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ABSTRACT  
 
Detecting anomalies in energy consumption is critical for efficient energy management, fault detection, and 

sustainability. However, the challenge of class imbalance, where normal consumption data vastly 

outweighs anomalous instances, presents significant difficulties in building accurate predictive models. 

This paper conducts a comparative analysis of class imbalance handling techniques for deep models in 

detecting anomalies in energy consumption data. Specifically, controlled experiments are used to evaluate 

the performance of deep learning models, such as convolution neural networks (CNN), long short-term 
memory (LSTM) and BiLSTM deep algorithms as well as synthetic data generation (SMOTE), cost-

sensitive learning, and generative adversarial networks (GAN) tailored to address the imbalance issue. 

Through a comprehensive empirical study using a real-world energy dataset, we assess the models' 

effectiveness based on area under the curve (AUC), precision, recall, F1-score, and their ability to 

generalize across different levels of imbalance. This research contributes to improving model selection for 

practitioners facing the class imbalance challenge in the energy sector.  
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1. INTRODUCTION  
 

Recently, the concept of smart grids has ushered in a new era of unravelling electricity use. Data 

from smart meters is being used for additional implementation to detect anomalies. Smart grids 
(SG) refer to power systems that use the Internet of Things[1]. Smart grids are made up of 

standard electrical grids, communication networks that connect intelligent devices (such as smart 

meters and sensors) in grids, and computing facilities for sensing and controlling grids [2]. In 
smart grids, both energy and information flows connect users to utility companies. Managing 

energy and electricity consumption is a key challenge for smart cities and the Internet of Things. 

Users' electricity usage habits can be analyzed using machine learning and deep learning methods 
to create classification models. Popular models include decision trees, random forests (RF), 

support vector machines (SVM)[3], neural networks (NN) [4], and so on. Deep learning 

technologies, such as neural networks (NN), are effective tools for predicting customer electricity 

use and the occurrence of anomalies. Forecasting consumption and anomalies together is a 
feasible strategy for optimizing energy consumption management. CNN [5], LSTM [6], GRU[7], 

RNN and AE [4] have all been proposed as methods for predicting energy use in smart homes and 

cities. Each of these strategies uses training data to build a predictive model that predicts energy 
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use. An uneven dataset on energy use can bias the model towards the majority class hence data 
preprocessing is required.  

 

Deep learning techniques are used to construct models to work with smart meter data from smart 

grids because of their capacity to handle and control large volumes of data and automate feature 
extraction, and classification processes. [8] presented a wide and deep CNN structure for 

detecting electricity theft in smart grid scenarios. Load forecasting has recently seen the use of 

hybrid deep learning algorithms. In [9] a CNN-LSTM model was presented for short-term load 
forecasting. In terms of performance, the proposed model outperformed other techniques. CNN is 

a commonly utilized technology that automates feature extraction and classification processes 

[10]. The challenge of deep learning methods is the imbalance in the datasets, which prevents 
accurate model training.  

 

Anomaly in energy consumption refers to any significant deviation from the expected or normal 

energy usage pattern. Anomaly detection is critical to smart grid operations, enabling efficient, 

reliable, and secure energy delivery. By leveraging advanced analytics and machine learning 

techniques, utilities can proactively address potential issues, optimize resource allocation, and 
enhance the overall customer experience. Addressing the class imbalance problems in anomaly 

detection for energy consumption data is crucial because it frequently involves a small number of 

abnormal events relative to the bulk of regular events [11]. Several methods have been proposed 

to tackle this, with some of the best-performing approaches involving a combination of 
oversampling techniques and deep learning models.  To address the issue of imbalanced classes, 

certain techniques in the literature try to equalize or reduce the size disparity across classes in 

data sets. Some examples include Generative Adversarial Networks (GANs)[11], Synthetic 

Minority Oversampling Technique (SMOTE)[12] and Cost-Sensitive Learning[13].  
 

