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ABSTRACT 
 

Natural Language Processing (NLP) is a vital area in deep learning, widely applied in tasks like text 

classification, virtual assistants, speech recognition, and autocorrect features in digital devices. It allows 
machines to understand and generate human language, enhancing user interactions with software. This 

paper presents a deep learning model using the Transformer architecture for a regression task to predict 

the complexity of reading passages based on text excerpts. By leveraging the Transformer’s capability to 

identify complex patterns in text, the model achieves a relative error rate of about 10%. The paper also 

examines how different architectural choices influence model performance, focusing on one-hot encoding 

and embeddings. While one-hot encoding provides a simple text representation, embeddings offer a richer, 

more nuanced understanding of word relationships. The findings highlight the significance of model design 

and data representation in optimizing NLP tasks, providing insights for future advancements in the field.  
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1. INTRODUCTION 
 

Machine learning, a cornerstone of Artificial Intelligence, diverges from traditional approaches by 
relinquishing explicit instructions to computers in favour of providing examples for 

problemsolving. In this paradigm, the machine autonomously learns rules from the provided data. 

Within machine learning, deep learning has emerged as a prominent sub-field, characterized by 
models with numerous layers and their capacity to derive hierarchical representations from data. 

This multiplicity of layers, aptly named 'deep learning,' obviates the need for meticulous feature 

engineering, as the models proficiently extract relevant features during the learning process.  

 
In comparison to its machine learning counterparts, deep learning reduces the necessity for human 

intervention. Machine learning demands structured data, necessitating human experts to discern 

the most pertinent features. Conversely, deep learning models excel in automatically discerning 
and extracting essential features, diminishing the reliance on human-guided structuring. Recent 

years have witnessed the pervasive success of deep learning across diverse tasks, including image 

classification, natural language processing, digital assistants, and autonomous driving.  
 

Natural Language Processing (NLP) represents a pivotal domain aspiring to attain human-level 

comprehension of spoken or written language. The inherent challenges of NLP lie in the dynamic 

and ambiguous nature of language rules. Unlike earlier endeavors that aimed at deciphering the 
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intricacies of language, modern NLP focuses on efficiently processing language to yield practical 
outcomes, such as text classification, content filtering, translation, and summarization. Deep 

learning has garnered considerable attention in the realm of text manipulation, owing to its 

superior performance and reduced dependence on intricate feature engineering.  

 
Within the domain of NLP, the Transformer architecture has emerged as the preeminent building 

block. This architectural paradigm facilitates the efficient processing of sequential data by 

acknowledging that not all components of a text warrant equal scrutiny. Section 4 provides more 
details on the Transformer architecture, unraveling its principles and contributions to the realm of 

NLP.   

 
Classifying reading materials has wide-ranging applications, from enhancing educational content 

to improving recommendation systems. This can boost literacy by ensuring individuals are 

presented with reading material suited to their age and comprehension level, fostering a more 

adaptive learning environment. Additionally, the model greatly reduces the time and effort needed 
for manual classification, streamlining the process and increasing efficiency.  

 

2. RELATED WORK 
 
Recent years have witnessed a surge of interest and extensive research in Natural Language 

Processing (NLP) within the broader landscape of machine learning. The ubiquitous application 

of data prediction in various aspects of daily life has propelled the prevalence of regression 

models. Within the realm of deep learning models, the optimizer plays a pivotal role in 
determining the weight adjustments at each step. One optimizer that has garnered considerable 

attention is the RMSProp optimizer, renowned for its efficiency in both classification and 

regression tasks. A study conducted by Kurbiel and Khaleghian [1] explores the efficacy and 
accuracy of the RMSProp optimizer, also detailing how to use it to train multi-layer neural 

networks. Noteworthy findings include the utility of neural networks with layers featuring 

distance measures and Gaussian activation functions to counteract the vanishing gradient problem 
associated with dot-product-based activation functions. The current paper adopts RMSProp as the 

optimizer, with Section 4.6 delving into the rationale behind this choice. 

