
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

DOI:10.5121/ijaia.2024.15504 53

TRANSFORMER-BASED REGRESSION MODELS FOR

ASSESSING READING PASSAGE COMPLEXITY: A
DEEP LEARNING APPROACH IN NATURAL

LANGUAGE PROCESSING

Harmanpreet Sidhu and Amr Abdel-Dayem

Bharti School of Engineering and Computer Science, Laurentian University, Sudbury,

Ontario, Canada

ABSTRACT

Natural Language Processing (NLP) is a vital area in deep learning, widely applied in tasks like text

classification, virtual assistants, speech recognition, and autocorrect features in digital devices. It allows
machines to understand and generate human language, enhancing user interactions with software. This

paper presents a deep learning model using the Transformer architecture for a regression task to predict

the complexity of reading passages based on text excerpts. By leveraging the Transformer’s capability to

identify complex patterns in text, the model achieves a relative error rate of about 10%. The paper also

examines how different architectural choices influence model performance, focusing on one-hot encoding

and embeddings. While one-hot encoding provides a simple text representation, embeddings offer a richer,

more nuanced understanding of word relationships. The findings highlight the significance of model design

and data representation in optimizing NLP tasks, providing insights for future advancements in the field.

KEYWORDS

Natural language processing, Transformer models, Regression models, word embeddings.

1. INTRODUCTION

Machine learning, a cornerstone of Artificial Intelligence, diverges from traditional approaches by
relinquishing explicit instructions to computers in favour of providing examples for

problemsolving. In this paradigm, the machine autonomously learns rules from the provided data.

Within machine learning, deep learning has emerged as a prominent sub-field, characterized by
models with numerous layers and their capacity to derive hierarchical representations from data.

This multiplicity of layers, aptly named 'deep learning,' obviates the need for meticulous feature

engineering, as the models proficiently extract relevant features during the learning process.

In comparison to its machine learning counterparts, deep learning reduces the necessity for human

intervention. Machine learning demands structured data, necessitating human experts to discern

the most pertinent features. Conversely, deep learning models excel in automatically discerning
and extracting essential features, diminishing the reliance on human-guided structuring. Recent

years have witnessed the pervasive success of deep learning across diverse tasks, including image

classification, natural language processing, digital assistants, and autonomous driving.

Natural Language Processing (NLP) represents a pivotal domain aspiring to attain human-level

comprehension of spoken or written language. The inherent challenges of NLP lie in the dynamic

and ambiguous nature of language rules. Unlike earlier endeavors that aimed at deciphering the

https://airccse.org/journal/ijaia/current2024.html
https://doi.org/10.5121/ijaia.2024.15504

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

54

intricacies of language, modern NLP focuses on efficiently processing language to yield practical
outcomes, such as text classification, content filtering, translation, and summarization. Deep

learning has garnered considerable attention in the realm of text manipulation, owing to its

superior performance and reduced dependence on intricate feature engineering.

Within the domain of NLP, the Transformer architecture has emerged as the preeminent building

block. This architectural paradigm facilitates the efficient processing of sequential data by

acknowledging that not all components of a text warrant equal scrutiny. Section 4 provides more
details on the Transformer architecture, unraveling its principles and contributions to the realm of

NLP.

Classifying reading materials has wide-ranging applications, from enhancing educational content

to improving recommendation systems. This can boost literacy by ensuring individuals are

presented with reading material suited to their age and comprehension level, fostering a more

adaptive learning environment. Additionally, the model greatly reduces the time and effort needed
for manual classification, streamlining the process and increasing efficiency.

2. RELATED WORK

Recent years have witnessed a surge of interest and extensive research in Natural Language

Processing (NLP) within the broader landscape of machine learning. The ubiquitous application

of data prediction in various aspects of daily life has propelled the prevalence of regression

models. Within the realm of deep learning models, the optimizer plays a pivotal role in
determining the weight adjustments at each step. One optimizer that has garnered considerable

attention is the RMSProp optimizer, renowned for its efficiency in both classification and

regression tasks. A study conducted by Kurbiel and Khaleghian [1] explores the efficacy and
accuracy of the RMSProp optimizer, also detailing how to use it to train multi-layer neural

networks. Noteworthy findings include the utility of neural networks with layers featuring

distance measures and Gaussian activation functions to counteract the vanishing gradient problem
associated with dot-product-based activation functions. The current paper adopts RMSProp as the

optimizer, with Section 4.6 delving into the rationale behind this choice.

