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ABSTRACT 
 
In today’s fast-paced technological landscape, artificial intelligence (AI) is revolutionizing industries, with 

geospatial analysis standing at the forefront of this transformation. The process of land cover 

classification, which involves categorizing different types of land surfaces—such as forests, urban areas, 

water bodies, and agricultural fields—has traditionally been plagued by inconsistencies and inaccuracies. 

These shortcomings have led to a variety of pressing real-world issues. Misclassified land cover data can 

result in the inefficient allocation of resources, where critical areas may be overlooked while less urgent 

regions receive attention. Additionally, the failure to accurately monitor land cover changes can allow 

illegal activities, such as deforestation, to go unnoticed, resulting in severe environmental degradation. 
Similarly, unmonitored topographical changes, like unauthorized construction projects, can significantly 

alter landscapes without regulatory oversight, posing risks to both the environment and public safety. 

Unchecked forest fires, exacerbated by delayed detection due to poor land cover classification, can spread 

rapidly, causing widespread damage. Furthermore, inaccurate monitoring of border fences can lead to 

security vulnerabilities and geopolitical tensions. Collectively, these issues contribute to the escalating 

challenges of climate change and urbanization, highlighting the critical need for more precise and reliable 

land cover classification methods. 

 

In response to these challenges, our study seeks to explore the potential of advanced machine learning 

(ML) techniques to revolutionize land cover classification. We leverage publicly available geospatial 

datasets, specifically EuroSAT and DeepGlobe, which provide comprehensive satellite imagery data across 

various regions. The focus of our research is on two primary tasks: Image Classification and Semantic 
Segmentation. Image Classification involves categorizing entire satellite images into specific land cover 

classes, providing a broad overview of the landscape. In contrast, Semantic Segmentation is a more 

granular approach that labels each pixel in an image according to its land cover class, offering detailed 

insights into the spatial distribution of different land types. To conduct a thorough analysis, we evaluate 

the performance of several cutting-edge models in these tasks. For Semantic Segmentation, we employ 

Meta AI’s Segment Anything Model (SAM), which is recognized for its ability to segment objects within 

images with high precision, and the U-Net architecture, a model that has been widely used in medical 

image analysis and has proven effective in various segmentation tasks. For Image Classification, we use 

the VGG and ResNet models, both of which are highly regarded in the field of computer vision for their 

capacity to extract detailed features from images and classify them with high accuracy. 

 
The primary objective of our research is to assess how these models perform when applied to land cover 

classification tasks and to identify their strengths and weaknesses in this specific context. By analyzing 
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their performance, we aim to provide valuable insights that can guide future research efforts and help 

improve the accuracy and reliability of land cover classification methods. Additionally, our study seeks to 

highlight new opportunities for enhancing the monitoring and management of land resources, which is 

crucial for addressing the environmental and urbanization challenges that the world faces today. Our 

research aspires to contribute to the geospatial field by offering practical recommendations for utilizing 
machine learning techniques to improve land cover classification. By addressing the limitations of current 

methods and proposing more effective solutions, we hope to support the development of tools that are 

capable of accurately monitoring land cover changes and responding to the complex environmental and 

societal challenges of our time. 

 

1. INTRODUCTION 
 
Geospatial analysis, particularly land cover classification and anomaly detection, plays a crucial 

role in diverse fields such as environmental monitoring, urban planning, and national security. 

These applications rely heavily on accurate data to make informed decisions that affect 

ecosystems, human communities, and national interests. For instance, Cihlar et al. (2001) and 
Lambin et al. (2003) emphasized the importance of geospatial analysis in understanding 

environmental changes, while Foody (2002) highlighted the need for precision in land cover 

classification to manage natural resources effectively. However, traditional methods of land cover 
classification have often fallen short, leading to significant challenges. Gong et al. (2013) and 

Townshend et al. (1992) discussed how inaccuracies in these methods can result in the 

misallocation of resources, which is a persistent global issue. This misallocation has tangible 
effects on agriculture, forestry, and urban planning. For example, Peng et al. (2014) and 

Thenkabail et al. (2004) explored how inaccurate agricultural mapping can impact food security 

and economic stability. Similarly, Hansen et al. (2013) and Wulder et al. (2012) noted that errors 

in forest cover classification can hinder sustainable forest management, leading to deforestation 
and biodiversity loss. 

