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Abstract
One major public health concern in Egypt is the increasing incidence of diabetes mellitus. It is es-
sential to recognize problems early and treat them effectively [1]. This work applies several machine
learning methods to predict diabetes risk using a dataset from Egyptian diabetes and endocrinology
clinics. Features including age, BMI, medical history, and other health markers are included in
the dataset. Using performance criteria such as confusion matrix, F1-score, recall, accuracy, and
precision, we assessed various models including K-Neighbors, Gaussian Naive Bayes, Bernoulli
Naive Bayes, Extra Trees, SVC, and Logistic Regression. The findings indicate that diabetes can
be accurately predicted using machine learning. Logistic Regression, with a cross-validated accuracy
of 0.965, test accuracy of 0.957, precision of 0.94, recall of 0.90, and an F1-score of 0.92, proved
to be the most effective model for this dataset.
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1. Introduction
The goal of the large discipline of computer science known as artificial intelligence
(AI) is to build machines that are able to carry out activities that normally demand
intellect similar to that of humans. Among these tasks include pattern recognition,
reasoning, problem solving, and comprehension of natural language[2].It includes a
range of methods and tools designed to allow machines to simulate certain parts
of human thought processes. Machine Learning (ML) is a crucial subfield of AI
that focuses on creating algorithms that enable computers to make judgments or
predictions based on the data they are given. In contrast to conventional AI sys-
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tems, which depend on well defined rules, machine learning algorithms enhance their
functionality via experience. In order to do this, big datasets must be trained with
models in order to find trends and make data-driven judgments without the need to
manually program each unique activity[3].

In general, ML approaches fall into two categories: unsupervised learning, which
finds hidden patterns in unlabeled data, and supervised learning, which builds mod-
els based on labeled data. These methods are allowing sophisticated data analysis
and automation, which is driving substantial innovation and increasing efficiency
across a range of sectors[4]. With its high prevalence and rising incidence rates,
diabetes mellitus poses a serious and growing public health threat in Egypt. This
long-term condition, which is characterized by high blood sugar levels because of
insufficient insulin synthesis or usage, can lead to serious side effects such as renal
failure, neuropathy, retinopathy, and cardiovascular disease. These issues seriously
lower people’s quality of life and put a heavy strain on the healthcare system[5].A
multitude of variables, including changes in lifestyle, bad eating habits, insufficient
physical exercise, and genetic susceptibility, have been connected to the increased
incidence of diabetes cases in Egypt. To limit the burden of the disease, better so-
lutions for early identification and care are needed to address this expanding health
concern. Using machine learning to anticipate diabetes is a potential way to address
this growing health problem in Egypt[6].ML algorithms are capable of precisely iden-
tifying risk variables and predicting the probability of acquiring diabetes through
the analysis of large datasets. By using early intervention measures, healthcare
workers might possibly avoid or postpone the beginning of the disease thanks to
this predictive capabilities. This paper suggests applying ML techniques to learn
from data trends in order to identify diabetes early on. The algorithm analyzes a
number of health markers, such as age, blood pressure, body mass index (BMI),
and medical history, to identify those who are at high risk for diabetes. Its goal is
to attain high prediction accuracy. By facilitating prompt and individualized med-
ical care, this proactive strategy enhances patient outcomes and lessens the overall
burden on healthcare systems.For early identification and control of diabetes, AI
and ML applications are critical, especially in places like Egypt where the condition
is becoming more common. Public health outcomes may be improved by utilizing
these cutting-edge technologies to support successful treatments, increase prediction
accuracy, and improve overall health.