Model regularization, a critical aspect preventing overfitting to training data, has also captivated
researchers. Krueger et al. introduced the Zoneout technique, a selective application of dropout to

specific features within a network [2]. This method introduces controlled randomness by

preserving some unit values at each step, enhancing the model's generalization capacity. The
optimizer employed in this paper combines zoneout and dropout techniques.

Within the specialized domain of NLP, research endeavors have focused on developing models

capable of efficiently capturing textual representations in vector form [3], leveraging one-hot
encoding for specific tasks [4], and scrutinizing word embeddings generated for deep learning [5].

These techniques find application in the current paper for the numerical representation of textual

data, rendering it accessible to deep learning models.

3. PROBLEM STATEMENT

In this paper, a deep learning model was developed to evaluate the complexity of reading

passages. The model was trained using samples that included an excerpt from each passage along
with its corresponding complexity level. This approach enabled the model to learn and accurately

predict the complexity of previously unseen passages.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

55

This constitutes a regression task conducted through supervised learning. Unlike classification
problems, regression tasks involve predicting a continuous value instead of a discrete label. The

specific task undertaken here exemplifies scalar regression, wherein the model aims to predict a

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024 single

continuous value. A function is derived by the machine, taking in inputs and generating a single
output value. This function aids in predicting the value of a variable (referred to as the target or

dependent variable) based on one or more independent variables. Supervised learning, utilized for

labeled datasets, involves the machine classifying or predicting outputs based on these labels.
Algorithms for supervised learning establish mappings between input data instances and their

corresponding output values.

The inspiration for the deep learning model was drawn from a competition hosted on Kaggle [6],

organized by CommonLit, a non-profit education technology organization. The objective was to

formulate a model capable of rating the complexity of reading passages for classroom use.

This model holds potential benefits for educators, facilitating the selection of appropriate reading

material based on student proficiency. Ensuring students receive literary material suitable for their

age is crucial for developing the essential skill of reading. Additionally, it can serve as a valuable
tool in curriculum planning, allowing educational providers to ensure a gradual increase in

reading complexity over time,as well as adapting the educational content according to the

individual learning levels. Another potential application of this model lies in a recommendation
system, suggesting reading material to individuals based on their current language proficiency.

4. MODEL BUILDING

4.1. Introduction

The objective of this deep learning model is to forecast the reading level of a text passage,

constituting a regression task executed through supervised learning. The resultant model
assimilates the relationships between input features and their respective targets, empowering it to

predict the complexity of any given reading passage.

4.2. Experimental Setup

TensorFlow, a Python-based open-source machine learning platform developed by Google, plays
a pivotal role in deep learning by facilitating the automatic computation of gradients for

differentiable expressions [7]. Its notable feature of easy distribution across multiple machines

enhances scalability and performance in diverse applications.

Built on top of TensorFlow, Keras serves as a high-level deep learning API, streamlining the

process of model development. Offering a variety of workflows, it allows the definition and

training of deep learning models. Keras combines pre-built functions for common tasks with the
flexibility to define custom functions or configure existing ones, providing a versatile

environment for model construction [8].

In the development process of the model, Keras was utilized as the primary workspace, benefiting

from its high-level abstractions and TensorFlow's underlying capabilities. This combination

allowed for streamlined development, enabling quick experimentation and iteration to achieve
optimal model performance.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

56

4.3. Dataset

The data utilized for this model was sourced from Kaggle, an online platform facilitating data

scientists in dataset publication, collaboration, and participation in competitive problem-solving.
The model's objective aligns with the goal of a Kaggle competition [6].

4.3.1. Data Overview

The dataset comprises several columns:

 id: A unique identifier for each entry.

url_legal: Source URL.
license: Literary source license.