  

Model regularization, a critical aspect preventing overfitting to training data, has also captivated 
researchers. Krueger et al. introduced the Zoneout technique, a selective application of dropout to 

specific features within a network [2]. This method introduces controlled randomness by 

preserving some unit values at each step, enhancing the model's generalization capacity. The 
optimizer employed in this paper combines zoneout and dropout techniques.  

 

Within the specialized domain of NLP, research endeavors have focused on developing models 

capable of efficiently capturing textual representations in vector form [3], leveraging one-hot 
encoding for specific tasks [4], and scrutinizing word embeddings generated for deep learning [5]. 

These techniques find application in the current paper for the numerical representation of textual 

data, rendering it accessible to deep learning models. 
  

3. PROBLEM STATEMENT 

 

In this paper, a deep learning model was developed to evaluate the complexity of reading 

passages. The model was trained using samples that included an excerpt from each passage along 
with its corresponding complexity level. This approach enabled the model to learn and accurately 

predict the complexity of previously unseen passages.  
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This constitutes a regression task conducted through supervised learning. Unlike classification 
problems, regression tasks involve predicting a continuous value instead of a discrete label. The 

specific task undertaken here exemplifies scalar regression, wherein the model aims to predict a 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024 single 

continuous value. A function is derived by the machine, taking in inputs and generating a single 
output value. This function aids in predicting the value of a variable (referred to as the target or 

dependent variable) based on one or more independent variables. Supervised learning, utilized for 

labeled datasets, involves the machine classifying or predicting outputs based on these labels. 
Algorithms for supervised learning establish mappings between input data instances and their 

corresponding output values.  

 
The inspiration for the deep learning model was drawn from a competition hosted on Kaggle [6], 

organized by CommonLit, a non-profit education technology organization. The objective was to 

formulate a model capable of rating the complexity of reading passages for classroom use.  

 
This model holds potential benefits for educators, facilitating the selection of appropriate reading 

material based on student proficiency. Ensuring students receive literary material suitable for their 

age is crucial for developing the essential skill of reading. Additionally, it can serve as a valuable 
tool in curriculum planning, allowing educational providers to ensure a gradual increase in 

reading complexity over time,as well as adapting the educational content according to the 

individual learning levels. Another potential application of this model lies in a recommendation 
system, suggesting reading material to individuals based on their current language proficiency.  

 

4. MODEL BUILDING  

 

4.1. Introduction  
 

The objective of this deep learning model is to forecast the reading level of a text passage, 

constituting a regression task executed through supervised learning. The resultant model 
assimilates the relationships between input features and their respective targets, empowering it to 

predict the complexity of any given reading passage.  

 

4.2. Experimental Setup   
 

TensorFlow, a Python-based open-source machine learning platform developed by Google, plays 
a pivotal role in deep learning by facilitating the automatic computation of gradients for 

differentiable expressions [7]. Its notable feature of easy distribution across multiple machines 

enhances scalability and performance in diverse applications.  
 

Built on top of TensorFlow, Keras serves as a high-level deep learning API, streamlining the 

process of model development. Offering a variety of workflows, it allows the definition and 

training of deep learning models. Keras combines pre-built functions for common tasks with the 
flexibility to define custom functions or configure existing ones, providing a versatile 

environment for model construction [8].  

 
In the development process of the model, Keras was utilized as the primary workspace, benefiting 

from its high-level abstractions and TensorFlow's underlying capabilities. This combination 

allowed for streamlined development, enabling quick experimentation and iteration to achieve 
optimal model performance.  
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4.3. Dataset   
 

The data utilized for this model was sourced from Kaggle, an online platform facilitating data 

scientists in dataset publication, collaboration, and participation in competitive problem-solving. 
The model's objective aligns with the goal of a Kaggle competition [6].  

 

4.3.1. Data Overview  
 

The dataset comprises several columns: 

 id: A unique identifier for each entry.  

url_legal: Source URL.  
license: Literary source license.  

Excerpt: The text passage whose complexity the model aims to predict (string datatype).  

Target: The reading ease of the passage, the target variable (floating-point values).  
 

Columns like id, url_legal, and license, while possibly included for copyright and legal purposes, 

were dropped as they lack relevance to the model's deep learning task.  
 