 

Urban planning is another area heavily influenced by geospatial analysis. Seto et al. (2012) and 
Schneider & Woodcock (2008) illustrated how inaccurate urban land cover data can result in 

unchecked urban sprawl, which disrupts ecosystems and challenges sustainable development. 

Furthermore, the humanitarian sector is not immune to these issues. Fritz et al. (2017) and Voigt 
et al. (2016) pointed out that inaccurate geospatial data can delay disaster response and 

exacerbate crises in vulnerable regions. Beyond these areas, the failure to accurately monitor 

illegal activities such as unauthorized construction and deforestation has severe consequences. 

Angel et al. (2011) and Tan et al. (2013) discussed how unchecked illegal construction can lead 
to significant topographical changes, complicating urban planning and contributing to urban 

sprawl. This fragmentation of landscapes disrupts wildlife corridors and impacts biodiversity, as 

explored by Forman & Alexander (1998) and Li et al. (2010). The inability of traditional models 
to detect the early stages of forest fires further highlights the limitations of current geospatial 

analysis methods. Chuvieco et al. (2010) and Giglio et al. (2003) showed that delayed detection 

of forest fires can lead to widespread natural disasters, with severe impacts on wildlife habitats 

and human settlements. Moritz et al. (2014) and Bowman et al. (2009) added that these fires, if 
not managed early, can cause significant environmental and economic damage. 

 

In the context of national security, accurate geospatial analysis is critical. Homeland Security 
Digital Library (2018) and Zedner (2003) emphasized the importance of monitoring border 

fences to prevent security breaches, an area where traditional methods often fall short. To address 

these challenges, forest inventory and analysis programs in the United States have increasingly 
relied on remote sensing and geospatial technologies. Nelson et al. (2007) and McRoberts et al. 

(2010) discussed how these technologies improve data accuracy and support resource 

management, making them indispensable tools in modern forestry. 
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Geospatial problems manifest across various applications, with artificial intelligence (AI) 

emerging as a transformative force in enhancing model accuracy and reliability. Goodchild 

(2007) and Breunig (2020) noted that AI-driven advancements are crucial for improving 

geospatial analysis, particularly as the volume and complexity of data increase. AI and machine 
learning (ML) models have enabled more precise analyses, as demonstrated by Li et al. (2019) 

and Zhu et al. (2017), who showed how deep learning techniques can process vast amounts of 

geospatial data with greater accuracy. This systematic literature review focuses on the 
effectiveness of transformer-based models and Convolutional Neural Networks (CNNs) in land 

cover classification, utilizing publicly available geospatial datasets. Vaswani et al. (2017) and He 

et al. (2016) provided the foundational work for these models, which have been instrumental in 
advancing the field. Specifically, this review explores how models like the Segment Anything 

Model (SAM), VGG, ResNet, and U-Net handle land cover classification, as these models have 

shown promise in improving the accuracy and reliability of geospatial data analysis (Ronneberger 

et al., 2015; Simonyan & Zisserman, 2015; He et al., 2016). 
 

This study addresses land cover classification in several keyways: 

 

Application of Advanced Models 

 

- Demonstrates the application of VGG, ResNet, U-Net, and SAM on geospatial datasets, 
highlighting their capabilities and limitations (He et al., 2016; Ronneberger et al., 2015; 

Simonyan & Zisserman, 2015). 

 

Effectiveness Evaluation 

 

- Evaluates the effectiveness of these models in classification and segmentation tasks, 

contributing to more reliable land cover data analysis (He et al., 2016; Ronneberger et al., 
2015). 

 

Future Research Opportunities  

 
- Showcases potential improvements and future research opportunities for land cover 

classification, guiding the development of more accurate and reliable geospatial analysis 

techniques (Breunig, 2020; Zhu et al., 2017; Li et al., 2019). 
 

By integrating insights from key studies in geospatial data management and machine learning, 

this systematic review provides a comprehensive analysis of current methodologies, setting the 
stage for future advancements in geospatial intelligence. 

 

1.1. Background 
 

Geospatial Intelligence (GEOINT) methods are undergoing a transformative shift, driven by the 

promising potential of advanced machine learning (ML) techniques. This evolution is reshaping 
the way data related to Earth's surface and its activities are collected, analyzed, and interpreted. 

Traditionally, GEOINT has relied heavily on manual processing methods, which, while effective, 

have significant limitations. These methods are labor-intensive, often requiring a multi-step, 

time-consuming approach that can limit the scope and speed of analysis. As a result, traditional 
GEOINT studies have faced challenges in handling the increasing volume and complexity of 

geospatial data. 