One effective method involves Generative Adversarial Networks (GANs). GAN-based 
oversampling, particularly in conjunction with ensemble learning, has shown promise in handling 

both class imbalance and concept drift, which is often a challenge in real-world data streams[11] 

Another highly effective method is the SMOTE (Synthetic Minority Over-sampling Technique) 
and its variations like Borderline-SMOTE[12]. and Cluster-Based Oversampling[14]. These 

methods generate synthetic data points for the minority class by interpolating between nearest 

neighbours, which helps balance the dataset without overfitting. These methods can also be 

integrated into deep learning models like CNNs or LSTMs to improve the detection of rare 
anomalies.  

 

In addition, Cost-sensitive learning is a crucial technique for handling imbalanced datasets or 
scenarios where different types of misclassifications have varying costs. Conventional data-level 

strategies for resolving class imbalance involve oversampling to balance distribution [13]. 

However, oversampling minority class samples to get a balanced dataset may result in overfitting. 
Cost-sensitive learning is an algorithm-level technique for efficiently training a model with 

imbalanced data without altering the data distribution [13]. In the context of deep learning, the 

primary goal of cost-sensitive learning is to adjust the model's training process such that it pays 

more attention to underrepresented classes or errors with higher costs.  
 

The current best-performing models for addressing the class imbalance challenge in anomaly 

detection for energy consumption combine advanced deep learning architectures with 
sophisticated oversampling techniques and hybrid approaches.  
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2. RELATED WORKS  
 
Recently, due to the advancements in the smart grid in the form of an advanced metering 

infrastructure system, the utility obtains the real-time energy utilization pattern of all the 

connected users that can be used to differentiate between normal and abnormal user consumption 

behaviour [15]. The recent advancement in data-driven techniques, specifically, machine learning 
and deep learning techniques has shown an increasing trend in recent years. Because of its easy 

implementation and outstanding performance towards energy anomaly detection in smart grids, 

the dataset obtained directly from the utility needs pre-processing steps and accurate classifier 
selection for a better prediction. Much research has been done using the data-driven approach 

using data preparation classifier modelling[15].   

 

Anomaly detection detects patterns that do not conform to expected behaviour. It has recently 
garnered substantial attention from the smart grid community because it can help improve 

operational safety, increase control reliability, and detect defects in smart metering 

infrastructure[8]. Accurate energy use predictions in smart cities are required to meet future 
energy demand. Machine learning and deep learning technologies accurately predict energy use 

and theft. The next section lists some relevant works in this field.  

 
According to [16], a machine learning-based approach was presented for estimating energy 

consumption in the Internet of Things. They employed two prediction models to forecast energy 

usage: Multi-Layer Perceptron (MLP) and K-Nearest Neighbors (K-NN). LSTM is used in their 

framework to anticipate the next hour's energy consumption. The MLP approach outperforms the 
K-NN method in terms of accuracy, according to their evaluation. Their method has the 

advantage of predicting present and future energy consumption, but it requires feature selection 

and balanced data in training data.  
 

In [6], they presented an LSTM neural network for predicting energy use. This study compares 

the performance of LSTM neural network, Extreme Boost Gradient, and Random Forest 
algorithms for predicting electric energy usage. Experiments show that the LSTM model 

outperforms comparable models. The proposed method has the advantage of accurate prediction 

but requires further optimization of learning parameters, which is a disadvantage. According to  

[17], they presented a method based on artificial intelligence to predict electricity consumption 
and energy production. In this work, ConvLSTM is used to extract spatio-temporal features. In 

the following phase, the extracted features are delivered to multi-layered perceptron layers to 

make predictions. Experiments showed that their method is more accurate than CNN and LSTM. 
Failure to select the optimal feature and imbalance of the data set are the disadvantages of their 

process.  

 

In [18], the authors proposed a convolutional neural network-based deep learning approach for 
predicting energy use. Experiments show that the approach outperforms the support vector 

regression (SVR) model. According to [19], a method for detecting power theft in smart grids 

using an ensembled CNN and XG boost is proposed. This model uses both one-dimensional (1-D) 
and two-dimensional (2-D) electricity usage data to feed into the CNN model. The proposed 

model outperformed existing models in detecting electricity theft, with an accuracy of 92%. The 

experiments were conducted using electricity consumption data distributed by the State Grid 
Cooperation of China (SGCC).  

