
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.2, March 2024 

DOI:10.5121/ijaia.2024.15205 77 

 

 

 

 

IMMUNIZING IMAGE CLASSIFIERS AGAINST 

LOCALIZED ADVERSARY ATTACKS 
 

Henok Ghebrechristos and Gita Alaghband 
 

Department of Computer Engineering, University of Colorado-Denver, Denver, Colorado 
 

ABSTRACT 

 
This paper addresses the vulnerability of deep learning models, particularly convolutional neural networks 

(CNN)s, to adversarial attacks and presents a proactive training technique designed to counter them. We 

introduce a novel volumization algorithm, which transforms 2D images into 3D volumetric representations. 

When combined with 3D convolution and deep curriculum learning optimization (CLO), it significantly improves 

the immunity of models against localized universal attacks by up to 40%. We evaluate our proposed approach 

using contemporary CNN architectures and the modified Canadian Institute for Advanced Research (CIFAR-10 

and CIFAR-100) and ImageNet Large Scale Visual Recognition Challenge (ILSVRC12) datasets, showcasing 

accuracy improvements over previous techniques. The results indicate that the combination of the volumetric 

input and curriculum learning holds significant promise for mitigating adversarial attacks without necessitating 

adversary training. 
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1. INTRODUCTION 

 

The security of any machine learning model is assessed in terms of the goals and capabilities 

associated with adversary attacks. Algorithmically crafted perturbations, even if minuscule, can be 

exploited as directives to manipulate classification outcomes [1]. Attacks can be classified as black-

box or white-box [2] depending on the attacker's access to and knowledge of the model's information, 

which includes its architecture, parameters, training data, weights, and more. In a white-box attack, the 

attacker has complete access to the network's information, while a black- box attack is characterized 

by the absence of knowledge regarding the model's internal configuration. Occasionally, a gray-box 

attack can be generated by employing a generative model, enabling the creation of adversarial 

examples without access to the victim model. Localized adversarial attacks [3] exploit spatial 

invariance of CNN-based image classifiers by introducing minimal perturbations to deceive the model 

into producing incorrect classifications. These attacks are usually constrained to a small contiguous 

portion of the image and are image- agnostic (or universal) gray-box attacks. 

 

In this paper, we introduce a new training methodology (Figure 1) designed to fortify CNNs against 

localized attacks. Our primary approach incorporates deep curriculum optimization [4] and a 

volumization algorithm. We employ an information-theoretic representation of an image along with 

optimization procedure that merges batch-based curriculum learning (CL), patch 
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Figure 1. Overview of the proposed training process. The Curriculum Learning Optimization (CLO) component 

is used to generate a syllabus (input path) for the batch. It then volumizes each image, followed by feature 

extraction using 3D CNNs. The PAL loss function is applied to optimize parameters by calculating slice-wise 

errors. 

 

aggregate loss (PAL) function, and 3D convolution to train and proactively defend against effective 

localized attacks; one-pixel [5] and adversary patch attacks (APA) [6]. 

 

1.1. Background on Adversary Attack 
 

At its core, the purpose of adversary attack is to sabotage the generalization capability of a model by 

countering its learning objective. Given a CNN classifier 𝑓(𝑥; 𝜃), fully trained on a dataset 𝐷, its 

purpose is to map a source image 𝑥 to a set of probabilities 𝑓(𝑥). An adversarial attack seeks to 

perturb this source image, producing an altered image 𝑥′ such that the difference between 𝑥 and 𝑥′ is 

minimal to human perception. However, the classifier 𝑓, when processing 𝑥′, produces an incorrect 

output that significantly deviates from the true label. This is achieved by exploiting the high-

dimensional decision boundaries of the model, forcing it to misclassify 𝑥′ while maintaining a 

semblance of the original image structure in 𝑥. 
 

1.1.1. Attack Objective 

 

Adversarial image attacks involve adding a perturbation 𝑟 ∈ ℝ𝑚 to 𝑥, causing the maximized class 

probabilities to differ between the original and perturbed images. i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥 + 
𝑟) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥). These types of attacks can be categorized as targeted or untargeted. 

 

In a targeted attack, the adversarial image 𝑥′ = 𝑥 + 𝑟 is generated to induce the classifier to assign 

𝑥′ to a specific target class 𝑐𝑡 ∈ 𝑌, where 𝑐𝑡 ≠ 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥)). The perturbation 𝑟 is selected such that 

𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖 (𝑥′)) = 𝑐𝑡. Conversely, in an untargeted attack, the adversarial image 𝑥′ = 𝑥 + 𝑟 is 

crafted to cause the classifier to assign 𝑥′ to any incorrect class without a particular target. In this 

case, the perturbation 𝑟 is chosen to satisfy 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥′)) ≠ 
𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑓𝑖(𝑥)) without imposing additional constraints on the target class. Our research focus is 

untargeted attacks. 
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1.1.2. Défense Objective 
 

The defense objective is to train a model that is robust to adversarial image attacks without 

sacrificing the accuracy of the classifier on the original dataset. Formally, the objective is to find 

𝑔 that minimizes the following loss: 
 

 
𝑚𝑖𝑛 

𝑔 

1 
 

 

|𝐷
| 

 

∑   𝑚𝑎𝑥 𝐿(𝑔(𝑥 + 𝑟), 𝑦) 1 
𝑟 ∈ 𝑅 
(𝑥,𝑦)∈𝐷 

 

where 𝑅 is the set of possible adversary perturbations added to a local region of the input, and 𝐿 is a 

loss function used to train the model 𝑔. The objective is to minimize the maximum loss over all 

possible adversarial examples 𝑥′ = 𝑥 + 𝑟 generated by any allowable perturbation in 𝑅. 𝑅 is 

constrained to be a set of localized attacks. Localized attacks are characterized by the property that the 

L2 norm of the perturbation vector 𝑟, denoted by ||𝑟||, is much smaller than the L2 norm of the 

original input image 𝑥, denoted by ||x||. Specifically, this condition can be expressed as ||r|| 

<< ||x||. These attacks modify only a small subset of pixels that are confined to a localized region of the 

image. 

 

1.1.3. Localized Universal Attacks Against Image Classifiers 

 

Localized universal attacks are a subset of adversarial attacks that specifically target image classifiers. 

They exploit spatial invariances of CNNs to introduce perturbations that lead to misclassifications. 

These perturbations are usually confined to small, contiguous portions of the input image and can 

cause the model to produce incorrect output classifications, even when the introduced changes are 

almost imperceptible to the human eye. Two predominant types of such attacks are the N-Pixel Attack 

and the Adversary Patch Attack. 

 

1.1.3.1. N-Pixel Attack 

 

Szegedy et al. introduced adversarial attacks through minor perturbations of pixels [7] to induce CNN 

image misclassification. These perturbations, often undetectable to the human eye (see see Figure 

above), expose the inherent vulnerabilities in the robustness of Convolutional Neural Networks 

(CNNs). 

 

Diving deeper into this, the N-Pixel Attack, which can be viewed as an extension or generalization of 

the ideas presented by Szegedy et al., specifically perturbs 'N' distinct pixels in an image to induce 

misclassification. The challenge and intrigue of this method arise from its seemingly benign nature; 

altering a minimal number of pixels in a high-resolution image intuitively appears harmless. Yet, such 

alterations can drastically alter CNN’s prediction, underscoring the intricate and potentially fragile 

decision boundaries upon which these networks operate. 