The advent of advanced data science and machine learning techniques marks a new era in 
GEOINT capabilities. These technologies enable more efficient, scalable, and accurate analysis 
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of vast amounts of geospatial data. Machine learning, and particularly deep learning, has 
demonstrated remarkable potential in processing and analyzing geospatial information. 

Techniques such as Convolutional Neural Networks (CNNs) and vision-based transformer 

models have revolutionized tasks like image classification, object detection, and image 

segmentation. These advancements allow for the automatic identification and classification of 
objects in satellite images with unprecedented accuracy, reducing the need for manual 

intervention and expediting the analysis process. One of the most significant recent advancements 

in this field is the introduction of the Segment Anything Model (SAM). This model excels in 
handling diverse segmentation tasks with minimal user input, making it a powerful tool for 

automating complex geospatial analyses. SAM's ability to generalize across various segmentation 

challenges represents a significant leap forward in the capabilities of GEOINT. 
 

The classification of high spatial resolution remote sensing images plays a crucial role in land use 

and land cover (LULC) studies, offering valuable insights for various applications. Recent 

advancements in remote sensing technology, combined with the rise of deep learning techniques, 
have significantly improved the extraction of spatiotemporal information necessary for LULC 

classification. In particular, the integration of convolutional neural networks (CNNs) with 

transfer learning has emerged as a powerful approach in image classification tasks within remote 
sensing (Hu et al., 2015; Yin et al., 2016). 

 

Instead of training CNNs from the ground up, this study applies transfer learning to fine-tune pre-
existing models—specifically, the Visual Geometry Group (VGG16) and Wide Residual 

Networks (WRNs)—for LULC classification using the red-green-blue (RGB) version of the 

EuroSAT dataset. Various optimization techniques such as early stopping, gradient clipping, 

adaptive learning rates, and data augmentation were employed to enhance performance and 
reduce computational time. These strategies addressed the challenge of limited data availability, 

resulting in highly accurate classification outcomes. Notably, the WRN-based approach 

demonstrated superior computational efficiency and accuracy 
 

Furthermore, the integration of big data analytics with geospatial data is unlocking new 

opportunities for real-time processing and analysis. This integration is particularly valuable in 

time-sensitive scenarios such as disaster response and urban planning, where timely and accurate 
data interpretation can significantly impact outcomes. Techniques like data augmentation and 

transfer learning are also enhancing model performance by leveraging pre-existing knowledge 

from related tasks, thus reducing the dependency on large, labeled datasets. This not only 
improves efficiency but also expands the applicability of machine learning models to a broader 

range of geospatial challenges. Fusion of advanced machine learning techniques with GEOINT is 

revolutionizing the field, enabling faster, more accurate, and more scalable analysis of geospatial 
data. This transformation is paving the way for new capabilities in monitoring, decision-making, 

and responding to global challenges. 
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2. RELATED WORK 
 
The integration of traditional data science and machine learning (ML) techniques, such as Long 

Short-Term Memory (LSTM) and Global Navigation Satellite Systems (GNSS), into geospatial 

intelligence (GEOINT) has significantly expanded potential applications and capabilities. These 

advancements have impacted areas such as imagery and remote sensing, Geographic Information 
Systems (GIS) data, and Open-Source Intelligence (OSINT) (Breunig et al., 2020). Breunig et al. 

(2020) also discuss ongoing progress in GEOINT data management, highlighting the importance 

of advanced methodologies in addressing future challenges. Praveen et al. (2016) emphasizes the 
role of big data environments in enhancing geospatial data analysis, providing a solid foundation 

for sophisticated ML applications. Additionally, adaptive learning systems are leveraging ML 

methods to provide customized educational experiences (Kolluru, Mungara, and Chintakunta). 

Kiwelekar et al. (2020) review deep learning techniques for geospatial data analysis, highlighting 
their effectiveness in tasks such as image classification and object detection. 

 

The transformative impact of artificial intelligence on geospatial intelligence is further explored 
by Dold and Groopman (2017), who discuss prospects and the potential of AI in this domain. 

Kussul et al. (2015) demonstrate the practical benefits of integrating GEOINT and data fusion 

techniques for sustainable development, showcasing the effectiveness of advanced analytical 
methods. 