 

In [20], they proposed a hybrid model amalgamating a convolutional neural network (CNN) and a 

transformer network for power theft detection. The CNN model with a dual-scale dual-branch 
(DSDB) structure incorporates inter and intra-periodic convolutional blocks to conduct shallow 

feature extraction of sequences from varying dimensions This model can extract multiscale 
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characteristics. The transformer module with Gaussian weighting detects time dependencies in 
electricity consumption data and enables the extraction of sequence features at a deep level. The 

proposed method is applied to the smart meter data of users' daily electricity consumption, which 

is supplied by the State Grid Corporation of China (SGCC). The proposed method exhibits 

enhanced efficiency in feature extraction, yielding high F1 scores and AUC values, while also 
exhibiting notable robustness. While their technique outperforms CNN, it is more complex. 

  

In [21], a method for detecting power theft using dual fusion and deep learning is presented. This 
paper presents a new strategy that integrates features with deep learning methods. This research 

employs temporal convolutional networks (TCN), an LSTM-based feature extraction module, and 

a deep convolutional neural network. Actual power consumption data from the State Grid 
Corporation of China (SGCC) is used for evaluation. The proposed method for detecting 

electricity theft has a remarkable detection accuracy of approximately 94.7%. The experimental 

results demonstrate great performance across a variety of assessment parameters. It achieved 

values of 0.932, 0.964, 0.948, and 0.986 for precision, recall, F1 score, and AUC respectively. 
Their method outperforms TCN, LSTM, and DCNN for forecasting energy theft.   

 

In [22], they presented a hybrid technique for detecting energy theft in smart grids using 
DenseNet and GRU. They primarily present a novel sampling technique for balancing the dataset 

known as random oversampling with both classes (ROBC). This strategy oversamples utilizing 

both the abnormal and normal classes. In this study, the DenseNet-FCN module accurately 
extracts periodic and non-periodic patterns from two-dimensional power consumption data, 

whereas the GRU module captures and recalls characteristics from one-dimensional consumption 

data. Following that, the LightGBM module serves as an embedded classifier, providing the final 

findings of power theft detection. To train and test the proposed approach, real smart meter data 
from SGCC is used, which is labelled.  

  

In [23], a method for detecting energy theft in smart grids using CNN and AutoXGB is described. 
Initially, the Hermite cubic interpolation polynomial is employed to address missing data in the 

dataset. Their solution employs the SMOTEENN strategy, which involves data set balancing. 

This technique utilizes a one-dimensional convolutional neural network to extract basic features. 

In the following stage, the retrieved features are classified using AutoXGB. AutoXGB can 
optimize model Meta parameters automatically. The experimental results demonstrate that the 

proposed model achieves an accuracy rate of 99.2%, a precision rate of 97.5%, and an area under 

the ROC curve of 98.4%. These findings demonstrate how much better it is than competing 
models.. The evaluations reveal that the suggested model is more accurate than methods such as 

CNN and LSTM.  

 
[24] address the deep learning-based energy theft detection as well as the imbalance dataset. To 

counteract the model's bias towards the majority class, a focus loss function is utilized to 

minimize the sample weight of normal users. SENet is integrated with a wide and deep 

convolution neural network (CNN) to learn global features and detect electricity theft users in the 
dataset. Real-time data from the Smart Grid Corporation of China (SGCC) dataset is used to 

validate the final model. Lepolesa et al. [25] used the same SGCC dataset for theft detection. The 

researchers devised a deep neural network model to classify users as honest or thieves.   
 

The authors in [10] used a combination of CNN and LSTM deep learning algorithms. Seven 

hidden layers were used, with four used by CNN and three by LSTM. This method used CNN to 
automatically extract features from a given dataset. Features were derived from one-dimensional 

time-series data. SMOTE-based balancing is used to address the imbalance class problem. During 

model validation, the maximum accuracy was 89%. In reference [26], the researchers suggested 

an ensemble machine-learning model with a stacking structure for detecting electricity theft in the 
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SGCC dataset. The dataset is pre-processed using the 3-sigma rule, mean imputation, and 
minmax standardization. The principal component analysis addresses high dimensionality issues. 

In [27] proposes a comparable stacked autoencoder with an LSTM sequence-to-sequence (S2S) 

structure. The data pattern is captured using autoencoders, and the final classification is 

performed using the LSTM-S2S model. The suggested model is validated using realistic ISET 
and SGCC datasets. The model achieved 96% accuracy and 0.93 AUC on the SGCC dataset. The 

author of the reference[28] presented a ConvLSTM model for energy theft detection purposes. 