Excerpt: The text passage whose complexity the model aims to predict (string datatype).

Target: The reading ease of the passage, the target variable (floating-point values).

Columns like id, url_legal, and license, while possibly included for copyright and legal purposes,

were dropped as they lack relevance to the model's deep learning task.

4.3.2. Model Objective

The model's task is to predict the reading ease of passages, entirely dependent on the excerpt.
An example entry from the excerpt column and its corresponding target is depicted in Figure 1.

Since deep learning models process tensors, vectorization of data in this column was imperative.

The general steps for vectorization of text data are as follows:

- Text Standardization: Standardizing text is a fundamental data manipulation step that
encompasses actions like removing punctuation and converting data to lowercase. This is

essential as it avoids confusion caused by punctuation, and the model would otherwise

distinguish between the same word in different cases.

- Tokenization: Tokenization involves splitting the text into units suitable for vectorization.

While there are various approaches, the commonly employed method is word-level

tokenization, where tokens are substrings separated by spaces.

- Indexing: Following tokenization, the text undergoes conversion into a numerical

representation. Indexing, in this context, entails creating an index encompassing all words

in the data and assigning a unique integer to each word.

- Encoding: The final step involves converting integers from the previous indexing phase

into vectors. Two widely utilized techniques for encoding are one-hot encoding and

embeddings.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

57

Figure 1. Example entry from the excerpt column and its corresponding target. A neural network cannot

process the data in form as provided in the excerpt column.

4.3.2.1. One-Hot Encoding

One-hot encoding is a technique where each word in a dataset is transformed into a vector with all
zeroes, except for a 1 in the position corresponding to the word's index. For instance, in a dataset

with only the words 'Cat,' 'Dog,' and 'Horse,' the one-hot encoded vectors will each have three

elements. If indices are assigned based on the word order, 'Cat' will be [1, 0, 0], 'Dog' will be [0,
1, 0], and 'Horse' will be [0, 0, 1].

The dimensionality of one-hot encoded vectors equals the number of words in the dataset,
resulting in generally high-dimensional and sparse vectors. These vectors are orthogonal,

meaning they are independent of each other. One-hot encoding, representing words solely as

indices in a vocabulary, lacks the concept of similarity between words. A variant, multi-hot

encoding, allows encoding multiple words in a single vector, similar to one-hot encoding, where
the encoded vector includes all zeroes except for indices indicating specific words.

4.3.2.2. Embedding

Word embedding involves creating vectors that represent a given text in a structured geometric

space. In this space, words with related meanings or semantic similarities are positioned closer to

each other, while words with distinct meanings are situated farther apart. Embedded words retain
their individual identities while sharing attributes with similar words, fostering a semantic

clustering effect based on categories.

Figure 2. Representations obtained through one-hot encoding: high-dimensional and sparse.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

58

Taken from [9].

Figure 3. Representations obtained through embeddings: low-dimensional and dense. Taken from [9].

These vectors crafted through embeddings are characterized by being low-dimensional and dense.
Unlike one-hot encoded vectors, machine learning algorithms autonomously learn word

embeddings without explicit programming by developers. Recent attention from researchers has

propelled word embeddings into various applications, including text classification, sentiment

analysis, and knowledge mining. To illustrate the contrast between representations, Figure 2
depicts those from one-hot encoding, while Figure 3 showcases representations from word

embeddings.

While one-hot encoding proves valuable in many deep learning algorithms, its use was

impractical for this paper. The relatedness of words in a passage necessitates a holistic

understanding, making individual word examination insufficient for determining the complexity

of the entire excerpt.

4.3.3. Generating Embeddings

Word embeddings are tailored to the specific task at hand, varying across different applications.

They originate from a corpus and offer versatility across multiple use cases. Two methods are

commonly employed for their generation:

- Task-Specific Development: In this approach, word embeddings are crafted concurrently

with the task they are intended for. Similar to how a machine learns the weights of a
network, this method enables the machine to learn task-specific word embeddings.