 

While the attack has profound implications for the integrity and reliability of image classifiers, it also 

catalyzes a renewed interest in understanding the foundational workings of CNNs. This understanding 

is crucial, especially in applications where trust in model predictions is paramount, such as in medical 

imaging or autonomous vehicles. 

 

The N-Pixel Attack serves as a pivotal reminder that even state-of-the-art models, trained on extensive 

datasets and exhibiting high accuracy, can be vulnerable to carefully constructed, minimal adversarial 

perturbations. As researchers and practitioners continue to deploy CNNs in 
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varied applications, it is imperative to develop strategies that not only enhance performance but also 
fortify against adversarial threats. 
 

 

Figure 2. One Pixel Attack. 

 

1.1.3.2. Adversary Patch Attack 

 

Introduced by Brown et al., the Adversary Patch Attack unveils a unique and potent vulnerability in 

deep neural network (DNN) based classifiers [6]. Unlike other adversarial attacks that perturb an 

image globally, this approach is localized and focuses on modifying a confined region of the image 

with an adversarial patch (Figure 3), which can be recognized as a seemingly harmless object or 

pattern added to the image. Remarkably, this addition can dramatically alter the classifier's output, 

demonstrating a classifier's inability to discern genuine content from deceptive information. 

 

Central to the findings of Brown et al. was the realization that these adversarial patches were resistant 

to various changes, especially affine transformations such as translation, scaling, and rotation. Their 

methodology optimized the patches such that they were robust to these transformations. This means 

that the relative position, size, or orientation of the adversarial patch doesn't need to be precise for it to 

deceive the classifier effectively. This robustness elevates the potential real-world implications of this 

attack as the adversarial patch remains effective under different viewing conditions. 

 

The adversarial patch, crafted using a white-box approach, can be applied in a "universal" manner. 

This universality signifies that a single patch can be effective across different images and is not tied to 

a specific target image. The conspicuous nature of these patches (often visually distinct) contrasts with 

the often-imperceptible alterations in traditional adversarial attacks, making it an intriguing anomaly in 

adversarial research. 
 

Figure 3. Adversary Patch Attack (APA). 
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Furthermore, Brown et al.'s findings underscore the importance of understanding not just the global, 

but also the localized processing dynamics of CNNs. The attack challenges the prevalent notion of 

CNNs' spatial hierarchies, wherein larger spatial structures (like objects) are assumed to have a 

dominant influence over classification compared to smaller structures or patterns. The Adversary 

Patch Attack highlights that this might not always be the case, as a localized, conspicuous pattern can 

effectively override the neural network's perception of larger structures. In real-world scenarios, this 

type of attack could be employed in deceptive practices, such as placing adversarial stickers or 

objects in strategic locations to deceive AI systems in surveillance, autonomous driving, or even 

augmented reality applications. As such, the research by Brown et al. underscores the importance of 

defensive mechanisms that consider both global and local image features. 

 

Both Brown et al., and later Gittings et al. [8] backpropagate through the target model to generate 

‘stickers’ that can be placed anywhere within the image to create a successful attack. This optimization 

process can take several minutes for one single patch. Karmon et al. showed in LaVAN that the 

patches can be much smaller if robustness to affine transformation is not required [3] but require 

pixel-perfect positioning of the patch which is impractical for real APAs. 

 

1.1.3.3. Local Distortion Attack 

 

Local Distortion Attacks[9] focus on altering small, strategically chosen areas of an input image to 

deceive a classifier. Unlike adversarial attacks that introduce perturbations across the entire image, 

these methods pinpoint areas that disproportionately influence the classifier's decision. Identifying 

these critical regions often involves saliency maps and gradient-based analysis[9]. Once the key 

regions are determined, the attacker leverages optimization techniques to introduce subtle distortions, 

designed to mislead the classifier. These distortions include pixel intensity changes, targeted geometric 

transformations (like localized rotation or scaling), or the injection of meticulously crafted noise 

patterns. The distortion process frequently uses an iterative approach; the attacker modifies the image 

and observes the impact on the classifier's output, refining the distortions until misclassification 

occurs. 
 

Figure 4.GreedyFool: Local Distortion Attack. 

 

Once these influential regions are identified, the attacker employs optimization techniques to introduce 

subtle distortions designed to mislead the classifier (Figure X). These local distortions can manifest as 

pixel intensity changes, targeted geometric transformations (e.g., localized rotation, scaling, or 

shearing), or carefully crafted noise patterns. The optimization process is frequently iterative, with the 

attacker applying distortions, evaluating the impact on the classifier's output, and refining the 

manipulations until misclassification is achieved. 
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A fundamental goal of local distortion attacks is to induce misclassification while minimizing the 

overall perceptibility of the introduced alterations. This introduces a trade-off between attack efficacy 

and the visibility of the changes. Attackers may be constrained by specific limits on the allowable 

types of distortions or the total number of pixels they can manipulate. In certain scenarios, the attacker 

can further refine the attack by exploiting knowledge of the target model's architecture or its 

underlying training data. 

 

Local distortion attacks pose unique challenges compared to other adversarial attack types. The 

localized nature of the perturbations necessitates a nuanced understanding of the model's internal 

decision-making processes. Unlike adversarial patches, they are often designed to be subtle and blend 

with the original image content. This focus on minimizing human detectability raises concerns about 

the potential for these attacks to bypass security measures or mislead human inspection in real-world 

scenarios. 

 
1.1.3.4. TnT Attack: Universal Naturalistic Adversarial Patches Against Deep Neural Network 

Systems 

 

The TnT Attack (Transformers 'n' Trojans) presents a sophisticated adversarial patch methodology 

designed to disrupt DNN-based image classifiers [10]. Unlike traditional adversarial patches, TnT 

Attack patches are crafted to mimic natural textures and patterns, making them less conspicuous. The 

attack leverages a Transformer architecture, often a Vision Transformer (ViT), and a separate external 

image dataset to generate its patches. The Transformer's attention mechanisms play a crucial role in 

identifying patterns and textures that have a potent adversarial effect when selectively introduced into 

images. Furthermore, the TnT Attack emphasizes universality, meaning a single patch can be placed 

in various locations across a wide range of images and still cause the target classifier to misclassify. 

This flexibility increases the potential threat in real-world scenarios with less constrained patch 

placement. 
 

 

Figure 5.Random color and flower patches generated by TnT attack and applied to PubFig dataset. 

 

At the heart of the TnT Attack lies a Transformer architecture, Vision Transformer (ViT). 

Transformers have become prevalent in image processing tasks due to their ability to model long- 

range dependencies. The Transformer is fed images from a separate external dataset, unrelated to the 

dataset used to train the target classifier. Critically, the Transformer's attention mechanisms analyze 

these external images to identify patterns and textures that have a potent adversarial effect when 

selectively introduced into images the classifier was designed to process. 

 

The TnT Attack further emphasizes the concept of universality. Unlike adversarial attacks tailored to 

a specific target image, the goal is to generate a single patch that can be placed in various locations 

across a wide range of images and still cause the target classifier to misclassify. This lack of specificity 

increases the potential threat in real-world scenarios where an attacker might have limited control over 

the exact context and placement of the adversarial patch. 
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2. RELATED WORK 

Goodfellow et al. proposed a method to enhance the robustness of neural networks against such 

attacks. This approach, known as adversarial training [1], involves using adversarial examples as 

inputs during training to teach the network how to accurately classify them, thus improving its ability 

to defend against attacks. Adversary training methods require access to the target model to 

backpropagate gradients to update pixels, inducing high frequency noise that is fragile to resampling. 