4.3.2. Model Objective  

 

The model's task is to predict the reading ease of passages, entirely dependent on the excerpt.  
An example entry from the excerpt column and its corresponding target is depicted in Figure 1. 

Since deep learning models process tensors, vectorization of data in this column was imperative.  

 
The general steps for vectorization of text data are as follows:   

 

- Text Standardization: Standardizing text is a fundamental data manipulation step that 
encompasses actions like removing punctuation and converting data to lowercase. This is 

essential as it avoids confusion caused by punctuation, and the model would otherwise 

distinguish between the same word in different cases.  

- Tokenization: Tokenization involves splitting the text into units suitable for vectorization. 

While there are various approaches, the commonly employed method is word-level 

tokenization, where tokens are substrings separated by spaces.  

- Indexing: Following tokenization, the text undergoes conversion into a numerical 

representation. Indexing, in this context, entails creating an index encompassing all words 

in the data and assigning a unique integer to each word.  

- Encoding: The final step involves converting integers from the previous indexing phase 

into vectors. Two widely utilized techniques for encoding are one-hot encoding and 

embeddings.  
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Figure 1. Example entry from the excerpt column and its corresponding target. A neural network cannot 

process the data in form as provided in the excerpt column.  

 

4.3.2.1. One-Hot Encoding  

 

One-hot encoding is a technique where each word in a dataset is transformed into a vector with all 
zeroes, except for a 1 in the position corresponding to the word's index. For instance, in a dataset 

with only the words 'Cat,' 'Dog,' and 'Horse,' the one-hot encoded vectors will each have three 

elements. If indices are assigned based on the word order, 'Cat' will be [1, 0, 0], 'Dog' will be [0, 
1, 0], and 'Horse' will be [0, 0, 1].  

 

The dimensionality of one-hot encoded vectors equals the number of words in the dataset, 
resulting in generally high-dimensional and sparse vectors. These vectors are orthogonal, 

meaning they are independent of each other. One-hot encoding, representing words solely as 

indices in a vocabulary, lacks the concept of similarity between words. A variant, multi-hot 

encoding, allows encoding multiple words in a single vector, similar to one-hot encoding, where 
the encoded vector includes all zeroes except for indices indicating specific words.  

 

4.3.2.2. Embedding  
 

Word embedding involves creating vectors that represent a given text in a structured geometric 

space. In this space, words with related meanings or semantic similarities are positioned closer to 

each other, while words with distinct meanings are situated farther apart. Embedded words retain 
their individual identities while sharing attributes with similar words, fostering a semantic 

clustering effect based on categories.  

 

 
 

Figure 2. Representations obtained through one-hot encoding: high-dimensional and sparse.  
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Taken from [9].  

 
 

Figure 3. Representations obtained through embeddings: low-dimensional and dense. Taken from [9].  

 

These vectors crafted through embeddings are characterized by being low-dimensional and dense. 
Unlike one-hot encoded vectors, machine learning algorithms autonomously learn word 

embeddings without explicit programming by developers. Recent attention from researchers has 

propelled word embeddings into various applications, including text classification, sentiment 

analysis, and knowledge mining. To illustrate the contrast between representations, Figure 2 
depicts those from one-hot encoding, while Figure 3 showcases representations from word 

embeddings.  

 
While one-hot encoding proves valuable in many deep learning algorithms, its use was 

impractical for this paper. The relatedness of words in a passage necessitates a holistic 

understanding, making individual word examination insufficient for determining the complexity 

of the entire excerpt.  
 

4.3.3. Generating Embeddings  

 
Word embeddings are tailored to the specific task at hand, varying across different applications. 

They originate from a corpus and offer versatility across multiple use cases. Two methods are 

commonly employed for their generation:  
 

- Task-Specific Development: In this approach, word embeddings are crafted concurrently 

with the task they are intended for. Similar to how a machine learns the weights of a 
network, this method enables the machine to learn task-specific word embeddings.  