- Pretrained Embeddings: Alternatively, researchers often opt for pretrained word

embeddings developed for a different machine learning task. This practice involves using
embeddings generated from a large corpus, bypassing the need to create embeddings

from scratch for a given dataset. This preference arises due to the computational

demands, preprocessing requirements, and training time associated with developing
custom embeddings.

4.4. Model Architecture

A critical decision in natural language processing tasks involves determining how to encode the

order of words in a sentence, shaping the foundation of the model's architecture. Two primary
approaches exist: one treating the text as an unordered collection of words and the other

processing words sequentially, akin to time-series data, often utilizing Recurrent Neural Networks

(RNNs).

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

59

For the current task, where understanding the sentence structure is paramount, a hybrid approach
is adopted. The Transformer architecture is employed, striking a balance by incorporating

information about the position of words in their representations. This approach outperforms

simply using RNNs, enabling the model to simultaneously consider various parts of the sentence,

enhancing overall comprehension.

4.4.1. Transformer Architecture

The Transformer architecture, rooted in neural attention mechanisms, has emerged as the

cornerstone for NLP models. Vaswani et al. introduced the concept of "attention" in their seminal

paper "Attention is All You Need" [10]. This idea suggests that certain features of input data
merit more attention from the model, while others can be selectively ignored.

Widely utilized for sequence-to-sequence learning, the Transformer architecture comprises two

key components: an encoder and a decoder. The encoder processes input data, transforming it into
an intermediate representation, which the decoder leverages to predict the output.

4.4.2. Sentence Transformer

A specialized type of NLP model, Sentence Transformers leverage the Transformer architecture

to generate embeddings that encapsulate the semantic meaning of textual data. These embeddings
are highly versatile and can be applied to a variety of tasks, including text classification,

sentiment analysis, and paraphrase detection [11]. Notable for their adaptability to diverse

datasets, Sentence Transformer models are used in this paper, as visualized in Figure 4, which

illustrates the transformed embeddings derived from the excerpt column.

Figure 4. Excerpt column after conversion to Embeddings. This data can now be processed by the model as
it is provided in the form of floating-point tensors.

The process begins with converting the input text into individual tokens. Each token is then

mapped to a pre-trained embedding vector available in the model’s vocabulary, resulting in dense
vector representations. Unlike traditional models, Transformer models create contextaware

embeddings, meaning each word's embedding captures both its meaning and its relationship to

other words in the sentence. This is achieved by analyzing the entire input sequence
simultaneously, rather than processing words in isolation.

4.5. Model Building

4.5.1. Layer Structure

The number of layers in a model is intricately linked to the complexity of the representations it

aims to learn. The dimensionality of the input data determines the number of units in each layer.

While a larger model with more layers and units can capture intricate representations, it might
also learn extraneous patterns, making it susceptible to overfitting. Conversely, a smaller model

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

60

may struggle to grasp robust representations. For this task, the initial model comprised 5 Dense
layers, with the first 4 layers having 64 units each. Dense layers, being fully connected, enable

each neuron to receive input from all neurons in the preceding layer. The first 4 layers employed

the Gelu (Gaussian Error Linear Unit) activation function, detailed in the subsequent section. The

last layer, crucial for scalar regression, featured a linear configuration without any activation
function to allow predictions across a broad range.

4.5.2. Activation Function - Gaussian Error Linear Unit (Gelu)

Selecting activation functions is pivotal in model development. Optionally, stochastic regularizers

like dropout or noise addition can enhance performance. Gelu, denoting Gaussian Error Linear
Unit, amalgamates two stochastic regularizers—dropout and zoneout—with the traditional relu

activation function. Dropout randomly omits some output features during training, preventing

overfitting. Zoneout, akin to dropout, injects noise during training by retaining some unit values,

addressing the vanishing gradient problem. Gelu multiplicatively combines these techniques by
introducing noise based on a Bernoulli distribution [12]. The choice of Gelu is motivated by its

full differentiability and continuity, facilitating effective backpropagation and optimization [13].

4.5.3. Dropout

Applied to the input features of Dense layers, dropout was incorporated in a gradual manner- the
features of the first 2 layers were dropped by 50%, and those of the next 2 were dropped by 25%.