In 2016 Papernot et al. proposed a defensive mechanism called defensive distillation [11], in which a 

smaller neural network learns and predicts the class probabilities generated by the original neural 

network’s output. Despite growing number of defense approaches, several attacks remain effective – 

particularly attacks generated using generative architectures [12], [13]. 

 

2.1. N-Pixel Attack Defences 
 

Brown et al. demonstrated that adversarial patches could be used to fool classifiers; they restricted the 

perturbation to a small region of the image and explicitly optimized for robustness to affine 

transformations [6]. Su et al. in 2017, which generates fooling images (adversarial examples) by 

perturbing only one pixel or few pixels, has proven to be difficult to defend [5]. To date, the most 

successful defense against this attack is a method presented by Chen et al. [14]. The authors propose 

Patch Selection Denoiser (PSD) that removes few of the potentially attacked pixels in the whole image. 

At the cost of image degradation, the authors achieve a successful defense rate of 98.6% against one-

pixel attacks. Similarly, 

 

Liu et al. [15] proposed a three-step image reconstruction algorithm to remove attacked pixels. The 

authors report protection rate (defense success rate) of up to 92% under for N-pixel attack for N chosen 

from the range (1, 15). Shah et al. [16] proposed the usage of an Adversarial Detection Network 

(ANNet) for detection of N-pixel attacks where N is 1, 3 or 5 and report up to 97.7 adversarial 

detection accuracy on MNIST Fashion dataset. Husnoo and Anwar [17] proposed an image recovery 

algorithm based on Accelerated Proximal Gradient (APG) [18] approach to detect and recovered the 

attacked pixels. 

 

2.2. Adversary Patch Defences 
 

Defenses for patch attacks are typically viewed as a detection problem [19], [20]. Once the patch’s 

location is detected, the suspected region would be either masked or in-painted to mitigate the 

adversarial influence on the image. Hayes [21] first proposed DW (Digital Watermarking), a defense 

against adversarial patches for nonblind and blind image inpainting, inspired by the procedure of 

digital watermarking removal. A saliency map of the image was constructed to help remove small 

holes and mask the adversarial image, blocking adversarial perturbations. This was an empirical 

defense with no guarantee against adaptive adversaries. 

 

Naseer et al. [22] proposed LGS (Local Gradient Smoothing) to suppress highly activated and 

perturbed regions in the image without affecting salient objects. Specifically, the irregular gradients 

were regularized in the image before being passed to a deep neural network (DNN) model for 

inference. LGS could achieve robustness with a minimal drop in clean accuracy because it was based 

on local region processing in contrast to the global processing on the whole image as done by its 

counterparts. 

 

Chou et al. [23] proposed SentiNet for localized universal attacks to use the particular behavior of 

adversarial misclassification to detect an attack, which was the first architecture that did not require 

prior knowledge of trained models or adversarial patches. Salient regions were used to 
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help observe the model’s behavior. SentiNet was demonstrated to be empirically robust and effective 

even in real-world scenarios. However, it evaluated adversarial regions by subtracting the suspicious 

region, which might at times cause false adversarial region proposals. Moreover, the suspicious 

adversarial region was placed at random locations in the preserving image, which possibly occluded 

the main objects in the scene resulting in incorrect predictions. 

 

Chen et al. [24] proposed Jujutsu to detect and mitigate robust and universal adversarial patch attacks 

by leveraging the attacks’ localized nature via image inpainting. A modified saliency map 

[25] was used to detect the presence of highly active perturbed regions, which helped to place 

suspicious extracted regions in the least salient regions of the preserved image and avoid occlusion 

with main objects in the image. Jujutsu showed a better performance than other empirical defenses in 

terms of both robust accuracy and low false-positive rate (FPR), across datasets, patches of various 

shapes, and attacks that targeted different classes. 

 

2.3. TnT Attack Defences 
 

Developing robust defences against TnT attacks is a critical area of active research. Current defence 

strategies can be broadly categorized into several key approaches, texture analysis, and anomalous 

pattern detection. 

 

Texture Analysis focuses on detecting subtle textural anomalies introduced by TnT patches. Even 

when designed to mimic natural patterns, adversarial textures may exhibit subtle statistical deviations 

or atypical characteristics compared to textures found in genuine images[2]. Researchers employ a 

variety of techniques including statistical measures, specialized filters, and image processing methods 

sensitive to textural irregularities to expose these anomalies. However, a potential limitation lies in 

highly sophisticated TnT attack generation, where adversaries could craft patches exceptionally 

difficult to distinguish based on texture alone. Carefully calibrated thresholds are also important in 

texture-based defences to avoid excessive false positives on legitimate images, which often possess 

diverse and sometimes unusual natural textures. 

 

Anomalous Pattern Detection detects anomalous patterns to circumnavigates these attaches. Since 

TnT patches originate from unrelated image datasets, they introduce the risk of incorporating visual 

patterns that are contextually out of place within the images they are applied to [26]. Defence 

strategies capitalize on this by developing algorithms designed to detect these contextually unusual or 

anomalous patterns. A key challenge in this approach is defining what constitutes "normal" patterns 

for a given image class, as real-world images can exhibit significant visual diversity. An adaptive 

adversary could also potentially modify TnT attacks to introduce patterns that are less jarringly out of 

context, decreasing the effectiveness of such defences. 

 

2.4. Distortion Attack Defences 
 

Defending against local distortion attacks is inherently challenging due to the subtle and highly 

targeted nature of the introduced perturbations. Strategies generally focus on detecting anomalous 

regions within the image and subsequently mitigating their impact on the classifier's decision. 

 

One defence approach relies on gradient-based detection, exemplified by the LGS method [22]. It 

operates under the assumption that local distortions introduce irregular gradient patterns that are 

distinct from the natural variations found in benign images. By identifying and suppressing these 

irregular patterns within localized regions, LGS can potentially neutralize the adversarial effect. 

Another detection strategy leverages saliency maps to pinpoint areas of the image that exhibit unusual 

activation patterns or deviate from the expected distribution of saliency in clean images [27], [28]. 

These flagged regions might indicate the presence of a local distortion. Defence 
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methods like SentiNet [23] take a behavioural analysis approach, monitoring the classifier's actions 

when presented with potentially manipulated images. Pronounced changes in predictions, particularly 

when the modified regions are not semantically significant, can be a powerful signal of the presence of 

a local distortion attack. 

 

Once a potentially distorted region is identified, mitigation techniques are employed. Methods like 

Jujutsu [26] use inpainting techniques to replace the suspicious region with image content that 

seamlessly blends with the surrounding areas. This aims to neutralize the distortion while maintaining 

the overall coherence and natural appearance of the image. In some cases, a simpler approach of 

masking out the suspect region may be sufficient to prevent the classifier from processing the 

manipulated content. However, the effectiveness of masking is contingent on the distorted area not 

occluding critical components of the image for classification. 

 

Many defenses are designed with specific assumptions about how distortions manifest. An adaptive 

attacker might modify their techniques to circumvent existing detection mechanisms. Furthermore, 

defenses must strike a delicate balance between detecting subtle distortions and maintaining accuracy 

on clean, unmodified images. Overzealous detection strategies can lead to false positives where benign 

image regions are incorrectly flagged as adversarial. Evaluating the robustness of local distortion 

attack defenses across varying distortion types, target models, and datasets is an essential component 

of the defense development process. Instead of relying on patch or pixel detection and removal 

techniques, our method uses deep curriculum learning optimization (Deep-CLO) [29] and 3D 

convolutional neural networks [30] to proactively defend against these attacks. An overview of our 

proposed training methodology is shown in Figure 1. 