 

Recent studies have explored novel applications of GEOINT, such as the method introduced by 

Sufi and Alsulami (2022) for generating geospatial intelligence from social media posts, 
illustrating the diverse data sources that can be leveraged using advanced techniques. Othenin-

Girard et al. (2011) discuss the strategic advantages of integrating competitive intelligence with 

geospatial intelligence, emphasizing the synergy between these domains. 
 

The emergence of Geospatial Artificial Intelligence (GeoAI) has led to significant advancements 

in the field. Temporal land use analyses in the Uttara Kannada District reveal substantial forest 
fragmentation, with evergreen forest cover decreasing from 57.31% in 1979 to 32.08% in 2013 

(Ramachandra et al., 2016). Gao (2021) and Gao (2020) provide comprehensive overviews of 

GeoAI, reflecting on recent advancements and potential applications. VoPham et al. (2018) 

highlight GeoAI's potential for environmental epidemiology, enhancing public health research 
through sophisticated spatial analysis. 

 

Efficiency improvements in energy conversion are demonstrated by the combined calculation of 
thermoelectric modules (UG et al.), while Döllner (2020) explores the innovative applications of 

GeoAI in urban planning and infrastructure management using 3D point clouds and geospatial 

digital twins. Gramacki et al. (2023) emphasize the need for standardized frameworks to advance 

GeoAI, underscoring the importance of unified approaches in the field. Roussel and Böhm (2023) 
review geospatial explainable AI (XAI), focusing on the transparency and interpretability of AI 

models in GEOINT applications, which is critical for enhancing trust and reliability in these 

systems. 
 

Mai et al. (2023) discusses the opportunities and challenges of foundation models for GEOINT, 

proposing directions for future research. Lunga et al. (2022) highlight the significance of GeoAI 
at the ACM SIGSPATIAL conference, identifying it as a new frontier in geospatial research. The 

potential of ML for 3D point clouds and geospatial digital twins is well-documented, 

emphasizing the importance of these technologies in modern GEOINT (Döllner, 2020). 

Standardizing geospatial AI is essential for advancing the field, as discussed in the ACM 
SIGSPATIAL workshop proceedings (Gramacki et al., 2023). 
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Meta AI’s Segment Anything Model has gained strong segmentation capabilities in which the 
Osco et al. (2023) have performed zero shot, one shot and prompt-based segmentation. Zero shot 

learning has yielded better results when the images have higher resolution. Also, it introduces a 

novel approach that enhances SAM's performance by combining text-prompt-derived general 

examples with one-shot training. This method improves the accuracy of segmentation. Apart 
from that, different prompting techniques show that point-based prompts are particularly 

effective for precise segmentation, while bounding boxes are more suitable for larger objects. 

Text prompts, although less accurate, offer ease of implementation and are useful in scenarios 
where spatial annotations are challenging to produce. 

 

The transformative impact of advanced data science and ML techniques on geospatial 
intelligence is evident in the collective findings of these studies. Leveraging cutting-edge 

methodologies and diverse data sources, this research illustrates the enhanced capabilities and 

new opportunities available in GEOINT, setting the stage for continued innovation and 

development in this dynamic field. This comprehensive review serves as a crucial reference for 
researchers and practitioners aiming to push the boundaries of geospatial intelligence and its 

applications. 

 

3. METHODOLOGY 
 

3.1. Dataset 
 

EuroSAT: 
 

EuroSAT is considered for land use and land cover classification based on Sentinel-2 satellite 
imagery. It is used for remote sensing and geospatial analysis research, particularly for 

developing and evaluating machine learning models that classify different types of land cover. It 

is derived from images captured by the Sentinel-2 satellite, which is part of the European Space 
Agency's Copernicus program. Sentinel-2 provides high-resolution, multi-spectral imagery across 

13 spectral bands, covering the visible, near-infrared, and shortwave infrared regions of the 

spectrum. This includes 10 distinct classes with 27,000 labeled patches, each measuring 64x64 
pixels. These patches are evenly distributed across the 10 classes, ensuring balanced 

representation for training and evaluation purposes. The image patch includes 13 spectral bands, 

although commonly used bands include the RGB (red, green, blue) bands or other combinations 

like near infrared. 
 