The preprocessing procedures include cleaning the data with KNN imputation and managing 
outliers with IQR. The borderline-SMOTE protocol is used for data balancing. Finally, a CNN-

LSTM model is applied to the SGCC dataset. The suggested model outperforms conventional 

techniques, obtaining a ROC-AUC of 0.977 and 96.6% accuracy.  
 

Deep learning approaches generally rely on neural networks such as convolutional neural 

networks (CNN), recurrent neural networks (RNN), and their variants, which mimic the structure 

and selftraining capabilities of the human brain. The system analyses user data on electricity 
consumption to find irregularities[21]. Convolutional neural networks (CNN) and recurrent neural 

networks (RNN) are commonly employed in deep learning (DL) to solve a variety of issues, 

including energy forecasting. These models' learning capabilities are impressive, and they have a 
high potential for generalization when compared with classical machine learning and statistical 

techniques [17]. CNN models have a high potential for extracting spatial information, while 

sequential models can capture temporal aspects. However, due to the different attribute nature 
effect, the individual learning model's performance is limited and does not fulfil the requirements, 

making it unsuitable for use in constructing an efficient management system between consumer 

and supplier.  

 
The researcher came to the conclusion that the hybrid model can extract robust, discriminative, 

and optimal features from historical energy data after reading through the literature and 

evaluating the study articles. To achieve this, numerous model combinations have been devised, 
including CNN-GRU, CNN-RNN, CNN-LSTM, and an autoencoder with BiLSTM. The 

aforementioned models can accurately anticipate energy usage patterns. However, the prediction 

results obtained from these models require further comparative analysis of class-imbalanced 

handling techniques to create a reliable management system.  
  

3. METHODOLOGY  
 

Related works demonstrate that deep learning approaches such as CNN and LSTM are useful in 
forecasting energy use and theft. Predicting energy usage and theft can be challenging because of 

imbalanced data and optimization of meta-parameters for models. In this paper deep learning 

technologies are used to detect anomalies in electricity consumption data. However, the presence 

of imbalanced classes in energy consumption data presents an opportunity to investigate 
unbalanced data handling techniques. This paper compares data-balancing strategies and three 

deep learning techniques (CN, LSTM, and BiLSTM) to determine which yields better results for 

electricity anomaly detection simulations. The authors of this paper used the following data 
balancing strategies: Cost-Sensitive Learning (Weighting), Synthetic Minority Oversampling 

Technique (SMOTE), and generative adversarial networks (GAN). A controlled experiment was 

used to carry out the comparative analysis among various class imbalance handling techniques 
and deep learning models using Google Colab environment. The State Grid Corporation of China 

(SGCC) dataset [8]  was used for training to represent the consumer class. The values 1’s for the 

anomalous class and 0’s for the normal users’ class is given in the dataset.    
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3.1. Data Preprocessing  
 

The dataset chosen for this research was derived from actual electricity consumption data released 

by the State Grid Corporation of China (SGCC) [8]; it includes daily energy consumption 
readings of actual customers that have been classified as benign and malicious. The dataset shows 

daily electricity consumption in kilowatt-hours (kWh) for 42 372 customers from January 1, 2014 

to October 31, 2016 (1034 days). 38 757 customers are normal electricity users (labelled 0), while 
3615 are identified as electricity thieves (labelled 1). This dataset was selected due to its 

accessibility and research gap, and it has been de-identified (for privacy reasons) to ensure 

confidentiality.  

 

3.2. Missing Value Processing     
 
This can be ascribed to a variety of complex issues faced during the meter collection process, 

including unreliable data transfer caused by smart meter problems, irregular system maintenance, 

the occurrence of exceptional events, and other multifarious aspects. As a result, these variables 

contribute to the lack of electricity consumption data. To reduce the impact of data variations on 
the neural network model, it is critical to use appropriate data preprocessing techniques. This 

study normalizes raw data and handles the issue of missing values using proper processing 

techniques. Missing values are most common when there is a lack of data at a specific point in 
time, which is usually caused by measurement errors.   