2. RELATED WORK
Several recent studies have focused on Artificial intelligence technique for Diabetic
Prediction. Maniruzzaman et al.[7] used classification techniques like LR-RF com-
bination for feature selection, NB, DT, RF, AdaBoost considering the evaluative
measures such as accuracy and Area under the ROC Curve on National Health and
Nutrition Examination Survey dataset, and concluded accuracy 94.25%. K. Hasan
and et al.[8]there purpose was To put forward a robust framework for predicting dia-
betes ,the classefire was used is SVM, KNN, DT, MLP, NB, AdaBoost, XGBoost on
PIDD and the final result ACC achieved was 78.9% by using AdaBoost. S. Kumari
et al.[9]depended on Improve the accuracy of prediction of diabetes mellitus using a
combination of machine learning techniques by using NB, RF and LR algorithms on
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PIDD dataset and the evaluative measures was ACC, Precision, Recall, F1-score,
AUC, in the end 79.08% accurate results. P. Rajendra et al. [10] the Purpose is
to Create a prediction model and investigate many methods to make performance
better and accuracy by Linear regression(LR)algorithm on two datasets PIDD and
Vanderbilt the evaluative measures Precision, Recall, F1-score after using the al-
gorithm on them the result become 78% accuracy for Dataset 1, 93% accuracy for
Dataset 2. Raja Krishnamoorthi and et al.[11] the main object is Unique intelli-
gent diabetes mellitus prediction framework (IDMPF) is developed using machine
learning Algorithms, LR, RF, SVM, and KNN on PIDD dataset there Validation
Parameter Accuracy and LR high Accuracy 86Raghavendran et al .[12]Analyze a
patient dataset to determine the probability of type 2 diabetes by LR, KNN, RF,
SVM, NB, AdaBoost Algorithms on PIDD dataset this result conclude AdaBoost
performs well 95Salliah Shafi Bhat and et al.[13] compares alot of classification mod-
els based on machine learning algorithms for predicting a patients’ diabetic condition
at the earliest feasible stage using RF, MLP, SVM, DT, GBC, and LR al gorithms
on dataset gathered from a doctor in the Indian district of Bandipora in the years
April 2021–Feb2022 .the result was RF has the highest accuracy of 98%. Aishwariya
Dutta and et al.[14].Employing ML-based ensemble model, in which preprocessing
plays a critical role in ensuring robust and accurate prediction, enabled this research
to achieve its goal of making an early prediction of diabetes using NB, RF,DT ,XGB
and LGB Algorithms on DDC dataset that was introduced from the South Asian
country of Bangladesh (2011 and 2017–2018) . Validation Parameters is Auc,Acc the
Results is Accuracy 0.735%and AUC0.832%. Jashwanth Reddy et al .[15] in 2022
there purpose is To design an accurate mode for predicting human diabetes using
machine learning algorithms like SVM, KNN, LR, NB, GB and RF on also PIDD
Dataset there Validation Parameters ACC, ROC, Precision, Recall and FM. The
Result Was ACC 80% using RF . Chatrati et al.[16] used classification techniques
like SVM, KNN, DTand LR, considering the evaluative measures such as accuracy
on PID Ddatase,and concluded that the accuracy for SVM achieve 75% as higher
accuracy. Muhammad Exell Febrian and et al.[17] Making an artificial intelligent
model that can predict diabetes diseas by k-nn and native bayes Algorithms on
PIDD data set and the Accuracy for naive bayes was 76.07Chun-Yang Chou and et
al.[18]this study used Microsoft Machine Learning Studio to train the models of var-
ious kinds of neural networks, and the prediction results were used to compare the
predictive ability of the various parameters for diabetes. There use two-Class Lo-
gistic Regression, Two-Class Neural Network, TwoClass Decision Jungle, Two-Class
Boosted Decision Tree on the collected data from tests on the patients in the past
two years were used as predictors of the models. Validation Parameters are True
Positive ,False Positive ,False Negative True Negative, Accuracy ,Precision Recall,
F1 Score, AUC. Result was 95,3% Acc for two-class boosted decision tree .