We performed stratified shuffle split with a split of 80% train, 10% test and 10% validation. We 

use stratified to handle distribution of a specific class or target variable. This technique is 
particularly important in classification problems where the target classes are imbalanced. By 

ensuring that each split maintains the same proportion of each class as in the original dataset. 
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DeepGlobe: 
 

DeepGlobe dataset is dataset specifically designed for advancing the field of geospatial image 
analysis, particularly through challenges that focus on segmentation, classification, and detection 

tasks using satellite imagery. It was introduced as part of the DeepGlobe 2018 Challenge, which 

aimed to drive innovation in processing and understanding satellite images. This dataset supports 
the development of algorithms in geospatial analysis, focusing on three main tasks: road 

extraction, land cover classification, and building detection. consists of high-resolution satellite 

images that capture a wide range of geographic areas, including urban, rural, and natural 

environments. 
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The class distribution here shows both the pixel count (in millions) and the proportion (in 
percentage) for each land cover class. Agriculture dominates the dataset, making up over 50% of 

the total pixels, while other classes like Urban, Forest, and Rangeland have moderate 

representations. Classes such as Barren and Unknown are underrepresented, each contributing 
less than 5%. This significant class imbalance could impact model performance, potentially 

leading to a bias toward more common classes unless mitigated during training. 

 

3.2. Data Augmentation 
 

To develop a robust model the volume and diversity of the data is important. So, we performed a 
fewdata augmentation techniques by rescaling the image pixels, randomly rotating images, 

gaussian blurring, horizontal flip and vertical flip. This helps in better generalization of the model 

on EuroSAT dataset and Deep Globe dataset 

 

3.3. Model Training and Results 
 

3.3.1. Performance on EuroSAT 

 

 
 

 
 
The VGG16 and VGG19 models, developed by the Visual Geometry Group (VGG) at the 

University of Oxford, are among the most influential deep learning architectures used in image 

classification. Both models were pre-trained on the ImageNet dataset, which contains millions of 

labeled images across 1,000 different classes. This pre-training allows the models to extract a 
wide range of features from images, which can then be fine-tuned for specific tasks such as 

LULC classification. 

 
VGG16 consists of 16 layers, with 13 convolutional layers and 3 fully connected layers. The 

convolutional layers are divided into five blocks, each block containing convolutional layers 

followed by a max-pooling layer. The key strength of VGG16 lies in its simplicity and the depth 

of its architecture, which enables the model to capture intricate details in images by progressively 
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learning more complex features in the deeper layers. During the fine-tuning process, the initial 
layers of VGG16 were frozen to retain the general features learned from ImageNet, while the 

final layers were re-trained to adapt the model to the EuroSAT dataset's specific features. 

 

VGG19, an extension of VGG16, contains 19 layers, with 16 convolutional layers and 3 fully 
connected layers. The added layers in VGG19 allow for even deeper feature extraction, 

potentially capturing more subtle patterns within the images. Like VGG16, the VGG19 model 

was also fine-tuned by freezing the initial layers and re-training the final layers with the EuroSAT 
dataset. The additional depth of VGG19 can improve classification accuracy by providing more 

detailed representations of the input data. 

 
VGG16 accepts RGB images of size 224x224 pixels and has 13 convolutional layers, each 

followed by ReLU (Rectified Linear Unit) activation. The convolution filters are all 3x3, which 

capture the spatial hierarchy of the image in a small but consistent way. VGG19 Similar to 

VGG16 the input is RGB images of size 224x224 pixels and has 16 convolutional layers, each 
followed by ReLU (Rectified Linear Unit) activation. VGG16 and VGG19 were initially fine-

tuned by freezing the layers and training only the classification layers. As the model has the 

advantage of pre-trained weights trained on ImageNet data which consists of 14 million images 
of 1000 different classes. We trained these models with data augmentation and achieved accuracy 

of 97.23% on VGG16 and 98.30% on VGG19 with batch size of 32. Early stopping was 

implemented with patience of 10 based on maximum validation accuracy, ReduceLROnPlateau is 
used to handle the learning rate with certain factor based on patience (certain number of epochs) 

as this approach helps in better model convergence thereby avoiding overshooting minima and 

potentially leading to better performance. 

 
VGG16 Results: 

 

 
 

VGG19 Results: 
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ResNet-50 is a variant of the Residual Network (ResNet) family, which introduced the concept of 

residual learning to address the degradation problem that occurs when training deep networks. 

The degradation problem refers to the phenomenon were adding more layers to a deep network 
results in a higher training error, contrary to what is expected. ResNet-50 overcomes this issue by 

incorporating shortcut connections that allow the model to bypass certain layers, thus enabling 

the training of much deeper networks without encountering significant degradation. 
 