 

3. METHOD 

Our aim is to develop a defended classifier,Ġ, that inherently defends against localized attacks without 
relying on adversarial training or prior knowledge of the attacks. To realize this objective, we propose 
a proactive defense approach characterized by following key steps: 

 

• Volumization: For each image in the batch, we convert it to a 3D volume to capture the spatial 
information of the input. 

• 3D Convolution: We modify the contemporary CNN model architectures to do 3D convolution, 

which enables the model to extract features from the 3D input volumes. Details of the 

modifications are below. 

• Deep curriculum learning optimization[4]: For each batch taken from the training dataset 

𝐷, we generate a syllabus that determines the input order of the samples in the batch. 

 

The combination of 3D convolution, Deep-CLO, and the volumization algorithm empowers Ġ to 

maintain high performance on both clean and adversarial inputs. These techniques ensure that the 

model remains resilient to perturbations and that it maintains accurate classification and verification of 

both the original images 𝑥 and adversarial images 𝑥′ = 𝑥 + 𝑟. Refer to analysis section for detailed 

justification. 

 

When used as a preprocessing step, the algorithm allows Ġ to extract spatial relationships from the 

volumized data, resulting in enhanced robustness against localized attacks. The employment of Deep 

Curriculum Optimization as the training procedure further bolsters the Ġ’s resilience to adversarial 

attacks. The resulting classifier not only defends against the targeted attacks but also retains high 

performance on non-adversarial images, achieving classification accuracy comparable to state-of-the-

art models. Consequently, our approach demonstrates a unique 
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𝑖 

𝑖 

balance between robustness and accuracy without relying on adversarial training, making it a 
significant contribution to the field of image classification under adversarial conditions. 

 

3.1. Volumization Algorithm 
 

The volumization algorithm, is a pixel-preserving and reversible transformation operator denoted as a 

function: 

𝑉 ∶ (𝑥, 𝐻, 𝑊, 𝐶) → (𝑥′, 𝑝ℎ, 𝑝𝑤, 𝐶, 𝑍 ). 2 

Given an input image 𝑥 ∈ 𝐷 of shape (𝐻, 𝑊, 𝐶), the algorithm uses a configurable hyperparameter, 

patch size 𝑆(𝑝ℎ, 𝑝𝑤) - where 𝑝ℎ and 𝑝𝑤 are the   height   and   width   of each slice - to split 𝑥 
into 𝑍 non-overlapping slices 𝑥′of size 𝑃 satisfying the pixelconservation 

condition: 

𝑥 =  ⋃𝑍−1 𝑥′ 3 
𝑖=0     𝑖 

This states that the original image x is equivalent to the union of all its extracted slices (see the image 

at the bottomof Figure 1). Here, 𝖴 denotes the union operation. The algorithm extracts a list of slices 

and proceeds to rank each slice according to a prespecified metric m – a configurable hyperparameter. 

The chosen metric can be of type distance or standalone (Table 1). If 𝑚 is a distance-based metric, a 

reference slice 𝑃𝑟𝑒𝑓 is selected, which can be user-definedor automatically determined by choosing the 

most salient slice. On the other hand, m is considered standalone if it measures some characteristics of 

a given slice. All slices are then ordered based on their individual metric scores or their distances 

from the reference slice. The ordering 𝑜𝑟𝑑 is 

user define configurable hyperparameter that can be either descending or ascending. Finally, the 

ranked slices are stacked along the depth axis to create a 3D volume 𝑥𝑣 = 𝑉 (𝑥) ofshape (𝑝ℎ, 𝑝𝑤, C, N), 

where 𝑍 (depth of the volume) isthe total number of slices. Refer to Ghebrechristos et. al. 

[4] for detailon the ranking and ordering process, which is identical for both the volumizer and CL 

when generating a syllabus for a batch. 
 

By breaking the image into smaller patches, we localize the region of analysis, making the training 

process more sensitive to adversarial attacks that affect only a small portion of the image. This 

localization often aligns with the attack region of localized adversarial attacks, enhancing the models’ 

ability to detect and respond to them. 

 

3.2. Model Architecture 
 

Given a conventional CNN classifier architecture 𝑓 designed to learn from 2D images, we perform the 

following modifications to construct Ġ - a 3D counterpart 𝑓. 

 

3.2.1. Input Layer 

 

𝑓’s input layer, denoted as 𝐼2𝐷, is designed to accept a 2D input data 𝑥 with dimensions 𝐻 × 𝑊 × C 

such that 𝐼2𝐷: 𝑥 ∈ ℝ𝐻×𝑊×𝐶. In order to extract features from the volumized images, the input layer of 

model Ġ is adjusted to be 3-dimensional, 𝐼3𝐷, where the input to this layer 𝑥𝑣 is a 4D tensor with 

dimensions 𝐻′ × 𝑊′ × C × Z, such that 𝐼3𝐷: 𝑥𝑣 ∈ ℝ𝐻′×𝑊′×𝐶×𝑍. In shorthand notation, this reversible 

transformation can be represented as: 

 

𝑓(𝐼2𝐷: 𝑥  ∈ ℝ𝐻×𝑊×𝐶)   ↔ Ġ(𝐼3𝐷: 𝑥  ∈ ℝ𝐻′×𝑊′×𝐶×𝑍), 4 
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where 𝐻’ and 𝑊’ are prespecified width and height of the individual patches within the volume and 𝑍 
signifies the total number of patches. This enables the classifier to learn features from the volumized 

data 𝑥𝑣. 

 

3.2.2. Convolution Layer 

 

For CNN, convolution represents the interaction between an input (image or feature map) and a kernel 

(filter). The kernel is a small matrix that slides over the input data, performing an element- wise 

multiplication and summing the results to generate a new feature map. In a 2D convolution, the input 

data and the kernel are both two-dimensional. 

 
(𝐾 ∗ 𝑥)(𝑖, 𝑗) = ∑   ∑  𝐾(𝑚, 𝑛) 𝑥(𝑖 − 𝑚, 𝑗 − 𝑛) 5 

𝑚 𝑛 

Here, 𝐾 represents the 2D kernel, 𝑥 represents the 2D input and (𝑖, 𝑗) are the coordinates in the output 

feature map. The summation is performed over all spatial dimensions (𝑚, 𝑛) of the 2D kernel. 
 

For a given classifier, 3D counterpart of the above operation is: 

 
(𝐾3𝐷 ∗ 𝑥𝑣)(𝑖, 𝑗, 𝑘) = ∑  ∑  ∑ 𝐾3𝐷(𝑚, 𝑛, 𝑝)𝑥𝑣(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘 − 𝑝) 6 

𝑚 𝑛 𝑝 
 

where 𝐾3𝐷represents the 3D kernel, 𝑥𝑣 is the 3D input data and (𝑖, 𝑗, 𝑘) are the coordinates in the output 

feature map. The summation is performed over all spatial dimensions (𝑚, 𝑛, 𝑝) of the 3D kernel. This 

modification enables the classifier to learn features from the volumized data by processing spatial 

information across height, width, and depth dimensions simultaneously. 