Table 1. Summarized comparison of related work, including Researchers, Year of
research, Dataset, Validation Parameters, and Results.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

3



Researchers/Year Datasets Validation Pa-
rameters

Results

Maniruzzaman and et
al. 2020[7]

National Health
and Nutrition Ex-
amination Survey

ACC, AUC ACC 94.25%

K. Hasan and et al.[8] PIMA dataset ACC ACC achieved was 78.9%
by using AdaBoost

Md. Mehedi Hassan
and et al., 2021[19]

Collected from
Shaheed Sheikh
Abu Naser Spe-
cialized Hospital,
Khulna

ACC ACC for Random Forest
97.5%

S. Kumari and et al.,
2021[9]

PIDD ACC, Precision,
Recall, F1-score,
AUC

79.08% accurate results
on PIMA dataset

P. Rajendra and et al.,
2021[10]

PIDD and Vander-
bilt

Precision, Recall,
F1-score

78% accuracy for Dataset
1, 93% accuracy for
Dataset 2

C. Yadav and et al.,
2021[20]

UCI repository ACC, Recall, Preci-
sion, F1-score

ACC for Bagging ensem-
ble methods was 98%

Muhammad Exell
Febrian and et al.,
2022[17]

PIDD ACC ACC for naive bayes was
76.07%

Raja Krishnamoorthi
and et al., 2022[11]

PIDD ACC LR high Acc 86%

Jashwanth Reddy and
et al., 2022[15]

PIDD ACC, ROC, Preci-
sion, Recall, FM

ACC 80% using RF

Raghavendran and et
al., 2022[12]

PIDD ACC, Precision,
Recall, F1-Score,
CM

AdaBoost performs well
95%

Salliah Shafi Bhat and
et al., 2022[13]

Dataset gathered
from an Indian
doctor lives in
Bandipora in
the years April
2021–Feb 2022

ROC Area, Re-
call, Precision,
F-measure, and
MCC. K-fold

RF has the highest accu-
racy of 98%

Aishwariya Dutta and
et al., 2022[14]

DDC dataset
from the South
Asian country of
Bangladesh (2011
and 2017–2018)

AUC, ACC Accuracy 73.5% and
AUC 0.832

Chun-Yang Chou and
et al.,2023[18]

Collected data from
tests on patients
over the past two
years

True Positive, False
Positive, False Neg-
ative, True Nega-
tive, Accuracy, Pre-
cision, Recall, F1
Score, AUC

ACC for two-class
boosted decision tree
was 95.3%

3. The Proposed Framework
A number of crucial processes are included in the framework that has been devel-
oped for the purpose of predicting diabetes using machine learning algorithms: data
collection, preprocessing, exploratory data analysis (EDA), dividing the dataset, re-
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sampling, model selection, and model assessment. Every step in the framework is
explained in depth in the sections that follow.

Figure 1: Framework for predicting diabetes using machine learning algorithms.

3.1. Dataset

The dataset included in this paper is inverted from the clinics of Dr. Hossam Arafa,
an endocrinologist and diabetic specialist in Egypt. The dataset contains a number
of variables that are useful in predicting diabetes, including clinical measures, med-
ical history, and particular symptoms. The dataset included 10,000 patient records
in it at first. Following extensive preprocessing, which involved procedures for clean-
ing and preparation, the dataset was narrowed down to contain 5790 patients. The
variables in this dataset include previous surgical history, COVID-19 status, hyper-
tension, obesity, tiredness, dyspnea, thyroid disorders (Primary Hypothyroidism),
fatigue, BMI, blood pressure (both systolic and diastolic), and glycated hemoglobin
levels. If a patient has diabetes is indicated by the outcome variable. This improved
dataset offers a thorough foundation for comprehending the variables linked to dia-
betes, making it easier to use and contrast different machine learning algorithms to
forecast diabetes outcomes.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