- Pretrained Embeddings: Alternatively, researchers often opt for pretrained word 

embeddings developed for a different machine learning task. This practice involves using 
embeddings generated from a large corpus, bypassing the need to create embeddings 

from scratch for a given dataset. This preference arises due to the computational 

demands, preprocessing requirements, and training time associated with developing 
custom embeddings.  

 

4.4. Model Architecture   
 

A critical decision in natural language processing tasks involves determining how to encode the 

order of words in a sentence, shaping the foundation of the model's architecture. Two primary 
approaches exist: one treating the text as an unordered collection of words and the other 

processing words sequentially, akin to time-series data, often utilizing Recurrent Neural Networks 

(RNNs).  

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024 

59 

 

For the current task, where understanding the sentence structure is paramount, a hybrid approach 
is adopted. The Transformer architecture is employed, striking a balance by incorporating 

information about the position of words in their representations. This approach outperforms 

simply using RNNs, enabling the model to simultaneously consider various parts of the sentence, 

enhancing overall comprehension.  
 

4.4.1. Transformer Architecture  

 
The Transformer architecture, rooted in neural attention mechanisms, has emerged as the 

cornerstone for NLP models. Vaswani et al. introduced the concept of "attention" in their seminal 

paper "Attention is All You Need" [10]. This idea suggests that certain features of input data 
merit more attention from the model, while others can be selectively ignored.  

 

Widely utilized for sequence-to-sequence learning, the Transformer architecture comprises two 

key components: an encoder and a decoder. The encoder processes input data, transforming it into 
an intermediate representation, which the decoder leverages to predict the output.  

 

4.4.2. Sentence Transformer   
 

A specialized type of NLP model, Sentence Transformers leverage the Transformer architecture 

to generate embeddings that encapsulate the semantic meaning of textual data. These embeddings 
are highly versatile and can be applied to a variety of tasks, including text classification, 

sentiment analysis, and paraphrase detection [11]. Notable for their adaptability to diverse 

datasets, Sentence Transformer models are used in this paper, as visualized in Figure 4, which 

illustrates the transformed embeddings derived from the excerpt column.  
 

 
 

Figure 4. Excerpt column after conversion to Embeddings. This data can now be processed by the model as 
it is provided in the form of floating-point tensors.  

 

The process begins with converting the input text into individual tokens. Each token is then 

mapped to a pre-trained embedding vector available in the model’s vocabulary, resulting in dense 
vector representations. Unlike traditional models, Transformer models create contextaware 

embeddings, meaning each word's embedding captures both its meaning and its relationship to 

other words in the sentence. This is achieved by analyzing the entire input sequence 
simultaneously, rather than processing words in isolation.  

 

4.5. Model Building   
 

4.5.1. Layer Structure   

 
The number of layers in a model is intricately linked to the complexity of the representations it 

aims to learn. The dimensionality of the input data determines the number of units in each layer. 

While a larger model with more layers and units can capture intricate representations, it might 
also learn extraneous patterns, making it susceptible to overfitting. Conversely, a smaller model 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024 

60 

 

may struggle to grasp robust representations. For this task, the initial model comprised 5 Dense 
layers, with the first 4 layers having 64 units each. Dense layers, being fully connected, enable 

each neuron to receive input from all neurons in the preceding layer. The first 4 layers employed 

the Gelu (Gaussian Error Linear Unit) activation function, detailed in the subsequent section. The 

last layer, crucial for scalar regression, featured a linear configuration without any activation 
function to allow predictions across a broad range. 

 

4.5.2. Activation Function - Gaussian Error Linear Unit (Gelu)  
 

Selecting activation functions is pivotal in model development. Optionally, stochastic regularizers 

like dropout or noise addition can enhance performance. Gelu, denoting Gaussian Error Linear 
Unit, amalgamates two stochastic regularizers—dropout and zoneout—with the traditional relu 

activation function. Dropout randomly omits some output features during training, preventing 

overfitting. Zoneout, akin to dropout, injects noise during training by retaining some unit values, 

addressing the vanishing gradient problem. Gelu multiplicatively combines these techniques by 
introducing noise based on a Bernoulli distribution [12]. The choice of Gelu is motivated by its 

full differentiability and continuity, facilitating effective backpropagation and optimization [13].  

