNet Robustness as a Function of N - Number of Pixels Attacked, (b) Inception 

Robustness Against APA As a Function of Patch Size, (c) Defense Success Rate of Various Models as a 

Function of N-Pixel Attack Magnitude, (d) Defense Success Rate Β of Various Models as a Function of 
APA Attack Magnitude. 

 
Table 5. Accuracy of models over the set of test images without attacks 𝐀𝐜𝐜𝐜𝐥𝐞𝐚𝐧 and with attack 𝐀𝐜𝐜𝐚𝐭𝐭𝐚𝐜𝐤, 

reported for all CIFAR10 classes. Reported as Top-1 accuracy of 1 pixel attack for the undefended model, 

the model defended by our method (I) and other comparable approaches. All images in the dataset are 

attached for this report. 

 

Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 

EfficientNet VGG EfficientNet VGG 

Undefended 98 98.9 44.3 35.9 

I/Ours 96.3 99 91.3 98.6 

PSD - 99.53 - 97.8 
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Liu et al - 89.8 - 91 

 
Table 6. Defense Success Rate (Β) of Various Defense Methods Against APA Covering At Least 5% of the 

Image. Adversary Patches; Toaster, Lipstick, Pineapple, And School-Bus Were Used. 

 
Defence Défense Success Rate(β) 

CIFAR10 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Jujutsu (ResNet) 86.5 55.7 - 

LGS 93.2 73.7 - 

V-a-N(VGG) - 91.6 86.8 

DW(VGG) - - 65.2 

DW(Inc) - - 66.2 

ECViT-B 47.39 - 41.7 

 
Table 7. Defense Success Rate (Β) of Various Defense Methods Against TnT Covering at Least 5% of the 

Image. 

 
Defence Défense Success Rate(β) 

CIFAR100 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Texture-based    

Anomaly detection    

 
Table 8. Defense Success Rate (Β) of Various Defense Methods Against Distortion Attacks. 

 
Defence Défense Success Rate(β) 

CIFAR100 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Gradient-based    

Saliency-based     

 

4.3. Attack Size Impact on Model Performance  
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Figure 9. Impact of Patch size(Volume Depth) on Defense Success Rate (Β) Against Pixel Attack on 

CIFAR10 Dataset. the Training Samples Are of Shape (32, 32, 3). We Generated Volumes Staring with a 

Patch of Size 16 by 16 With Depth 4, All the Way to a Patch Size of 4 by 4 With Depth 16. 

 

Figure 8shows the defense success rate (β) for all four models under N-pixel and APA attacks, 

respectively, using a depth of 16 for the volumizer algorithm. We notice defense success 

decreases when attacked pixels surpass the patch size of the volume. This is due to the 
volumization algorithm’s design, which focuses on small attacks and becomes less effective 

when perturbations exceed the patch size or span multiple slices. This limitation is more 

prominent if the attack covers a large image portion, potentially obscuring important object 
details.  

 

4.4. Class Generalization  
 

Figure 9depicts VGG generalization performance on CIFAR10 test data. The undefended model 

exhibits an AUC of 0.5, while the defended model achieves an AUC of 0.69 under  
 

 
 

Figure9. (Left) ROC of VGG Model Under 1-Pixel Attack. (Right) ROC of VGG Model Under APA of 

Size 8 by 8 Pixels. Class Generalization Performance Comparison Between Defended and Undefended 

VGG on CIFAR10 Test Set. the Plots are Micro Average ROC Curve Across the 10 Classes. 

 
1-pixel attack while the same model achieves AUC of 0.65 under APA.  This indicates that the 

defended model shows improved performance in terms of class generalization compared to the 

undefended model. These plots suggest that the defended model has better discriminative power 

and can effectively distinguish between different classes in the CIFAR10 dataset when under 1 
pixel and APA attacks. This improvement in AUC demonstrates the effectiveness of our 

proposed approach in enhancing the model’s class generalization capabilities when under 

localized universal attacks. 

4.5. Ablation Study  
 

We conduct an ablation study to assess the impact of volume depth and curriculum learning in 
our defense methodology. 