5



Feature Description Values/Range
Age Age of the patient 3 to 87
Past Surgical History of past surg-

eries
0 = no, 1 = yes

Covid Whether the patient
had COVID-19

0 = no, 1 = yes

HTN (Hypertension) Presence of hyperten-
sion

0 = no, 1 = yes

Primary Hypothyroidism Presence of primary
hypothyroidism

0 = no, 1 = yes

Obesity Whether the patient is
obese

0 = no, 1 = yes

Sense of Lump Whether the patient
has a sense of lump in
the body

0 = no, 1 = yes

Dyspnea Difficulty or labored
breathing

0 = no, 1 = yes

Fatigue and Dizziness Presence of both fa-
tigue and dizziness

0 = no, 1 = yes

BMI (Body Mass Index) Body mass index of
the patient

1 to 97

Blood pressure up Systolic blood pres-
sure

70 to 220

Blood pressure down Diastolic blood pres-
sure

40 to 120

Glycated hemoglobin Level of glycated
hemoglobin

3.6 to 17.2

Outcome Target variable indi-
cating diabetes pres-
ence

0 = non-
diabetic, 1
= diabetic

Table 1: The dataset features are listed along with their description and values to
provide a comprehensive understanding of each feature.

3.2. Data Pre-processing

The data preprocessing steps are crucial in preparing the dataset for machine learn-
ing model training and evaluation.The preprocessing steps performed are detailed
below:

3.2.1. Data Cleaning

• Handling Missing Values: The dataset’s missing values were eliminated in
order to preserve the analysis’s correctness and integrity. This methodology
guarantees the utilization of only complete data points, hence mitigating the
risk of biases or mistakes that may result from incomplete data.

• Correcting Errors:Errors in data input and discrepancies in category vari-
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ables were found and fixed. In order to ensure uniformity in data representa-
tion and check for inaccurate labels—both of which are essential for successful
analysis and modeling—this approach includes.

• Removing Duplicates: In order to avoid redundancy and guarantee that
every data point in the dataset is distinct, duplicate records were eliminated.
This process aids in preserving the dataset’s dependability and quality.

• Handling Outliers:The Interquartile Range (IQR) approach was used to find
and eliminate outliers in important characteristics including BMI and glycated
hemoglobin. The IQR is computed as follows:

IQR = Q3−Q1

where Q1 and Q3 are the first and third quartiles, respectively. Outliers are
defined as data points outside the range:

[Q1−1.5× IQR,Q3+1.5× IQR]

• Feature Scaling:The ’StandardScaler’ was utilized for feature scaling in order
to standardize the dataset. This method uses the following formula to modify
each feature, giving it a mean of (0) and a standard deviation of 1. using the
formula:

Xscaled = X −µ

σ
where X represents the original value, µ is the mean of the feature, and σ is the
standard deviation. This process ensures that all features contribute equally
to the model’s learning process and improves the efficiency and convergence
of gradient-based optimization algorithms during model training.

3.3. Exploratory Data Analysis (EDA)

We examine the dataset’s feature distribution and examine any correlations between
the characteristics in this part. Understanding the links and patterns in the data
is crucial for influencing the predictive modeling process, and this study sheds light
on those linkages and patterns.

3.3.1. Distribution of Features and Correlation Analysis

Age:

• Distribution: The dataset is right-skewed, with older patients showing higher
rates of adverse health outcomes.

• Correlation: Age strongly correlates with hypertension (r = 0.55) and mod-
erately with adverse health outcomes (r = 0.46).

BMI (Body Mass Index):

• Distribution: Higher BMI is linked to adverse health outcomes.

• Correlation: BMI shows moderate correlations with systolic (r = 0.29) and
diastolic blood pressure (r = 0.31), and HbA1c (r = 0.18).
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Blood Pressure (Systolic and Diastolic):

• Distribution: Patients with adverse outcomes have higher blood pressure.

• Correlation: Systolic and diastolic pressures are strongly correlated (r =
0.94) and moderately with adverse outcomes (r = 0.35 each).

Glycated Hemoglobin (HbA1c):

• Distribution: Elevated HbA1c indicates poor glucose control.

• Correlation: HbA1c strongly correlates with adverse outcomes (r = 0.85).

COVID-19: The study found that a history of COVID-19 among participants
had a negligible direct impact on the adverse health outcome being studied.

• Distribution: The distribution of COVID-19 history across various demo-
graphics and health statuses did not reveal significant patterns.