 

Note that the optimal kernel size depends on the size of the individual slices within the volume and the 

desired level of spatial information capture. For example, if f consists of 1 × 1, 3 × 3, and 5 × 5 2D 

convolution layers, we adjust these layers to be 1 × 1 × 𝑍, 3 × 3 × 𝑍, and 5 × 5 × 
𝑍 3D convolution layers, respectively. To ensure compatibility, we enforce the constraint that the 

kernel size is much smaller than the size of the individual slices and that the kernel operates on each 

slice in the volume. That is, 𝐻′ ≪ 𝐻, and 𝑊′ ≪ 𝑊. The stride and padding values are also adjusted 

accordingly. 

 

3.2.3. Pooling Layer 

 

All pooling layers of 𝑓 are modified to handle the 3D volume representation of the input data. In 

𝑓, the 2D pooling layers denoted as 𝑃2𝐷: 

𝑃2𝐷 : ℝ𝐻𝑖𝑛×𝑊𝑖𝑛×𝐶𝑖𝑛  → ℝ𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡×𝐶𝑜𝑢𝑡 7 

Where 𝐻𝑖𝑛, 𝑊𝑖𝑛 and 𝐶𝑖𝑛 represent the height, width, and number of channels of the input feature maps, 

while 𝐻𝑜𝑢𝑡, 𝑊𝑜𝑢𝑡 and 𝐶𝑜𝑢𝑡 denote the height, width, and number of channels of the output feature maps, 

respectively. 

To effectively process volumized inputs, we replace the 2D pooling layers with 3D counterparts: 

𝑃3𝐷 : ℝ𝐻𝑖𝑛×𝑊𝑖𝑛×𝐶𝑖𝑛   → ℝ𝑝ℎ𝑜𝑢𝑡×𝑝𝑤𝑜𝑢𝑡×𝐶𝑜𝑢𝑡× 𝑁𝑜𝑢𝑡 8 
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where 𝑝ℎ𝑖𝑛, 𝑝𝑤𝑖𝑛, 𝐶𝑖𝑛 𝑎𝑛𝑑 𝑁𝑖𝑛 represent the height, width, number of channels, and number of patches 

of the input volume, while 𝑝ℎ𝑜𝑢𝑡 , 𝑝𝑤𝑜𝑢𝑡 , 𝐶𝑜𝑢𝑡 𝑎𝑛𝑑 𝑁𝑜𝑢𝑡 denote the height, width, number of channels, 

and number of patches of the output 3D volume, respectively. 
 

3.2.4. Normalization and Activation Layers 

 

These layers usually play an essential role in maintaining a stable and efficient training process and 

introducing non-linearity to the model. For normalization layers, we transition from 2D normalization 

methods of 𝑓, such as Batch Normalization (BN) and Instance Normalization (IN), to their 3D 

counterparts in 𝑔. Given 3D input tensor, 𝑥𝑣 ∈ ℝ𝐇×𝐖×𝐂×𝐍, the 3D normalization layer computes the 

mean 𝜇 and standard deviation 𝜎 across the specified dimensions (usually height, width, and depth) 

and normalizes 𝑥𝑣 as follows: 

𝑥𝑣 − 𝜇 
𝑥𝑣−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑   = 

𝜎 
, 9 

where μ and σ are broadcasted to match the dimensions of 𝑥𝑣. 

 

For activation layers, the transition from 2D to 3D input data is more straightforward. Common 

activation functions, such as 𝑅𝑒𝐿𝑈 and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, can be directly applied to the 3D input data, with 

minor tweaking, as these functions perform element-wise operations on the input tensor. The output 

tensor 𝑦𝑣 ∈ ℝ𝑯×𝑾×𝑪×𝑵, by applying the activation function 𝐴𝑓 elementwise to the input tensor 𝑥𝑣: 

𝑦𝑣 = 𝐴𝑓(𝑥𝑣[𝑖, 𝑗, 𝑐, 𝑛]), ∀ 𝑖 ∈ [0, 𝐻), 𝑗 ∈ [0, 𝑊), 𝑐 ∈ [0, 𝐶), 𝑛 ∈ [0, 𝑁). 10 
 
By ensuring that normalization and activation layers are compatible with the 3D input data, we 

maintain the stability and efficiency of the training process, while enabling the model to effectively 

learn non-linear features from the volumized input data. 

 

3.2.5. Fully Connected and Output Layers 

 

To perform patch-wise error calculation and enhance model’s robustness, we modify 𝑓’𝑠 fully 

connected layer function F: ℝ(𝑀,𝑁)→ ℝ(𝐿,𝑍) where 𝑀 represents the number of input features, 𝐿 denotes 

the number of output features, and 𝑍 is the total number of patches. The fully connected layer function 

𝐹′ now maps each patch's input features to its respective output features, allowing for patch-wise error 

calculations during backpropagation. 

 
The output layer function 𝑂: ℝ(𝐿,𝑁) → ℝ(𝑘,𝑁), where 𝑘 is the number of classes. To ensure compatibility 

with the 3D input data, the output of the preceding layers must be reshaped or flattened before 

connecting to the fully connected layers. This modification allows 𝑔 to map each patch's output 

features to its respective class probabilities, further enabling patch-wise error calculations during the 

training. 

 

3.2.5.1. Patch Aggregate Loss (PAL) Function 

 

PAL is designed to enable backpropagation on individual patches. During training, the loss for each 

patch is calculated separately. The patch-wise losses are then aggregated to obtain the overall loss for 

the image. Given the modified output O: ℝ(𝐿,𝑁)→ ℝ(𝑘,𝑁), we define PAL as follows: 
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𝑝 

Patch-wise Error Calculation: Computes the loss for each patch separately using a suitable loss 

function 𝐿 : ℝ( 𝑁
𝘍,𝑘)→ ℝ(𝑁

𝘍). For a given patch 𝑛 ∈ {0, 1, . . . , 𝑍 − 1}, the patch-wise loss is calculated 

as 𝐿𝑝(𝑦𝑛, 𝑦), where 𝑦𝑛 represents the predicted class probabilities for patch n, and 

𝑦 denotes the true class labels of the original input. 

 

Loss Aggregation: Aggregate the patch-wise losses to obtain the overall loss for the image. This 

function, termed Patch Aggregate Loss (PAL) function, computes the overall loss of an image by 

summing up the individual patch-wise losses: 
 

𝑁−1 

𝑃𝐴𝐿  =  ∑ 𝐿𝑝(𝑦𝑛, 𝑦) 11 
𝑛=0 

 

Using the sum of slice-wise losses directly emphasizesthe importance of minimizing the error for each    

individualslice,    driving    the    model    to    learn    more    robust     features     from each slice. This 

increased emphasis on localized featuresresults in a more robust model that is better equipped 

tocounteract attacks. 

 

3.3. Training Methodology 
 

We incorporate deep curriculum learning optimization (CLO) as described in Ghebrechristos et. al. 

[4] at a batch level to enhance the training process. Given a batch 𝐵 ⊆ 𝐷, we define a syllabus 𝑆 as a 

function 𝑆: 𝐵 → 𝐵′, where 𝐵′ is a reordered version of the original batch B. 𝑆 describes an input order 

of the samples in 𝐵′ such that thelearning process progresses from simpler to more complex samples as 

quantified by a concrete metric 𝑚 taken from Table 1. 