This strategic implementation delays overfitting, enhancing the model's generalization.

4.5.4. Loss Function

The chosen loss function for the model is Mean Squared Error, measuring the square of the

difference between expected and actual outputs. Ideal for regression problems, a lower MSE
value indicates superior model performance.

4.5.5. Metric of Success

Mean Absolute Error (MAE) was selected as the success metric, representing the average

absolute difference between predicted and actual values. Offering interpretability and robustness

to outliers, MAE possesses a continuous derivative.

4.5.6. Optimizer

The chosen optimizer for the model is RMSProp, a variant similar to AdaGrad. RMSProp is

designed to converge quickly by gradually adjusting the model’s learning rate, which is a scalar

factor that indicates the speed of the gradient descent process. The learning rate refers to how

quickly the optimizer changes the weights of a network in each step. AdaGrad calculates learning
rates for each parameter based on squared gradients [14], but it suffers from a drawback known as

rapid decay. This occurs as squared gradients accumulate, diminishing the learning rate over time

and hindering further learning. RMSProp addresses this by employing a moving average of
squared gradients, preventing the learning rate from diminishing too swiftly [15].

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

61

Figure 5. Algorithm for RMSProp optimizer. Learning rates of all parameters are set inversely

proportional to an exponentially weighted moving average of squared partial derivatives over all training

iterations. Taken from [17].

In Figure 5, g refers to the total gradient. RMSProp's approach involves computing the moving

average of squared gradients over time, achieved through statistical calculations with subsets of
the full dataset. Figure 5 illustrates the algorithm used. The moving average enables dynamic

adjustment of learning rates for each parameter based on the gradient history, employing the

principle of momentum to guide the model toward global minima.

By incorporating historically calculated gradients, RMSProp avoids getting stuck in local minima,

facilitating the model's convergence to the global minimum. This concept draws inspiration from

momentum in Physics, accelerating convergence. The Adam optimizer takes these principles
further by integrating ideas from both RMSProp and momentum [16].

RMSProp's adaptive learning rate properties make it an excellent choice for regression tasks,

aiding in the determination of optimal weights for parameters. As the learning rate is individually
set for each parameter using the moving average, the optimizer ensures proper adjustments in

case of excessively high or low gradients. This results in stable training and enhanced model

optimization.

4.6. Model Training

Following the definition of parameters in section 4.5, the model was compiled, and the training

loop was initiated.

4.6.1. Data Split

Prior to training, the dataset comprising 2,834 samples was divided into training, validation, and
test sets. About 8% (234 samples) were reserved for the test set, while 20% (520 samples)

constituted the validation set. The remaining data served as the training set. This separation is

essential to ensure that the model, designed to learn patterns from the given data, is evaluated on

unseen data during testing.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

62

4.6.2. Learning Rate

The learning rate, a scalar determining the gradient descent speed, was specified as a parameter

during model compilation. This initial learning rate guides the optimizer at the onset of training,
dynamically adjusting throughout the process. RMSProp utilizes the moving average of squared

gradients for this purpose. Setting an optimal initial learning rate is crucial, influencing the

model's convergence speed. In this instance, the initial learning rate was configured at 0.01.

4.6.3. Number of Epochs

The number of epochs, initially set to 200, is considered adequate for the model to grasp data

representations and establish a robust fit during training.

4.6.4. Batch Size

The model's batch size, set at 16, introduces a controlled level of noise to enhance generalization

ability. A smaller batch size facilitates noise incorporation, contributing to improved model
generalization.

4.7. Hyperparameter Tuning

Following the compilation with the previously defined parameters, adjustments to the

hyperparameters were imperative for optimal performance.

4.7.1. Learning Rate

The initial training, utilizing the default learning rate, exhibited erratic performance metrics. To

address this, the learning rate was systematically reduced to 0.001 and subsequently to 0.0001.
63

This adjustment proved pivotal in enabling proper model training. A larger learning rate risked

overshooting optimal weight updates, causing random fluctuations in the loss function. The
adoption of a smaller learning rate facilitated convergence towards the global optimum.