• Correlation: Correlation analysis showed very weak associations between
COVID-19 and the outcome (r = 0.096), as well as minimal correlations with
age (r = 0.071), hypertension (r = 0.05), and glycated hemoglobin (r = 0.085).
This suggests that COVID-19 history has minimal influence on these health
variables.

Hypertension (HTN):

• Distribution: Hypertension is common in adverse outcomes.

• Correlation: Moderate correlation with adverse outcomes (r = 0.40).

Primary Hypothyroidism:

• Distribution: Low prevalence in adverse outcomes.

• Correlation: Weak negative correlation with adverse outcomes (r = −0.17).

Sense of Lump:

• Distribution: Rare but more frequent in adverse outcomes.

• Correlation: Weak negative correlation with adverse outcomes (r = −0.16).

Fatigue and Dizziness:

• Distribution: More common in adverse outcomes.

• Correlation: Weak negative correlation with adverse outcomes (r = −0.095).
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Dyspnea:

• Distribution: More frequent in adverse outcomes.

• Correlation: Weak negative correlation with adverse outcomes (r = −0.048).

Figure 2: Correlation Matrix of Features

3.4. Splitting Data into Training and Testing

To assess the performance of the model, the dataset was divided into training (80%)
and testing (20%) groups.In order to offer an objective assessment of the model’s
accuracy, this stage makes sure that it is evaluated on untested data.

3.5. Resample Training Dataset

The outcome feature’s original distribution showed a significant imbalance, with
4216 cases of non-diabetes and 1574 cases of diabetes (1). As a result of this imbal-
ance, the model may function biasedly, favoring the majority class prediction. The
training dataset was resampled using the Synthetic Minority Over-sampling Tech-
nique (SMOTE) in order to correct the class imbalance. In order to guarantee that
the model is trained on a balanced dataset, this approach creates fake examples for
the minority class. The distribution of the outcome feature became balanced after
SMOTE was applied to the training dataset, yielding equal numbers of examples of
both classes (3379 for each class). The mathematical representation of the SMOTE
algorithm is as follows:

Xnew = Xi +(Xj −Xi) · δ where Xi,Xj ∈ Minority Class, δ ∼ U(0,1)

where:
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• Xnew: The generated synthetic sample.

• Xi: A randomly selected minority class sample.

• Xj : Another randomly selected minority class sample from the k-nearest neigh-
bors of Xi.

• δ: A random number between 0 and 1, drawn from a uniform distribution
U(0,1).

This ensures that the model is trained on a balanced dataset, which can improve its
ability to generalize and perform well on both classes.[21]

3.6. Apply Machine Learning Techniques

The pre-processed and resampled dataset is subjected to many machine learning
methods. This framework takes into account the following algorithms: Support
Vector Machine (SVM), K-Neighbors, Gaussian Naive Bayes (GNB), Extra Trees,
and Gaussian Naive Bayes (GNB). Binary classification issues are often expressed
using the logistic regression approach. It makes an evenulity estimate for a binary
result by using one or more predictor factors. The logistic function, which con-
verts a linear feature combination into a probability value between 0 and 1, is the
fundamental component of logistic regression. Because of this, it works especially
well in situations where the result is a probability or a binary categorization. This
makes the algorithm easy to comprehend and analyze, which helps with the data
analysis.[22]

Table 2: Logistic Regression Parameters
Parameter Description

C Regularization strength; a smaller value indicates
stronger regularization to prevent overfitting. This helps
in managing model complexity and avoids overfitting by
penalizing large coefficients.

solver Algorithm used for optimization, such as ’liblinear’ for
smaller datasets or ’lbfgs’ for larger ones. The choice of
solver affects the speed and stability of convergence.

max iter Maximum number of iterations for the solver to con-
verge, ensuring that the algorithm has sufficient itera-
tions to reach the optimal solution.