ResNet-50 consists of 50 layers, including 48 convolutional layers, 1 max-pooling layer, and 1 

average-pooling layer. The network is structured as a series of residual blocks, each containing 
multiple convolutional layers with shortcut connections that allow the gradient to flow directly 

through the network. This architecture not only helps in preserving the information across layers 

but also enables the model to learn both shallow and deep features effectively. 

 
For LULC classification, the ResNet-50 model was fine-tuned using the EuroSAT dataset. Like 

VGG16 and VGG19, the initial layers were frozen to retain the general features learned from 

ImageNet, while the final layers were re-trained to capture the specific features relevant to the 
dataset. ResNet-50's ability to handle complex and diverse data, along with its efficient gradient 

flow, makes it particularly well-suited for tasks like LULC classification, where capturing 

intricate spatial patterns is crucial. 
 

To further enhance the performance of VGG16, VGG19, and ResNet-50 for LULC classification, 

several model performance enhancement techniques were applied: 

 
To enhance the performance of deep learning models for LULC classification using the EuroSAT 

dataset, several model performance enhancement techniques were applied. Data augmentation 

techniques such as Gaussian blurring, horizontal and vertical flipping, rotation, and resizing were 
implemented to artificially increase the training dataset's size and introduce visual variability, 

thereby improving the models' robustness and generalization to unseen data. Gradient clipping 

was utilized to prevent vanishing and exploding gradient issues by scaling down gradient norms 

that exceeded a predefined threshold, ensuring stable training. Early stopping was employed as a 
regularization method to prevent overfitting by halting training once the model's performance on 

a validation dataset stopped improving, thereby conserving computational resources. 

Additionally, learning rate optimization was achieved using the ReduceLROnPlateau method, 
which dynamically reduced the learning rate when the model's performance plateaued, enabling 

more precise weight adjustments and facilitating effective convergence. Together, these 

techniques contributed to the improved accuracy and efficiency of the models. 
Resnet50 results: 
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The results are evaluated using accuracy which is the ratio of correctly predicted instances to the 
total instances. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
 

 

3.3.2. Performance on DeepGlobe 

 

The dataset used comes from the 2018 Deep Globe Land Cover Classification Challenge. It 
consists of 803 training images, 171 validation images, and 171 testing images, divided into 

seven land cover classes: Urban Land, Agriculture Land, Range Land, Forest, Water, Barren 

Land, and Unknown. The implementation focuses on addressing class imbalance within this 
dataset, a common issue in semantic segmentation. 

 

These models are implemented on DeepGlobe dataset: 

 

 
 

U-Net, a fully convolutional network, is split into two main paths: a contractive path that reduces 
the spatial dimensions and an expansive path that recovers spatial details. The model is 

particularly effective for tasks requiring pixel-level classification, such as satellite image 

segmentation.U-Net is a symmetric U-shaped architecture with an encoder (contracting path) and 
a decoder (expanding path), connected by skip connections that help retain spatial information. 

U-Net is known for its high accuracy in pixel-wise segmentation tasks and its ability to work well 

with limited training data. It has been widely adopted for various segmentation applications, 

including remote sensing. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024 

45 

we explore various strategies to address class imbalance and GPU memory limitations while 
implementing a U-Net model for land cover classification. We experimented with different loss 

functions, discovering that simple categorical cross entropy was inadequate, and Dice Loss led to 

unstable training due to its gradient properties. The most effective approach we found was 

Weighted Cross Entropy, which applied class-specific weights to ensure stable convergence. Our 
model achieved an Intersection over Union (IoU) score of 0.588, outperforming the baseline from 

the DeepGlobe challenge.  

 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 

UNet model results 
 

 
 

 
 

Segment Anything Model (SAM) 

 
SAM is an image segmentation model developed by Meta AI, is a significant advancement in the 

field of computer vision, particularly in image segmentation. Image segmentation is the process 

of partitioning a digital image into multiple segments or regions to simplify the representation of 
an image or make it more meaningful and easier to analyze. SAM is unique because it is designed 

to perform prompt-based, interactive segmentation tasks, allowing users to guide the 

segmentation process with minimal input, such as points, bounding boxes, or text descriptions. 