 

4.5.3. Dropout  

 

Applied to the input features of Dense layers, dropout was incorporated in a gradual manner- the 
features of the first 2 layers were dropped by 50%, and those of the next 2 were dropped by 25%. 

This strategic implementation delays overfitting, enhancing the model's generalization.  

 

4.5.4. Loss Function   
 

The chosen loss function for the model is Mean Squared Error, measuring the square of the 

difference between expected and actual outputs. Ideal for regression problems, a lower MSE 
value indicates superior model performance.  

 

4.5.5. Metric of Success  

 
Mean Absolute Error (MAE) was selected as the success metric, representing the average 

absolute difference between predicted and actual values. Offering interpretability and robustness 

to outliers, MAE possesses a continuous derivative.  
 

4.5.6. Optimizer   

 
The chosen optimizer for the model is RMSProp, a variant similar to AdaGrad. RMSProp is 

designed to converge quickly by gradually adjusting the model’s learning rate, which is a scalar 

factor that indicates the speed of the gradient descent process. The learning rate refers to how 

quickly the optimizer changes the weights of a network in each step. AdaGrad calculates learning 
rates for each parameter based on squared gradients [14], but it suffers from a drawback known as 

rapid decay. This occurs as squared gradients accumulate, diminishing the learning rate over time 

and hindering further learning. RMSProp addresses this by employing a moving average of 
squared gradients, preventing the learning rate from diminishing too swiftly [15].  
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Figure 5. Algorithm for RMSProp optimizer. Learning rates of all parameters are set inversely 

proportional to an exponentially weighted moving average of squared partial derivatives over all training 

iterations. Taken from [17]. 

 

In Figure 5, g refers to the total gradient. RMSProp's approach involves computing the moving 

average of squared gradients over time, achieved through statistical calculations with subsets of 
the full dataset. Figure 5 illustrates the algorithm used. The moving average enables dynamic 

adjustment of learning rates for each parameter based on the gradient history, employing the 

principle of momentum to guide the model toward global minima.  

 
By incorporating historically calculated gradients, RMSProp avoids getting stuck in local minima, 

facilitating the model's convergence to the global minimum. This concept draws inspiration from 

momentum in Physics, accelerating convergence. The Adam optimizer takes these principles 
further by integrating ideas from both RMSProp and momentum [16].  

 

RMSProp's adaptive learning rate properties make it an excellent choice for regression tasks, 

aiding in the determination of optimal weights for parameters. As the learning rate is individually 
set for each parameter using the moving average, the optimizer ensures proper adjustments in 

case of excessively high or low gradients. This results in stable training and enhanced model 

optimization.  
 

4.6. Model Training   
 
Following the definition of parameters in section 4.5, the model was compiled, and the training 

loop was initiated. 

  

4.6.1. Data Split  

 

Prior to training, the dataset comprising 2,834 samples was divided into training, validation, and 
test sets. About 8% (234 samples) were reserved for the test set, while 20% (520 samples) 

constituted the validation set. The remaining data served as the training set. This separation is 

essential to ensure that the model, designed to learn patterns from the given data, is evaluated on 

unseen data during testing.  
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4.6.2. Learning Rate  

 

The learning rate, a scalar determining the gradient descent speed, was specified as a parameter 

during model compilation. This initial learning rate guides the optimizer at the onset of training, 
dynamically adjusting throughout the process. RMSProp utilizes the moving average of squared 

gradients for this purpose. Setting an optimal initial learning rate is crucial, influencing the 

model's convergence speed. In this instance, the initial learning rate was configured at 0.01.  
 

4.6.3. Number of Epochs  

 
The number of epochs, initially set to 200, is considered adequate for the model to grasp data 

representations and establish a robust fit during training.  

 

4.6.4. Batch Size  
 

The model's batch size, set at 16, introduces a controlled level of noise to enhance generalization 

ability. A smaller batch size facilitates noise incorporation, contributing to improved model 
generalization.  

 

4.7. Hyperparameter Tuning   
 

Following the compilation with the previously defined parameters, adjustments to the 

hyperparameters were imperative for optimal performance.  
 