Logistic Regression offers simplicity and ease of interpretation, making it suit-
able for initial modeling. Its computational efficiency and effectiveness in binary
classification problems are additional benefits.[23]

3.6.1. Extra Trees

Extra Trees, or Extremely Randomized Trees, is an ensemble learning technique that
builds a large number of decision trees using random subsets of features and data
points. Unlike traditional decision trees, Extra Trees introduces greater randomness
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in the splitting of nodes, which helps in reducing variance and improving general-
ization. Each tree is built with a random subset of features and data points, and
the predictions are aggregated by averaging (for regression) or majority voting (for
classification). This method is known for its robustness and efficiency in handling
high-dimensional data[24].

Table 3: Extra Trees Parameters
Parameter Description
n estimators Number of trees in the forest; more trees generally im-

prove performance but increase computation time. A
larger number of trees enhances model robustness and
accuracy.

max depth Maximum depth of each tree; controls the complexity
and size of the trees. Limiting the depth helps to prevent
overfitting and improves model generalization.

min samples split Minimum number of samples needed to divide an inter-
nal node; helps in controlling the growth of the trees
and reducing overfitting.

min samples leaf Minimum number of samples required to be at a leaf
node; prevents creating leaves with very few samples,
which enhances the generalization ability of the model.

Extra Trees is known for its high predictive accuracy and fast training times. Its
robustness to overfitting and ability to handle complex datasets effectively are key
benefits[25].

3.6.2. Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes is a probabilistic classifier built on Bayes’ theorem, which
presumes that the features follow a Gaussian (normal) allocation. This model is
particularly effective when the features are constant and normally distributed. The
algorithm studies the probability of each dignity given the features, using the Gaus-
sian distribution to estimate these probabilities. It is known for its simplicity and
efficiency, especially in scenarios with high-dimensional data where features are as-
sumed to be independent[26].

Table 4: Gaussian Naive Bayes Parameters
Parameter Description

var smoothing A small value added to the variances to prevent numer-
ical instability during computation. This parameter en-
sures stability and robustness in the model’s predictions.

Gaussian Naive Bayes is simple and fast to train, making it ideal for high-
dimensional datasets. Its efficiency and good performance with normally distributed
data are significant advantages.
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3.6.3. Bernoulli Naive Bayes (BNB)

Bernoulli Naive Bayes is a variant of the Naive Bayes algorithm tailored for binary or
boolean features. It is built on the presumption that the features are binary and uses
a Bernoulli distribution to show the existance or absence of features. This approach
is often used in text classification tasks where features represent the presence or
absence of words. The model calculates probabilities based on feature occurrence
and class labels[27].

Table 5: Bernoulli Naive Bayes Parameters
Parameter Description

alpha Additive smoothing parameter; a small constant added
to feature counts to handle zero probabilities. This
parameter helps avoid zero probabilities and improves
model robustness.

binarize Threshold for binarizing the input features; values above
this threshold are considered as 1, and others as 0. This
parameter is useful for transforming continuous features
into binary format.

Bernoulli Naive Bayes is well-suited for binary feature data and text classifica-
tion. Its simplicity and efficiency make it effective for high-dimensional and sparse
datasets.

3.6.4. Support Vector Classifier (SVC)

Support Vector Classifier (SVC) is a strong classification technique that finds the
best hyperplane which maximizes the margin between various classes. It can handle
both linear and non-linear classification issue through the use of kernel functions,
which map input features into higher-dimensional spaces. SVC is known for its
effectiveness in high-dimensional spaces and its ability to work well with a wide
range of data distributions[28].

Table 6: Support Vector Classifier Parameters
Parameter Description

C Organization parameter; dominates the trade-off be-
tween fulfilling a low error on the training data and
minimizing model intricacy. This balance affects bias
and variance in the model.

kernel Designates the kernel type to be used (e.g., ’linear’, ’rbf’
for radial basis function, ’poly’ for polynomial). The
kernel choice influences the model’s ability to handle
non-linear data.

gamma Kernel degree for ’rbf’, ’poly’, and ’sigmoid’ kernels; con-
trols the influence of a single training example. This pa-
rameter helps define the shape of the decision boundary.
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SVC handles complex decision boundaries well and performs effectively in high-
dimensional spaces. The various kernel options and its ability to provide high clas-
sification accuracy are key benefits[29].