 
SAM is built on the foundation of deep learning, leveraging convolutional neural networks 

(CNNs) to process and analyze images. The model's architecture is designed to be versatile and 

adaptive, capable of handling a wide range of segmentation challenges. One of the key features of 
SAM is its ability to process prompts, which can be in the form of simple user inputs, such as a 

click on a point within the image, drawing a bounding box around the object of interest, or even 

providing a textual description. The model then uses these prompts to refine its segmentation 

output. 
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One of the promising applications of SAM is in the domain of geospatial analysis. Geospatial 
analysis involves processing satellite images, aerial photographs, or other spatial data to extract 

meaningful information about the Earth's surface. Traditional methods of image segmentation in 

geospatial analysis often require extensive manual input and are prone to errors. SAM's 

interactive and prompt-based approach offers a more efficient solution, enabling users to quickly 
and accurately segment regions of interest in large geospatial datasets.The architecture of SAM is 

built to be both versatile and powerful, leveraging state-of-the-art deep learning techniques to 

achieve prompt-based interactive segmentation. Here’s a breakdown of SAM's architecture: 
 

1. Backbone Network 

 
 Purpose: The backbone network is the core component of SAM responsible for feature 

extraction from input images. It processes the raw image data to generate a rich feature 

representation that captures the essential patterns, textures, and structures in the image. 

 Architecture: SAM typically uses a convolutional neural network (CNN) as the 
backbone. Common choices for the backbone include ResNet, EfficientNet, or other 

similar deep CNN architectures. These networks are pre-trained on large-scale image 

datasets, such as ImageNet, to ensure they can effectively extract features from a wide 
variety of images. 

 

2. Prompt Encoder 

 

 Purpose: The prompt encoder is a unique aspect of SAM's architecture that allows the 

model to accept different types of user inputs (prompts) and incorporate them into the 

segmentation process. 
 Types of Prompts: SAM supports various prompts, including points, bounding boxes, 

and text descriptions. Each type of prompt is encoded differently: 

o Point Prompts: A single or multiple points are marked on the image by the user 
to indicate the region of interest. These points are encoded as spatial coordinates 

and fed into the model. 

o Bounding Box Prompts: The user draws a box around the object or region to be 

segmented. The bounding box is encoded as the coordinates of its corners. 
o Text Prompts: The user provides a textual description of the object or region. 

This text is encoded using a language model, such as BERT or a transformer-

based encoder, to convert the description into a feature vector. 
 

 Integration with Image Features: The encoded prompts are integrated with the features 

extracted by the backbone network. This integration helps the model focus on specific 
regions or objects in the image, guided by the user's input. 

 

3. Attention Mechanism 

 
 Purpose: The attention mechanism in SAM plays a crucial role in dynamically focusing 

on different parts of the image based on the input prompts. It helps the model determine 

which regions are most relevant for segmentation. 
 Self-Attention: SAM likely employs a self-attention mechanism, like those used in 

transformer models, to weigh the importance of different features within the image. This 

allows the model to capture long-range dependencies and context, which is particularly 
useful for segmenting objects that are spread across the image or have complex 

boundaries. 
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4. Segmentation Head 

 

 Purpose: The segmentation head is the final component of SAM that generates the 

segmentation mask. It takes the integrated features (image features + prompt features) 

and produces a pixel-wise classification that labels each pixel as belonging to the object 
of interest or the background. 

 Architecture: The segmentation head typically consists of up sampling layers, such as 

transpose convolutions or bilinear interpolation, to generate a high-resolution 
segmentation mask. It may also include a series of convolutional layers that refine the 

segmentation output, ensuring that the boundaries are accurate, and the mask is smooth. 

 

5. Post-Processing 

 

 Purpose: Post-processing steps are often applied to the raw segmentation mask to 

improve its quality. These steps may include morphological operations, such as dilation 
or erosion, to refine object boundaries, or connected component analysis to remove 

small, spurious segments. 

 Confidence Scoring: SAM may also generate confidence scores for each pixel or 
segment, indicating the likelihood that a given region belongs to the object of interest. 

This allows users to adjust the segmentation threshold or focus on high-confidence 

regions. 
 

Working Mechanism of SAM 

 

 Input Stage: The user provides an input image and one or more prompts, such as a point, 
bounding box, or text description. 

 Feature Extraction: The backbone network processes the image to extract features, 

while the prompt encoder processes the user inputs. 
 Attention and Integration: The attention mechanism integrates the features from the 

image and prompts, allowing the model to focus on relevant regions. 