4.7.2. Model Size

In pursuit of overfitting during the model training phase, augmenting the model size emerged as a

strategic approach. This involved elevating the number of layers or increasing the size of

individual layers. Optimal model performance was achieved with a six-layer architecture: the first
five layers each containing 384 units with GELU activation, and the final layer containing a

single unit with no activation function to facilitate accurate predictions.

4.7.3. Number of Epochs

To induce overfitting, an alternative strategy involved prolonging the model training duration.

The number of epochs was increased to 300 epochs, revealing distinct patterns in the model's
performance.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

63

4.7.4. Batch Size

Exploring the impact of batch size, adjustments were made to 32 and subsequently to 64. While a

smaller batch size introduces beneficial noise for regularization, caution is warranted as it might

contribute to overfitting by allowing the model to inadvertently learn the noise. Striking the right
balance is essential for effective model training. The model performed best with the batch size as

64.

4.8. Results

The performance of the model is visualized through the loss function (MSE) and the performance
metric (MAE) presented in Figures 6 and 7.

Figure 6. Training and Validation Loss

Figure 7. Training and Validation MAE

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

64

As depicted, the model attains commendable results, with both training and validation losses
steadily decreasing over time, exhibiting signs of overfitting only after a sufficient number of

epochs.

To better discern the validation MAE pattern, the initial high values for the first few epochs are
omitted for clarity, as shown in Figure 8.

Figure 8. Validation MAE after truncating the first 15 epochs. Overfitting can be clearly seen.

The validation MAE reaches its lowest point at around 150 epochs, coinciding with the point

where the training and validation losses intersect (Figure 7). Subsequently, while the training loss

continues to decline, the validation loss starts to rise. This inflection point at 150 epochs signifies
the attainment of a robust model fit.

At this juncture, the MAE for the model stands at approximately 0.472. This implies that the

model's predictions deviate by 0.472 above or below the actual values. Considering the target
column values range from -3.7 to 1.7, a mean absolute error of 0.472 is deemed acceptable.

4.8.1. Testing

Given the onset of overfitting around the mark of 150 epochs, a new training session was

initiated, halted at 130 epochs, and the resulting model was employed to predict targets on the test
data. The calculated mean average error for the predictions amounted to 0.53, slightly higher than

the validation MAE. This behavior aligns with the typical performance degradation on unseen

data, with the difference being inconspicuous.

The model exhibits a 10% relative error on the test data, implying an average deviation of 10%

from the data range. While this level of error is deemed acceptable for this non-critical task, in

practical applications, user awareness of potential errors is crucial, and user feedback can help
gauge the impact on the overall experience.

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

65

5. CONCLUSION

This paper explores the development of a language model using the Transformer architecture and

examines the techniques employed to prepare textual data for effective processing by a deep

learning model. It emphasizes the Transformer architecture as an ideal choice for creating models

that process textual data due to its effectiveness across various NLP tasks. Additionally, the paper
highlights the importance of model design, particularly how the number and size of layers impact

overall performance. Looking ahead, employing an ensemble of models presents a promising

direction, potentially improving accuracy and overall outcomes.

In conclusion, this paper provides an overview of the current state of language technology,

focusing on the Transformer model, while also considering future possibilities. Future work could

explore using an ensemble of models and combining their predictions. This could improve the
classification accuracy and robustness of the model, resulting in better generalization capability.

Advancing the field will depend on exploring innovative model designs and fostering

collaboration among different models.

REFERENCES

[1] Huang, Jui-Chan, Ko1, Kuo-Min, Shu, Ming-Hung & Bi-Min Hsu, (2020), “Application and

comparison of several machine learning algorithms and their integration models in regression

problems”, Neural Computing and Applications 32, pp. 5461-5469.