 

The missing values are added to the data to increase its overall quality, making it more 

reliable and appropriate for analysis and modelling. To deal with missing data that 

satisfies the requirements, the zero-replacement method is used:  
 

 
 

where 𝑥𝑡 indicates the user’s electricity consumption at a given time and 𝑥𝑡∈ 𝑁𝐴𝑁 indicates that 

𝑥𝑡 is a null value. The network has trouble discriminating between the original value being 0 and 
the missing value being imputed as 0 due to the presence of 0 values in the samples. To address 

this issue, we introduced an additional input channel using a binary mask [29]. Within the mask 

matrix, the missing value of the original data is represented as 0, but the normal value of 0 is 
designated as 1. Using this strategy, the neural network can distinguish between these two 

scenarios, increasing the model's resilience.  

 

3.3. Balancing the Dataset  
 

The data set's imbalance is one of the most significant issues in predicting energy use and 
anomaly. When there are fewer samples in one class than there are in another, this is known as 

class imbalance. An imbalance in the dataset reduces the learning model’s accuracy. For example, 

in Table 1, from 2014 to 2016, the SGCC data collection had 42372 legitimate samples, whereas 

3615 samples committed electricity theft. Artificial samples can be produced and added to the 
data set, increasing the number of samples in the minority class. In this research, the comparison 

analysis was performed using the following unbalanced data handling techniques: GAN, SMOTE, 

and Cost Sensitive Learning.  
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Table 1. Raw data status 

  

Description   Value   Class 

tag  

Total number of electricity 
consumers  

42372   

Number of abnormal electricity 

consumers  

3615  1  

Number of normal electricity 

consumption users  

38757  0  

Time span  1 January 2014- 31 October 

2016  

 

 

3.3.1. Generative Adversarial Network (GAN)  

 

The GAN approach is based on game theory and consists of two components: the generator (G) 
and the discriminator (D). GAN is an unsupervised generative model using adversarial concepts. 

This deep learning technique provides a useful way to balance datasets. The G's duty is to 

develop and convey synthetic data to the D. The D also determines if the sample is artificial or 
real. If the G successfully deceives the D and the D accepts synthetic facts as real, the G wins the 

game [30].The discriminator's role is to try to discern between real and synthetic data, while the 

generator's role is to strive to improve itself in order to generate data that will confuse the 

discriminator. During training, the discriminator and generator evolve alternately until they reach 
Nash equilibrium. At this time, the discriminator can no longer tell the difference between the 

true and false data, showing that the generator can generate data that is comparable to the genuine 

data and has a high generation impact. The general architecture of GAN is shown in Figure 1.  
 

 
 

Figure 1. The general architecture of GAN (source[30])  

 

The underlying concept of GAN is a min-max game between the generator and the discriminator. 
The loss function for the basic GAN is as follows:  

 

 
 

where x represents the real sample and pr(x) is the data distribution of the real sample. z 

represents the random noise and pz(z) is the data distribution of the noise. G(z) represents the 
sample generated by G and E represents the expectation  
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3.3.2. Synthetic Minority Oversampling Technique (SMOTE)  
 

Artificial minority samples are constructed by interpolating the 'feature space' of existing minority 

samples and their k nearest neighbours[12]. The process involves increasing the number of 

minority samples to match the majority, resulting in equal elements in both classes. SMOTE uses 
interpolation to reduce duplicate instances.  

 

3.3.3. Cost-Sensitive Learning (Weighting)  
 

Class weighting is a cost-effective strategy for dealing with uneven data sets. The weights are 

inversely proportional to the frequency of classes. This method balances the data set by giving 
more weight to the class with fewer elements[13]. This strategy has the same impact as sampling, 

but the number of samples remains constant.  

 

3.4. Normalization  
 

The process of normalizing the dataset improves its numerical conditions, which strengthens the 
optimization method's stability. As a result, this occurrence increases the algorithm's efficiency 

and speeds up model training. In addition, the process of normalization serves to standardize the 

distribution of data and reduce the influence of outliers on the model, improving its resilience.  

The Min-Max Scaling function maps raw data to a predefined interval, generally set as [0, 1]. We 
choose the Min-Max scaling method to normalize the data according to the following equation. 