 
Table 1. List of measures used in this study. Given samples 𝑥, 𝑥1, 𝑥2 ∈ 𝐵 where 𝑏𝑥 is normalized histogram of 

pixel intensities and 𝑖 is an index of a pixel value in the image’s vector. 𝜎 is standard deviation and µ is mean or 
average pixel intensities. 

 
Metric Implementation Category 

Entropy 𝑁 
𝐻(𝑥) = ∑ 𝑏𝑥(𝑖) 𝑙𝑜𝑔 

𝑏 (𝑖)
 

𝑖 ∈ 𝜒,𝑥 ∈ 𝐷 
𝑥

 

standalone 

Joint Entropy (JE) 𝐽𝐸(𝑥1, 𝑥2) = ∑ 𝑏𝑥(𝑖) 𝑙𝑜𝑔 𝑏𝑥(𝑖) 
𝑖 

distance 

Mutual Information (MI or 
I) 

𝑀𝐼(𝑥1, 𝑥2) = 𝐻(𝑥1) + 𝐻(𝑥2) − 𝐽𝐸(𝑥1, 𝑥2) distance 

KL-Divergence (KL) 𝑥1𝑖 

𝐷𝑘𝐿(𝑥1 || 𝑥2) = ∑ 𝑥1𝑖 
𝑙𝑜𝑔 

𝑥
 

𝑖 2𝑖 

distance 

Structural Similarity index 
(SSIM) 

𝑆𝑆𝐼𝑀(𝑥1, 𝑥2) 
(2µ

𝑥 
𝜇𝑥2 + 𝐶1)(2𝜎𝑥1𝑥2 + 𝐶2) 

= 1  

(µ  2 + µ  2 + 𝐶1)(𝜎𝑥  
2 

+ 𝜎𝑥  
2 + 𝐶2) 

𝑥1 𝑥2 1 2 

distance 

Max Norm (MN) 𝑥∞ = max(𝑥1, 𝑥2) distance 

Peak signal to noise ratio 

(PSNR) 

𝑀𝐴𝑋 
𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10( ) 

√𝑀𝑆𝐸 

distance 

Mewan Squared Error 
𝑁      𝑁 

1 2 

𝑀𝑆𝐸(𝑥1, 𝑥2) = 
𝑁2 ∑ ∑ (𝑥1𝑖𝑗 

− 𝑥2𝑖𝑗 
) 

𝑖 𝑗 

na 
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Ordering of samples for the batch is done in the sameway the volumizer algorithm orders slices to 

create a volume. Given 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a batch of 𝑛 samples (or a set of patches belonging to 𝑥), 

let 𝑆𝑀(𝑥𝑖) be the standalone metric value of xi and 𝐷𝑀(𝑥𝑖, 𝑃𝑟𝑒𝑓) be the distance metric value of the 

sample or slice 𝑥𝑖 with respect to a reference image (or patch) 𝑃𝑟𝑒𝑓, 

respectively. We define order relations 𝑅𝑆𝑀 ⊆ 𝐵 and 𝑅𝐷𝑀 ⊆ 𝐵, such that: 

𝑅 𝑆𝑀 𝑖𝑓 𝑆𝑀(𝑥𝑖) ≤ 𝑆𝑀(𝑥𝑗) 
(𝒙𝒊, 𝒙𝒋) =   {

𝑅
 𝑖𝑓 𝐷𝑀 (𝑥 , 𝑃 12 ) ≤ 𝐷𝑀(𝑥 , 𝑃 ) 

𝐷𝑀 𝑖  
𝑟𝑒𝑓 

𝑗 𝑟𝑒𝑓 

 

Thus, the syllabus (or volumizer) algorithm transforms 𝐵 (set of slices) into an ordered one 𝐵′: 
𝑆𝑆𝑀(𝐵) = { 𝑥′ , … . , 𝑥′ , 𝑤ℎ𝑒𝑟𝑒 (𝑥′, 𝑥′) ∈ 𝑅 } 13 

1 𝑛 𝑖     𝑗 𝑆𝑀 
𝑆𝐷𝑀(𝐵) = { 𝑥′ , … . , 𝑥′ , 𝑤ℎ𝑒𝑟𝑒 (𝑥′, 𝑥′) ∈ 𝑅 } 14 

1 𝑛 𝑖     𝑗 𝐷𝑀 
 

The learning process progresses from simpler to more complex samples based on a specific metric, 

which enhances model performance and speeds up convergence. This method also strengthens models 

against localized attacks by ordering patches based on their features. Adversarial perturbations in a 

single patch have less impact on the model’s image understanding due to this arrangement. 

 

4. EXPERIMENTS & RESULTS 

Our approach is evaluated on EfficientNet-B0, InceptionV3, ResNet50, and VGG19 architectures 

modified for 3D input compatibility. These modifications result in a significant but tolerable increase 

in the number of parameters: approximately 20M for VGG, 49M for ResNet, 44M for Inception, and 

10M for EfficientNet. The models, implemented via open-source TensorFlow [31] library, are tested 

on CIFAR10, CIFAR100, and ILSVRC12 datasets under different attack settings. CIFAR10 facilitates 

comprehensive study, while CIFAR100 and ILSVRC12 test the approach’s generalizability. 

 

We measure the classification accuracy – of the models on both clean images (𝑎𝑐𝑐clean) and adversarial 

images 𝑎𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘. We calculate robustness score (δ) as the difference between model’s classification 

accuracy on clean images and its classification accuracy on adversarial images, δ = (𝑎𝑐𝑐𝑐𝑙𝑒𝑎𝑛 − 
𝑎𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘). A smaller δ demonstrates greater proactive robustness against adversarial attacks. We 

also measure defense success rate β – the percentage of successfully defended adversarial attacks. A 

higher defense success rate indicates a better proactive defense against adversarial attacks. 

 

We contrast performance with a baseline defense approach using similar datasets. We used adversary 

stickers ((Figure) synthesized by A-ADS method of Brown et al. [6] and flower patches extend the 

adversary benchmark library, FoolBox’s [32] to implement N-pixel attacks. 
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Figure 6 Patch Attack Stickers (bottom) and TnT Flower Patches (top) Used in this Study. 

Table 2. Number of Parameters for different models; original (𝑓) and with modifications (𝑓3𝐷 ). 

 

Model Original (f) Modified (𝒇𝟑𝑫 𝒐𝒓 𝑮) 

   

VGG16 143,357,544 183,021,512 

ResNet50 25,636,712 74,203,245 

InceptionV3 23,851,784 68,104,050 

EfficientNetB0 5,330,564 15,900,000 

 

4.1. Défense Success Rate 
 

Figure 7 shows the defense success rate of model trained with our method surpasses 80% after 300 

epochs, indicating effective defense against 1-pixel attacks at each validation run. After 50 epochs, the 

classifier rapidly learns to resist the attacked pixel, increasing Ġ’𝑠 success rates while those of 𝑓 
stagnate below 72%. This confirms that the approach delivers models that match the undefended 

model’s performance on clean datasets while resisting localized attacks. 

 

4.2. Défense Effectiveness 
 

We evaluate the performance of our defense in reducing the effectiveness of N-Pixel and patch attacks. 
We use 1, 2, up to 16-pixel coverage for N-pixel. We use adversarial patches – Toaster, School-Bus, 
Lipstick and Pineapple - synthesized by attack methods A-ADS, covering up to 25% of the entire 
image. Our approach is compared with existing defense strategies in terms of clean accuracy and 
defense success rate β. We mount such attacks against our defense (I, KL, H, MN, and PSNR syllabi), 

and an undefended model as a control. The patch size(𝑝ℎ, 𝑝𝑤) of the volumization algorithm for all 

syllabi is set to 16 × 16 pixels. We take reported results of all baseline defenses for comparison. 