4.7.1. Learning Rate  

 
The initial training, utilizing the default learning rate, exhibited erratic performance metrics. To 

address this, the learning rate was systematically reduced to 0.001 and subsequently to 0.0001.  
63 

This adjustment proved pivotal in enabling proper model training. A larger learning rate risked 

overshooting optimal weight updates, causing random fluctuations in the loss function. The 
adoption of a smaller learning rate facilitated convergence towards the global optimum.  

 

4.7.2. Model Size  

 
In pursuit of overfitting during the model training phase, augmenting the model size emerged as a 

strategic approach. This involved elevating the number of layers or increasing the size of 

individual layers. Optimal model performance was achieved with a six-layer architecture: the first 
five layers each containing 384 units with GELU activation, and the final layer containing a 

single unit with no activation function to facilitate accurate predictions.   

 

4.7.3. Number of Epochs   

 

To induce overfitting, an alternative strategy involved prolonging the model training duration. 

The number of epochs was increased to 300 epochs, revealing distinct patterns in the model's 
performance.  
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4.7.4. Batch Size  
 

Exploring the impact of batch size, adjustments were made to 32 and subsequently to 64. While a 

smaller batch size introduces beneficial noise for regularization, caution is warranted as it might 

contribute to overfitting by allowing the model to inadvertently learn the noise. Striking the right 
balance is essential for effective model training. The model performed best with the batch size as 

64. 

 

4.8. Results   
 

The performance of the model is visualized through the loss function (MSE) and the performance 
metric (MAE) presented in Figures 6 and 7.  

 

 
 

Figure 6. Training and Validation Loss  

 

 
 

Figure 7. Training and Validation MAE  
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As depicted, the model attains commendable results, with both training and validation losses 
steadily decreasing over time, exhibiting signs of overfitting only after a sufficient number of 

epochs.  

 

To better discern the validation MAE pattern, the initial high values for the first few epochs are 
omitted for clarity, as shown in Figure 8.  

 

 
 

Figure 8. Validation MAE after truncating the first 15 epochs. Overfitting can be clearly seen. 

 
The validation MAE reaches its lowest point at around 150 epochs, coinciding with the point 

where the training and validation losses intersect (Figure 7). Subsequently, while the training loss 

continues to decline, the validation loss starts to rise. This inflection point at 150 epochs signifies 
the attainment of a robust model fit.   

 

At this juncture, the MAE for the model stands at approximately 0.472. This implies that the 

model's predictions deviate by 0.472 above or below the actual values. Considering the target 
column values range from -3.7 to 1.7, a mean absolute error of 0.472 is deemed acceptable.  

 

4.8.1. Testing  
 

Given the onset of overfitting around the mark of 150 epochs, a new training session was 

initiated, halted at 130 epochs, and the resulting model was employed to predict targets on the test 
data. The calculated mean average error for the predictions amounted to 0.53, slightly higher than 

the validation MAE. This behavior aligns with the typical performance degradation on unseen 

data, with the difference being inconspicuous.  

 
The model exhibits a 10% relative error on the test data, implying an average deviation of 10% 

from the data range. While this level of error is deemed acceptable for this non-critical task, in 

practical applications, user awareness of potential errors is crucial, and user feedback can help 
gauge the impact on the overall experience.  
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5. CONCLUSION 
 
This paper explores the development of a language model using the Transformer architecture and 

examines the techniques employed to prepare textual data for effective processing by a deep 

learning model. It emphasizes the Transformer architecture as an ideal choice for creating models 

that process textual data due to its effectiveness across various NLP tasks. Additionally, the paper 
highlights the importance of model design, particularly how the number and size of layers impact 

overall performance. Looking ahead, employing an ensemble of models presents a promising 

direction, potentially improving accuracy and overall outcomes.  
 

In conclusion, this paper provides an overview of the current state of language technology, 

focusing on the Transformer model, while also considering future possibilities. Future work could 

explore using an ensemble of models and combining their predictions. This could improve the 
classification accuracy and robustness of the model, resulting in better generalization capability. 

Advancing the field will depend on exploring innovative model designs and fostering 

collaboration among different models.  
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