The missing values are first left unaltered during the normalization process:  

 

 
 

Here, x represents the user’s electricity consumption on a specific day, while min(x) and max(x ) 
represent the minimum and maximum values, respectively, across the entire 

dataset.Normalization not only stabilizes the dataset but also enhances the convergence speed and 

overall efficiency of the model.  
 

3.5. Deep Neural Architectures 
 

3.5.1. Convolutional Neural Networks (CNN)  

 

CNN is a neural network built on convolutional computation. CNN's convolution layer extracts 
features using the convolution kernel. CNNs typically have three layers: convolution, pooling, 

and fully connected layer. The convolution layer is applied to the data using filters to reduce the 

input matrix. The feature extraction convolution layer uses the feature map's convolution 
kernel[31]. The convolution kernel traverses the feature map and applies the convolution 

operation to the input. Equation (4) describes the convolution operation in the CNN neural 

network. 

   

 
 

𝑥𝑖𝑙denotes the i feature of the output value, 𝑊i𝑙 indicates the weight matrix of the ith convolution 

nucleus, and ∗operations reflect convolutional calculations. 𝑥(𝐿−1) is the output of the l−1th layer, 

𝑏𝑖𝑙is the bias item, and f is the output's activation function. A nonlinear activation function is used 
to execute nonlinear mapping on the output of the convolution layer, increasing the model's 
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fitting ability. The mathematical formula for using a rectified linear unit (ReLU) as the activation 
function of the convolutional layer is as follows.  

 

 
 
The pooling layer reduces the dimension of the feature map after the convolution layer selects 

features, and reduces the number of features to prevent overfitting. Pooling sampling methods fall 

into two categories: maximum and average. With maximum pooling sampling, the expression is 

as follows:  
 

 𝑦𝑖
(𝑖+1)(𝑗) = 𝑚𝑎𝑥𝑥𝑖

𝑗(𝑘), 𝑘 ∈ 𝐷𝑗                                                      (6) 
 

In the equation, 𝑦𝑖(𝑖+1)(𝑗) represents the element in the ith feature map of the (𝑖 + 1)𝑡ℎlayer after 

pooling, Dj represents the jth pooling area, and 𝑥i𝑗(𝑘) indicates that the ith feature map of the lth 

layer is within the scope of the pooling kernel. The fully connected layer is a typical multilayer 
perceptron. Its neurons are all linked to the neurons from the previous layer. The process focuses 

on refitting features, integrating differentiated local information across categories, and 

minimizing feature loss. The output layer then integrates the previously extracted features for 

probability distribution and classification using a SoftMax activation function [32].   
The expression is as follows:  

 

 
 

In the formula, 𝑃(𝑦𝑗)is the probability output of the neurons that pass through the softmax 

activation function; exp(𝑦𝑗)is the output value of the jth neurons in the output layer; and m is the 

number of target classifications.  
 

3.5.2. Long Short-Term Memory Neural Network (LSTM) and Bidirectional LSTM 

 
LSTMs are fully linked neural network architectures that provide self-loop feedback. Compared 

to standard recurrent neural networks (RNN), LSTM neural networks have a more complicated 

design. In the hidden layer, LSTM uses three special "gate" structures: a forget gate, an input 

gate, and an output gate. These gates are selective and can filter and manage data. Furthermore, 
LSTM introduces a cell state, which is utilized to represent information at the current instant and 

passed on to the next LSTM layer[31].These characteristics enable the LSTM network to 

effectively solve the long-distance dependence and gradient disappearance problems, learn the 
long- and short-term correlation information of the time series, and effectively transmit and 

express the information in the long-term series. Figure 2 shows the basic structure of the LSTM 

network.  

 
At current time t, the time sequence's input data are denoted as xt, the cell state is Ct, and the 

output is ht. The values for the three gates in LSTM are as follows: Forget gate 𝑓𝑡: The LSTM 

will dynamically change based on the new input and output from the prior period, selectively 
remembering or forgetting past information to manage the influence of historical information on 

neuron information at the current time.  

 

𝑓𝑡= 𝜎(𝑤𝑓ℎ𝑡−1 + 𝑤𝑓𝑥𝑡+ 𝑏𝑓)                                                                   (8) 
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The equation includes the sigmoid activation function (𝜎), the gate's weight matrix (w), the bias 
term (b), and the neuron's prior output (ht−1).  