 Segmentation Output: The segmentation head generates a pixel-wise segmentation 

mask, which is further refined through post-processing to produce the final output. 
 

Advantages of SAM's Architecture 

 
 Flexibility: SAM's architecture is designed to be highly flexible, allowing it to adapt to 

different types of segmentation tasks and user inputs. 

 Interactivity: The prompt-based approach makes SAM an interactive tool, enabling 
users to guide the segmentation process with minimal effort. 

 Scalability: The use of a powerful backbone network ensures that SAM can handle large 

images and complex segmentation tasks, making it suitable for a wide range of 

applications, including geospatial analysis. 

 

The architecture of the Segment Anything Model (SAM) is a testament to the advancements in 

deep learning and computer vision. By combining a robust feature extraction backbone with a 
versatile prompt encoder and an attention-driven segmentation head, SAM offers a powerful tool 

for interactive and prompt-based image segmentation. Its application in geospatial analysis, 

among other fields, showcases the model's potential to revolutionize how we approach 
segmentation tasks, making them more efficient, and accurate. 
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Implementation and Evaluation of SAM in Geospatial Analysis 

 
In our research, we implemented the Segment Anything Model using a specific geospatial variant 

that supports prompt-based segmentation as input. This implementation was tested on the 

DeepGlobe dataset, which contains annotated masks for various objects found in satellite images. 
The DeepGlobe dataset is a benchmark dataset commonly used for training and evaluating 

models in geospatial analysis. By using prompts to identify specific regions, we observed that 

SAM was able to segment most objects accurately in our preliminary analysis. 

 

 
 

The performance of SAM in geospatial analysis was evaluated based on several metrics, 

including accuracy, precision, recall, and Intersection over Union (IoU). The model demonstrated 

high accuracy in segmenting objects with minimal user input, making it a valuable tool for 
applications that require quick and precise segmentation. Furthermore, SAM's ability to adapt to 

different segmentation tasks with various prompts highlights its versatility and robustness in 

handling complex geospatial data. 

 

Comparison with Other Segmentation Models 

 
To provide a comprehensive evaluation, it is essential to compare SAM with other state-of-the-art 

segmentation models, such as U-Net, Mask R-CNN, and DeepLab. These models have been 

widely used in image segmentation tasks, including geospatial analysis. A comparative analysis 

can highlight the strengths and limitations of SAM in relation to these models, particularly in 
terms of ease of use, segmentation accuracy, and computational efficiency. 

 

Challenges and Future Work 
 

Despite its promising performance, SAM faces several challenges that need to be addressed in 

future research. One of the primary challenges is the model's dependency on the quality and 
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specificity of the prompts provided by the user. In some cases, inaccurate or vague prompts can 
lead to suboptimal segmentation results. Additionally, SAM's performance on extremely large or 

high-resolution geospatial datasets may require further optimization to ensure scalability and 

efficiency. 

 
Future work could focus on enhancing SAM's ability to process more complex prompts, 

improving its generalization capabilities across different geospatial datasets, and integrating SAM 

with other geospatial analysis tools to create a more comprehensive solution for Earth 
observation and environmental monitoring. The Segment Anything Model (SAM) represents a 

significant advancement in interactive image segmentation, offering a powerful tool for various 

applications, including geospatial analysis. Its prompt-based approach allows for minimal user 
input while maintaining high accuracy in segmentation tasks. As the model continues to evolve, it 

has the potential to become a standard tool in the field of geospatial analysis, providing 

researchers and professionals with a more efficient and reliable method for analyzing spatial data. 

 

4. CONCLUSION 
 

Multiple models have been evaluated on different datasets focused primarily on classification and 

segmentation focused on Land Cover Classification. Pre trained models such as VGG16, VGG19 
and Resnet 50 have been used on EuroSAT dataset and Resnet50 has performed and provided 

better results compared to VGG16 and VGG19. Segmentation models like UNet and Segment 

Anything model with Zero shot segmentation and prompt-based input has been implemented on 

Deep Globe dataset. 

 

5. FUTURE DIRECTIONS 
 

For future improvements, such as using advanced architectures like DeepLabV3+, addressing 
OOM issues through image tiling, and exploring other loss functions like soft dice loss. We also 

highlight the potential for further performance gains with additional resources and provide a 

modified codebase for others to build upon.To enhance the results on Deep Globe dataset models 

like UNet++, and state of the art model segment anything with point-based prompting, multiple 
point based, and fine tuning will be implemented. 
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