 

Figure 7. CIFAR10 Training losses and Success Rates of Defense on EfficientNet. (Left) Shows the Losses of 

Defended Model G Using Different Syllabus Configurations and Undefended Model F. (Right) Shows the 

Training Success Rates of Both Models Under 1-Pixel Attack. 

 

Table 3 presents a comparison of generalization performance of EfficientNet on CIFAR10, CIFAR100    

and    ImageNet    datasets,    with    and    without    our    defense    mechanisms, for both clean and 

attacked test sets. Though the undefended model exhibits good performance clean data, its 

performance significantly deteriorates under adversarial attacks. In contrast, models defended using 

our approach show resilient performance under adversarial scenarios, with minimal trade-offs in clean 

data accuracy. 
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Notably, the model defended using measure MI outperforms other models under N-Pixel attack across 

all datasets. For instance, the model defended using mutual information (I) achieves attack accuracies 

of 91.3 (N-Pixel) and 61.6 (APA) on CIFAR10, remarkably higher than the undefended model’s 43.2 

and 44.3, respectively. Similarly, the KL-defended model yields considerably better attack accuracy on 

CIFAR100 (73 and 43.2 for N-Pixel and APA respectively) compared to the undefended version (32.5 

and 22.1). 

 

Figure8 illustrate the overall robustness (δ) of EfficientNet and Inception against N-pixel and patch 

attacks, respectively. The plots highlight the dependence of model robustness on attack size for both 

defended and undefended models, with the undefended model being 40% less accurate at worst. Our 

defense is effective for both architectures at all attack magnitudes. However, like the undefended 

model, the performance of our method degrades as the size of the attack increases, indicating a shared 

vulnerability to larger-scale attacks. 

 
Table 3. Generalization accuracy of EfficientNet on CIFAR10, CIFAR100, and ILSVRC12 datasets with and 

without our defence mechanisms. The performance is compared under three scenarios: Clean Test Sets, Test Sets 

Under One-Pixel Attack (N-Pixel Where N=1),Test Sets Under Patch Attack with a Toaster Sticker (APA). 

 
Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑵 − 𝒑𝒊𝒙𝒆𝒍) 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑨𝑷𝑨) 

 CIFA 

R10 

CIFAR 

100 

ISLV 

RC12 

CIFA 

R10 

CIFAR 

100 

ISLVR 

C12 

CIFA 

R10 

CIFAR 

100 

ISLVR 

C12 

Entropy(H) 94 90.5 76.8 85 74 56.8 79 55.2 58.2 

MI 96.3 98 79 91.3 70 69 61.6 53 61.2 

KL 93 93.2 75 63 73 62.1 65 43.2 36.8 

PSNR 89 90.3 76 83.6 51 56 52 53 48.3 

Norm(MN) 92 86 75.4 74 51 49.5 42 38 32 

Undefended 99 96.8 78.3 43.2 32.5 12.4 44.3 22.1 10.8 

 

As presented in Tables 3 & 4, our proposed defense demonstrates a significant performance against N-

Pixel attack compared to the undefended models. The undefended models exhibit sharp decline when 

under attack (𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌column). Our proposed method (I) not only achieves high 

𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 of 96.3% for EfficientNet and 99% for VGG and Inception but also shows a minor 

degradation when under attack; by 5%, and 0.4% for Efficient and VGG respectively. 

 

Table 4. Generalization accuracy of EfficientNet on CIFAR10, CIFAR100, and ILSVRC12 datasets with and 

without our defence mechanisms. The performance is compared under three scenarios: Clean Test Sets, Test Sets 

Under TnT Flower Attack and Distortion Attack. 

 

Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑻𝒏𝑻) 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌(𝑫𝒊𝒔𝒕𝒐𝒓𝒕𝒊𝒐𝒏) 

 CIFAR10 CIFAR100 ISLVRC12 CIFAR10 CIFAR100 ISLVRC12 CIFAR10 CIFAR100 ISLVRC12 

Entropy(H) 94 90.5 76.8 67 54 46.2 72 55.2 35.2 

MI 96.3 98 79 61.3 50 39.5 61.2 51.4 31.4 

KL 93 93.2 75 64 52 52.2 65 46.2 36 

PSNR 89 90.3 76 53.6 55 46 55 53 38.5 

Norm (MN) 92 86 75.4 44.3 52.2 42.01 52.1 37.6 32 

Undefended 99 96.8 78.3 39.8 34.6 10.1 44.3 32 16.2 
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Comparing mutual information (MI) with the PSD method, our approach has a slightly lower 

𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏for VGG, with a difference of 0.53%, but delivers a better 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 for the same model, 

with an improvement of 1.2%. When comparing I to Liu et al.’s method, our method demonstrates a 

substantial improvement in 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 for VGG, with a difference of 9.2%, and a higher 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 as 

well, with an improvement of 4.6%. PSD and Liu et al. do not provide results for EfficientNet. 

 

Table 5 presents defense success rates (β) for various defense methods and ours against APA on three 

datasets. For CIFAR10, our methods achieved 95.6% and 96.12% success rates, while Jujutsu and 

LGS obtained only 86.5% and 93.2%, respectively. Similarly, for CIFAR100, our methods reached 

success rates of 95.43% and 94.3%, outperforming Jujutsu’s 55.7% and LGS’s 73.7%. In the 

ImageNet dataset, ours (MI) achieved the highest defense success rate of 89.1%, while PSNR obtained 

83.2%, both surpassing Vax-a-Net’s 86.8% and DW’s 65.2% and66.2% for VGG and Inception 

models, respectively. Not all methods have reported results for every dataset, limiting a comprehensive 

comparison of their effectiveness. 

 

 
Figure8. (a) EfficientNet Robustness as a Function of N - Number of Pixels Attacked, (b) Inception Robustness 
Against APA As a Function of Patch Size, (c) Defense Success Rate of Various Models as a Function of N-Pixel 

Attack Magnitude, (d) Defense Success Rate Β of Various Models as a Function of APA Attack Magnitude. 

 
Table 5. Accuracy of models over the set of test images without attacks 𝐀𝐜𝐜𝐜𝐥𝐞𝐚𝐧 and with attack 𝐀𝐜𝐜𝐚𝐭𝐭𝐚𝐜𝐤, 

reported for all CIFAR10 classes. Reported as Top-1 accuracy of 1 pixel attack for the undefended model, the 
model defended by our method (I) and other comparable approaches. All images in the dataset are attached for 

this report. 

Defence 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 

EfficientNet VGG EfficientNet VGG 

Undefended 98 98.9 44.3 35.9 

I/Ours 96.3 99 91.3 98.6 

PSD - 99.53 - 97.8 
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Liu et al - 89.8 - 91 
 

Table 6. Defense Success Rate (Β) of Various Defense Methods Against APA Covering At Least 5% of the 

Image. Adversary Patches; Toaster, Lipstick, Pineapple, And School-Bus Were Used. 

 
Defence Défense Success Rate(β) 

CIFAR10 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Jujutsu (ResNet) 86.5 55.7 - 

LGS 93.2 73.7 - 

V-a-N(VGG) - 91.6 86.8 

DW(VGG) - - 65.2 

DW(Inc) - - 66.2 

ECViT-B 47.39 - 41.7 

 
Table 7. Defense Success Rate (Β) of Various Defense Methods Against TnT Covering at Least 5% of the Image. 