 

 
 

Figure 2: Basic structure of the LSTM network (source [31]).  

 

Input gate 𝑖𝑡: The selection of fresh input information regulates the effect of current information 

on neural information and serves as a flow control.  
 

𝑖𝑡= 𝜎(𝑤𝑖ℎ𝑡−1 + 𝑤𝑖𝑥𝑡+ 𝑏𝑖)                                                  (9) 
 
Unit status value Ct:  

 

𝐶𝑡= 𝑓𝑡∗𝐶𝑡−1 + 𝑖𝑡∗ tanh(𝑤𝑐ℎ𝑡−1 + 𝑤𝑐𝑥𝑡+ 𝑏𝑐)                                (10) 
 
The hyperbolic tangent  activation function is represented by tanh in the equation.  

Output gate 𝑦𝑡: The selection of the output at the current time controls the output information to 

the neuron information and the output of the unit state. In the equation𝑦𝑡is the current neuron 
output.  

 

𝑦𝑡= ℎ𝑡= 𝜎(𝑤𝑜ℎ𝑡−1 + 𝑤𝑜𝑥𝑡+ 𝑏𝑜) ∗ 𝑡𝑎𝑛ℎ𝐶𝑡                                        (11)            
 

The LSTM network significantly reduces the problems of gradient explosion and vanishing 

gradient in the RNN network. The LSTM network has the advantage of processing time series, 

making it useful for forecasting and classification tasks.   
 

Bidirectional LSTM (BiLSTM) is the next variation on RNN. BiLSTM is used as sequential 

model for learning patterns. Two network layers process the input data and a time step, with each 
layer performing a specified action[33]. One layer processes sequence data simultaneously, while 

the second layer works oppositely. The results of both layers are then integrated.   
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Figure 3: BiLSTM structure (Source[5])  

 

3.6. Experimental  
 

Experimental research design takes a scientific approach to the study problem by allowing 
variables to be altered and the consequences for other variables to be measured. A controlled 

experimental study design was implemented. A controlled experiment is a scientific experiment 

in which one or more variables are changed to see how they affect a dependent variable, while all 

other factors remain constant. This was critical for determining the impact of individual changes 
and drawing valid conclusions. A controlled experimental design established a cause-and-effect 

relationship in the study. This research design required that the study have a control group, which 

served as the models prior to introduction of class imbalance handling techniques. A pre-test, 
post-test control group design was adopted. The model's performance metrics were assessed 

before and after applying imbalance handling techniques.   

 
The control group consisted of test cases taken before the model was modified, whereas the 

experimental group consisted of test instances from the introduction of class imbalance handling 

technique. The accuracy of both the control and experimental groups was tabulated, and the 

differences were examined. The initial series of experiments focused on three of the reviewed 
models.  Experimentation compares models using the same dataset and equivalent computational 

resources. This allowed for a comparison of model performance and efficacy.   

 
A comparative empirical study was done to assess the effectiveness of models in detecting 

abnormal energy consumption. The mentioned models were then trained and tested, with various 

metrics such as AUC, accuracy, precision, f1 score and recall utilized to offer empirical evidence 

for the optimal model.   
 

3.6.1. Experimental Setting  
 
The comparative analysis of multiple deep learning algorithms was performed using the Google  

Colaboratory (Colab) Python 3.10 integrated development environment.  The Google Colab was 

chosen because it offers a free cloud-based environment with access to both graphics processing 
unit (GPU) and tensor processing unit (TPU) resources. Both the GPU and TPU are powerful 

resources which are beneficial when working with computationally intensive algorithms. CNN, 

LSTM and BiLSTM are implemented using the deep learning packages Keras 2.15.0 and 

TensorFlow 2.15.0. Simulations are performed on a Core-i7 machine with 8GB of RAM. Google 
Colab is used for code simulation. The SGCC dataset was used for both model training and 

testing, and it was split 80:20.The dataset was trained to represent the consumer class. The dataset 

contains values of 1 for the abnormal class and 0 for the normal user class.   
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The following parameter settings were used in the experiments for the deep learning models: 
batch size was set to 32, the learning rate was set to 0.001, the epoch was set to 10, the loss was 

set as binary cross-entropy, and the Adam (Adaptive Moment Estimation) optimizer was used to 

accelerate model convergence.   