3.6.5. K-Neighbors (KNN)

K-Neighbors is a straightforward classification technique that uses the majority class
among a data point’s k-nearest neighbors to give a class to it. The distance between
data points is typically computed using metrics such as Euclidean distance. KNN
does not require a training phase, making it fast to implement. The choice of k and
distance metrics are crucial as they significantly impact the model’s performance
and accuracy[30].

Table 7: K-Neighbors Parameters
Parameter Description
n neighbors Number of neighbors to consider for classification; a

smaller value can lead to overfitting, while a larger value
can smooth out predictions. This affects the model’s
sensitivity to local data.

weights Weight function used in prediction; ’uniform’ applies
equal weight to all neighbors, while ’distance’ weights
neighbors by their distance. This adjusts the influence
of neighbors based on proximity.

metric Distance metric used to compute the distance between
points; common metrics include ’minkowski’ and ’eu-
clidean’. The choice of metric affects the accuracy of
predictions.

K-Neighbors is simple and does not require training, which makes it effective for
straightforward classification tasks.

3.7. Models Evaluation

In this Paper, we assessed six machine learning algorithms’ performance on a dataset
that was divided into training and testing sets. The dataset contained Logistic
Regression (LR), Extra Trees, Gaussian Naive Bayes (GNB), Bernoulli Naive Bayes
(BNB), Support Vector Classifier (SVC), and K-Neighbors. It was resampled to
solve class imbalance. The cross-validated accuracy, test accuracy, precision, recall,
and F1-score were used to evaluate each method. The goal of this Paper is to
identify, given the dataset, the best model for diabetes prediction.

3.7.1. Cross-Validated Accuracy

Cross-validated accuracy evaluates the generalizability of a model by dividing the
dataset into k subsets (folds). The model is trained on k −1 folds and tested on the
remaining fold, with this process repeated k times. The average accuracy across all
folds is the cross-validated accuracy.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

13



CV-Acc = 1
k

k∑
i=1

Ai (1)

where:

• k = Number of folds

• Ai = Accuracy on the i-th fold

3.7.2. Test Accuracy

Test accuracy measures the proportion of correctly classified instances in the test
set.

Accuracy = Number of Correct Predictions
Total Number of Predictions (2)

Or, in terms of True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN):

Accuracy = TP +TN

TP +TN +FP +FN
(3)

3.7.3. Precision

Precision, also known as Positive Predictive Value, measures the proportion of pos-
itive predictions that are correct.

Precision = TP

TP +FP
(4)

where:

• TP = True Positives (correctly predicted positive instances)

• FP = False Positives (incorrectly predicted positive instances)

3.7.4. Recall

Recall, also known as Sensitivity or True Positive Rate, measures the proportion of
actual positive instances that are correctly identified.

Recall = TP

TP +FN
(5)

where:

• TP = True Positives

• FN = False Negatives (actual positive instances that were incorrectly pre-
dicted as negative)
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3.7.5. F1-Score

The F1-Score is the harmonic mean of Precision and Recall.

F1 = 2× Precision×Recall
Precision+Recall (6)

In terms of TP, FP, and FN:

F1 = 2× TP

2TP +FP +FN
(7)

These assessment metrics give a thorough grasp of the classifier’s capabilities
and reveal how effectively the model balances the trade-offs between false positives
and false negatives while making class distinctions. Through the assessment of the
model’s performance on many dimensions, including recall, precision, and overall
accuracy, the metrics facilitate an understanding of the classifier’s capabilities and
shortcomings in terms of accurate result prediction. The performance and confusion
measures for each of the six machine learning models evaluated in this article are
summarized in the table below.