[2] Krueger, David, Maharaj, Tegan, Kramár, János, Pezeshki, Mohammad, Ballas, Nicolas, Rosemary

Ke, Nan, Goyal, Anirudh, Bengio, Yoshua, Courville, Aaron & Pal, Chris, (2016) “Zoneout:

Regularizing rnns by randomly preserving hidden activations”, arXiv preprint arXiv:1606.01305,

doi:https://arxiv.org/abs/1606.01305

[3] Mikolov, Tomas, Chen, Kai, Corrado, Greg & Jeffrey Dean, (2013), “Efficient estimation of word

representations in vector space”, arXiv preprint arXiv:1301.3781, doi:

https://arxiv.org/abs/1301.3781

[4] Jie, Liang, Jiahao, Chen, Xueqin, Zhang, Yue, Zhou & Jiajun, Lin, (2019), “One-hot encoding and
convolutional neural network-based anomaly detection”, Journal of Tsinghua University (Science

and Technology) 59, no. 7, pp. 523-529.

[5] Wang, Shirui, Zhou, Wenan & Jiang, Chao, (2020), “A survey of word embeddings based on deep

learning” Computing 102, pp. 717-740.

[6] Commonlit, May 3, 2021, “CommonLit Readability Prize”,

 Kaggle.com, doi: https://www.kaggle.com/competitions/commonlitreadabilityprize/data

[7] TensorFlow (2015). Google. Available: https://www.tensorflow.org/

[8] Keras (2015). Francois Chollet. Available: https://keras.io/

[9] Chollet, Francois (2021) Deep Learning with Python: Second Edition. Manning Publications.

[10] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N.,

Kaiser, Lukasz & Polosukhin, Illia, (2017), "Attention is all you need.", Advances in neural

information processing systems 30, pp. 6000 – 6010.
[11] Reimers, Nils & Gurevych, Iryna, (2019), “Sentence-bert: Sentence embeddings using Siamese

Bert-Networks,” Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing. doi:

https://arxiv.org/abs/1908.10084

[12] Hendrycks, Dan & Gimpel, Kevin, (2016), "Gaussian error linear units (gelus)." arXiv preprint

arXiv:1606.08415. Doi: https://arxiv.org/abs/1606.08415

[13] Minhyeok Lee, (2023), "Mathematical analysis and performance evaluation of the gelu activation

function in deep learning." Journal of Mathematics.

[14] Duchi, John, Hazan, Elad & Singer, Yoram, (2011), "Adaptive subgradient methods for online

learning and stochastic optimization." Journal of machine learning research, doi:

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

https://arxiv.org/abs/1606.01305
https://arxiv.org/abs/1606.01305
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://www.kaggle.com/competitions/commonlitreadabilityprize/data
https://www.kaggle.com/competitions/commonlitreadabilityprize/data
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://keras.io/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.5, September 2024

66

[15] Hinton, Geoffrey, Srivastava, Nitish & Swersky, Kevin. Neural networks for machine learning

lecture 6a overview of mini-batch gradient descent. Cited on, 2012.

[16] Kingma, Diederik & Ba, Jimmy, (2014) "Adam: A method for stochastic optimization." arXiv

preprint arXiv:1412.6980. Doi: https://arxiv.org/abs/1412.6980

[17] Goodfellow, Ian, Bengio, Yoshua & Courville, Aaron, (2017), Deep learning. Cambridge, MA: The
MIT Press.

	Abstract
	Keywords
	1. Introduction
	2. Related Work

	3. Problem Statement
	4. Model Building
	4.1. Introduction
	4.2. Experimental Setup
	4.3. Dataset
	4.3.1. Data Overview
	4.3.2. Model Objective
	4.3.2.1. One-Hot Encoding
	4.3.2.2. Embedding
	4.3.3. Generating Embeddings

	4.4. Model Architecture
	4.4.1. Transformer Architecture
	4.4.2. Sentence Transformer

	4.5. Model Building
	4.5.1. Layer Structure
	4.5.3. Dropout
	4.5.4. Loss Function
	4.5.5. Metric of Success
	4.5.6. Optimizer

	4.6. Model Training
	4.6.1. Data Split
	4.6.2. Learning Rate
	4.6.3. Number of Epochs
	4.6.4. Batch Size

	4.7. Hyperparameter Tuning
	4.7.1. Learning Rate
	4.7.2. Model Size
	4.7.3. Number of Epochs
	4.7.4. Batch Size

	4.8. Results
	4.8.1. Testing
	5. Conclusion

	References