 
Defence Defence Success Rate(β) 

CIFAR10 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Texture-based [34] 78.34 - 69.51 

Anomaly detection  [34] 84.12 - 52.1 

 
Table 8. Defense Success Rate (Β) of Various Defense Methods Against Distortion Attacks. 

 
Defence Defence Success Rate(β) 

CIFAR10 CIFAR100 ILSVRC12 

H/Ours (EfficientNet) 91.3 80.5 - 

MI/Ours (ResNet) 95.6 95.43 89.1 

PSNR/Ours (Inc) 96.12 94.3 83.2 

Gradient-based [27] 58.2 - 55.4 

Saliency-based [28] 66.1 - 50.23 

 

4.3. Attack Size Impact on Model Performance 
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Figure 9. Impact of Patch size(Volume Depth) on Defense Success Rate (Β) Against Pixel Attack on CIFAR10 

Dataset. the Training Samples Are of Shape (32, 32, 3). We Generated Volumes Staring with a Patch of Size 16 

by 16 With Depth 4, All the Way to a Patch Size of 4 by 4 With Depth 16. 

 

Figure 8shows the defense success rate (β) for all four models under N-pixel and APA attacks, 

respectively, using a depth of 16 for the volumizer algorithm. We notice defense success decreases 

when attacked pixels surpass the patch size of the volume. This is due to the volumization algorithm’s 

design, which focuses on small attacks and becomes less effective when perturbations exceed the 

patch size or span multiple slices. This limitation is more prominent if the attack covers a large image 

portion, potentially obscuring important object details. 

 

4.4. Class Generalization 
 

Figure 9depicts VGG generalization performance on CIFAR10 test data. The undefended model 

exhibits an AUC of 0.5, while the defended model achieves an AUC of 0.69 under 

 

 
Figure9. (Left) ROC of VGG Model Under 1-Pixel Attack. (Right) ROC of VGG Model Under APA of Size 8 by 

8 Pixels. Class Generalization Performance Comparison Between Defended and Undefended VGG on CIFAR10 

Test Set. the Plots are Micro Average ROC Curve Across the 10 Classes. 

 

1-pixel attack while the same model achieves AUC of 0.65 under APA. This indicates that the 

defended model shows improved performance in terms of class generalization compared to the 

undefended model. These plots suggest that the defended model has better discriminative power and 

can effectively distinguish between different classes in the CIFAR10 dataset when under 1 pixel and 

APA attacks. This improvement in AUC demonstrates the effectiveness of our proposed approach in 

enhancing the model’s class generalization capabilities when under localized universal attacks. 

 

4.5. Ablation Study 
 

We conduct an ablation study to assess the impact of volume depth and curriculum learning in our 
defense methodology. 

 

4.5.1. Impact of CL on Défense Success Rate 

 

For this experiment, we train our models with and without the curriculum learning phase and compare 

the results with the fully trained models. The results are presented in Table 9. 
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Table9. Impact of Curriculum Learning and Volumizer: 𝐀𝐜𝐜𝐜𝐥𝐞𝐚𝐧And 𝐀𝐜𝐜𝐚𝐭𝐭𝐚𝐜𝐤For Models Trained Without 

Curriculum Learning (I-Vol), Models Trained with Curriculum Learning but Without Volumizer (I-CL), And 
Fully Trained Models (I). 

 

Method 𝑨𝒄𝒄𝒄𝒍𝒆𝒂𝒏 𝑨𝒄𝒄𝒂𝒕𝒕𝒂𝒄𝒌 

EffNet VGG Inception EffNet VGG Inception 

I-Vol 93.7 97.2 97.4 90.6 95.7 95.2 

I-CL 97.9 99.4 98.6 56.8 38.1 12.3 

I 96.3 99 99 91.3 98.6 96.12 

 

The first scenario we tested was our method without CL but with the volumizer (I-Vol). The 

performance under this configuration was reasonably good, with the 𝐴𝑐𝑐𝑐𝑙𝑒𝑎𝑛being 93.7%, 97.2%, 

and 97.4% for EfficientNet,  VGG, and Inception, respectively. However, the 

𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘was markedly lower, specifically, it was 81.6% for EfficientNet, 89.7% for VGG, and 85.2% 

for Inception. Compared to the full method (I), the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘was lower by 9.7%, 8.9%, and 10.9%, 

respectively. This indicates the effectiveness of Curriculum Learning in improving the model’s 

robustness against adversarial attacks. Second, we studied the effect of Curriculum Learning without 

the volumizer (I-CL). This configuration achieved even higher 𝐴𝑐𝑐𝑐𝑙𝑒𝑎𝑛scores, specifically 97.9%, 

99.4%, and 98.6% for EfficientNet, VGG, and Inception, respectively. However, the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘suffered 

significantly without the volumizer. For EfficientNet, VGG, and Inception, the 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘were 56.8%, 

38.1%, and 12.3%, respectively, revealing drops of 34.5%, 60.5%, and 83.8% compared to the full I 

syllabus. This demonstrates the vital role the volumizer plays in enhancing the model’s resilience to 

adversarial attacks. 

 

Lastly, our fully implemented method (I), incorporating both Curriculum Learning and the volumizer, 

consistently outperformed the other configurations in terms of 𝐴𝑐𝑐𝑎𝑡𝑡𝑎𝑐𝑘, achieving 91.3%, 98.6%, and 

96.12% for EfficientNet , VGG, and Inception, respectively. These figures indicate the combined 

effect of both components in improving the model’s resilience to adversarial attacks. 

 

4.6. Timing Information 
 

Inference and training time comparisons between our method and undefended models are presented in 

Table 9. An inference overhead for a model protected with our method is noticeable compared to the 

undefended models– around 6 milliseconds on average across all three models. This increased latency 

is primarily due to the modifications made to the model architecture to accommodate our defense 

strategy. Additionally, our defense incurs a significant overhead during training. Depending on the size 

of the dataset, the additional training time can span from hours to days. However, this process only 

needs to be run once, as does preprocessing dataset a priori. All inference runs used an NVIDIA RTX 

A4000, while training was conducted on a node equipped with four RTX A100 GPUs. Despite the 

increased computational demands, the benefits of enhanced security provided by our defense method 

offer a worthwhile trade-off. 

 
Table10. Inference Time (ms) For VGG, Resnet, And Inception Trained on ImageNet and the Same Model with 

Our Defense Based on I Syllabus And a 16 Depth Volumized Inputs. 

 

Method VGG ResNet Inception 

Undefended 0.12 0.14 0.09 

I/Ours 0.23 0.18 0.16 

 

5. CONCLUSION 

 

We introduced a proactive defence approach against localized adversarial attacks, which preserves 

model performance on clean data. Our method combines a volumization algorithm that converts 2D 
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images into 3D volumetric representations while maintaining spatial relationships, increasing 

resilience to perturbations. Additionally, we employ a deep curriculum learning optimization strategy, 

ordering training samples by complexity, enabling progressive learning from simple to complex 

samples. By incorporating these techniques into popular CNN architectures, we demonstrated the 

effectiveness of our method against N-pixel and patch attacks. Experimental results indicated improved 

robustness without sacrificing performance on cleandata, confirming our approach’s ability to 

enhance image classification model resilience against localized adversarial attacks. 
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