 

4.5.1. Impact of CL on Défense Success Rate  

 

For this experiment, we train our models with and without the curriculum learning phase and 

compare the results with the fully trained models. The results are presented in Table 9. 
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Table9. Impact of Curriculum Learning and Volumizer: 𝐀𝐜𝐜𝐜𝐥𝐞𝐚𝐧And 𝐀𝐜𝐜𝐚𝐭𝐭𝐚𝐜𝐤For Models Trained 

Without Curriculum Learning (I-Vol), Models Trained with Curriculum Learning but Without Volumizer 

(I-CL), And Fully Trained Models (I). 

 

Method 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 

EffNet VGG Inception EffNet VGG Inception 

I-Vol 93.7 97.2 97.4 90.6 95.7 95.2 

I-CL 97.9 99.4 98.6 56.8 38.1 12.3 

I 96.3 99 99 91.3 98.6 96.12 

 

The first scenario we tested was our method without CL but with the volumizer (I-Vol). The 

performance under this configuration was reasonably good, with the 𝐴𝑐𝑐𝑐𝑙𝑒𝑎𝑛being 93.7%, 
97.2%, and 97.4% for EfficientNet , VGG, and Inception, respectively. However, the 

𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘was markedly lower, specifically, it was 81.6% for EfficientNet , 89.7% for VGG, and 

85.2% for Inception. Compared to the full method (I), the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘was lower by 9.7%, 8.9%, 

and 10.9%, respectively. This indicates the effectiveness of Curriculum Learning in improving 
the model’s robustness against adversarial attacks. Second, we studied the effect of Curriculum 

Learning without the volumizer (I-CL). This configuration achieved even higher 𝐴𝑐𝑐𝑐𝑙𝑒𝑎𝑛scores, 

specifically 97.9%, 99.4%, and 98.6% for EfficientNet , VGG, and Inception, respectively. 

However, the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘suffered significantly without the volumizer. For EfficientNet , VGG, and 

Inception, the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘were 56.8%, 38.1%, and 12.3%, respectively, revealing drops of 34.5%, 

60.5%, and 83.8% compared to the full I syllabus. This demonstrates the vital role the volumizer 

plays in enhancing the model’s resilience to adversarial attacks. 
 

Lastly, our fully implemented method (I), incorporating both Curriculum Learning and the 

volumizer, consistently outperformed the other configurations in terms of 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘, achieving 
91.3%, 98.6%, and 96.12% for EfficientNet , VGG, and Inception, respectively. These figures 

indicate the combined effect of both components in improving the model’s resilience to 

adversarial attacks. 

 

4.6. Timing Information  
 
Inference and training time comparisons between our method and undefended models are 

presented in Table 9. An inference overhead for a model protected with our method is noticeable 

compared to the undefended models– around 6 milliseconds on average across all three models. 

This increased latency is primarily due to the modifications made to the model architecture to 
accommodate our defense strategy. Additionally, our defense incurs a significant overhead during 

training. Depending on the size of the dataset, the additional training time can span from hours to 

days. However, this process only needs to be run once, as does preprocessing dataset a priori. All 
inference runs used an NVIDIA RTX A4000, while training was conducted on a node equipped 

with four RTX A100 GPUs. Despite the increased computational demands, the benefits of 

enhanced security provided by our defense method offer a worthwhile trade-off.  

 
Table10. Inference Time (ms) For VGG, Resnet, And Inception Trained on ImageNet and the Same Model 

with Our Defense Based on I Syllabus And a 16 Depth Volumized Inputs. 

 

Method VGG ResNet Inception 

Undefended 0.12 0.14 0.09 

I/Ours 0.23 0.18 0.16 

 

5. CONCLUSION 
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We introduced a proactive defence approach against localized adversarial attacks, which 
preserves model performance on clean data. Our method combines a volumization algorithm that 

converts 2D images into 3D volumetric representations while maintaining spatial relationships, 

increasing resilience to perturbations. Additionally, we employ a deep curriculum learning 

optimization strategy, ordering training samples by complexity, enabling progressive learning 
from simple to complex samples. By incorporating these techniques into popular CNN 

architectures, we demonstrated the effectiveness of our method against N-pixel and patch attacks. 

Experimental results indicated improved robustness without sacrificing performance on 
cleandata, confirming our approach’s ability to enhance image classification model resilience 

against localized adversarial attacks. 
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