Table 8: Performance Evaluation
Model Cross-Val

Accuracy
Test Ac-
curacy

Precision Recall F1-Score

Logistic
Regression

0.9652 0.9568 0.94 0.90 0.92

Extra
Trees

0.9701 0.9560 0.94 0.89 0.92

Gaussian
NB

0.8989 0.8774 0.95 0.87 0.91

Bernoulli
NB

0.9123 0.8912 0.95 0.88 0.92

Support
Vector
Classifier
(SVC)

0.9664 0.9551 0.93 0.90 0.92

K-
Neighbors

0.9449 0.9266 0.89 0.83 0.86

3.8. Compare Models and Select the Best Technique

• Logistic Regression with an F1-score of 0.92, recall of 0.90, precision of
0.94, and test accuracy of 0.9568, showed excellent performance. As one of
the best-performing models in this research, these results highlight its accuracy
in predicting diabetes.

• Extra Trees exhibited the highest cross-validated accuracy (0.9701) among
the models, with a similar test accuracy (0.9560) to Logistic Regression. How-
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Table 9: Confusion Matrix
Model True

Negative
False
Positive

False
Negative

True Pos-
itive

Logistic Regression 818 19 31 290
Extra Trees 820 17 34 287
Gaussian NB 731 106 36 285
Bernoulli NB 748 89 37 284
Support Vector
Classifier (SVC)

816 21 31 290

K-Neighbors 805 32 53 268

ever, its precision (0.94) and recall (0.89) were slightly lower, suggesting a
marginally reduced reliability in identifying true positive cases on new data.

• Support Vector Classifier (SVC) attained a 0.9551 test accuracy, along
with 0.93 and 0.90 precision and recall ratings. SVC is less appealing as
the best model option even if these measures are similar to those of logistic
regression and do not significantly differ from it.

• Gaussian Naive Bayes showed good precision (0.95), but had a lower test
accuracy of 0.8774. Its recall (0.87) was lower, though, suggesting inconsistent
results when it came to detecting real positive instances. Similar limits were
displayed by Bernoulli Naive Bayes, which had a test accuracy of 0.8912
and balanced but lower recall (0.88) and precision (0.95).

• K-Neighbors revealed a test accuracy of 0.9266 along with 0.89 and 0.83 for
precision and recall, respectively. Although it performs rather well, it is not as
well as SVC, Extra Trees, and Logistic Regression, which makes it less ideal
for this dataset.

Overall,Logistic Regression Since it balances precision, recall, and F1-score
performance, is chosen as the most dependable model overall because of its high
test accuracy. Logistic regression is the favored model for this article despite the
good results also shown by Extra Trees and SVC. This is because of its consistent
predictive power and somewhat superior balance in performance metrics.

Conclusions
The goal of our work is to show how machine learning (ML) algorithms may dramat-
ically improve diabetes prediction and early detection based on input data. Through
the use of an extensive dataset obtained from the Egyptian clinic of Dr. Hossam
Arafa, the research demonstrates the impressive potential of machine learning mod-
els to enhance predictive healthcare, especially in areas such as Egypt where diabetes
is a major public health concern.

We compared various machine learning models—Extra Trees, Gaussian Naive
Bayes, Bernoulli Naive Bayes, Support Vector Classifier (SVC), and K-Neighbors.
Logistic Regression emerged as the most effective for predicting diabetes, with a test
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accuracy of 0.9568 and balanced metrics: precision of 0.94, recall of 0.90, and F1-
score of 0.92. Extra Trees, while slightly lower in test accuracy (0.9560), excelled
in cross-validated accuracy (0.9701). SVC also performed well (0.9551 accuracy)
but offered no major advantage. Gaussian and Bernoulli Naive Bayes were less
consistent, and K-Neighbors lagged behind the top models.

The importance of cutting-edge machine learning approaches in improving health-
care outcomes is highlighted in this research. In order to increase predicted accuracy,
it promotes ongoing improvements in the clinical use of these models, particularly
in tackling important issues like data quality and model interpretability. Machine
learning models can greatly improve early intervention tactics in healthcare systems,
which might result in more individualized and efficient diabetic care. It is recom-
mended that future research concentrate on improving the forecasting accuracy of
current models and investigating novel data sources in order to bolster public health
activities.
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