 

3.6.2. Evaluation Metrics  
 

The model's efficacy was examined using a variety of metrics, including accuracy, recall, F1 
score (F1), and Area Under the Curve (AUC).The measurements include four main error rates: 

false positive (FP), false negative (FN), true positive (TP), and true negative (TN) [34].The recall 

metric is defined as the ratio of correctly recognized instances of electricity abnormal by the 
model to the total number of actual electricity abnormal samples:   

 

 
 

Precision is a parameter that measures the model's accuracy in identifying instances of power 
abnormal compared to the total number of samples classified as such throughout all detection 

tests.  

 

 
 

The F1 score, commonly referred to as the balanced score, is a statistical measure used to assess 

the precision of a binary classification model. The assessment measure takes into account both the 
precision and recall of the classification model.   

 

 
 

AUC is defined as the area under the ROC curve and is used to assess the overall quality of the 

classifier. The classifier's performance improves as the AUC value increases.  
 

 
 

where Ranki denotes the rank value of sample i, M is the number of normal samples, and N is the 

number of electricity abnormal samples.  
 

4. SIMULATION RESULTS AND DISCUSSION   
 

This section describes simulation results using metrics cited to evaluate deep learning models 

CNN, LSTM and BiLSTM without and with class imbalance handling techniques and it discusses 
the results obtained.  All experiments were run on identical hardware configurations, with a 

similar training ratio to testing samples. Each combination of deep learning method and class 

imbalance data handling technique was executed 10 times to collect the results and perform the 
analysis. Table 2 shows the empirical results for each classifier. The best results are highlighted 

using bold style for each metric.  
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Table 2. Comparison of various performance metrics for deep learning models with and without class 

imbalance handling techniques in energy consumption data  

 

Method  AUC F1- 

Score 

Precision Recall Accuracy 

BiLSTM  0.810579  0.99  0.98  1.00  0.98  

CNN+ BiLSTM  0.7826  0.99  0.98  1.00  0.98  

SMOTE + CNN  0.6998  0.67      0.50  1.00  0.50     

SMOTE + LSTM   0.7938  

 

0.67     0.50    1.00  0.50     

Cost-sensitive learning+ 

BiLSTM  
0.8112  0.89  0.99  0.80  0.8015  

Cost-sensitive learning  

+CNN  

0.75898  

 

0.93  0.99  0.88  0.88  

GAN +CNN  0.5000  0.99      0.98  1.00  0.98     

GAN+ LSTM  0.5024  

 
0.99      0.98  1.00  0.98     

 
Table 2 provides an in-depth evaluation of the performance of all approaches that were compared. 

For methods without balancing techniques, there were high values in accuracy. In an imbalanced 

dataset, a classifier's accuracy does not correctly predict its performance. The reason can be due 

to biasness in models that lead to high rates of misclassification and a concentration on the 
majority class. However, for metrics more suited to datasets with class imbalance, such as AUC 

and F1-score, these executions have poor results in terms of accuracy. AUC score is a reliable 

performance metric for unbalanced datasets. It provides insights into a model's sensitivity (True 

Positive Rate), robustness to different thresholds and specificity (True Negative Rate). For 

instance, despite BiLSTM without balancing having 0.98 in accuracy this execution has   0.8105 

in AUC whereas when cost-sensitive learning is used to handle class imbalance performance on 

AUC improves slightly to 0.8112 an increase of 0,0007. This implies the overall quality of the 
classifier is improved. From AUC scores cost-sensitive learning performs better than GAN and 

SMOTE techniques in handling class imbalance. By understanding the strengths of AUC score , 

you can make more informed decisions about model selection and optimization.  
 

Figure 4 Compares the results of AUC scores versus deep learning models with and without class 

imbalance handling techniques. From the results, Cost-sensitive learning + BiLSTM seem to 

outperform all other models in terms of AUC score. Figure 5: illustrates an example of how CNN 
AUC score results were obtained after training over several Epoch.  

 

The AUC-ROC value indicates how well the model can distinguish between the positive and 
negative classes. An AUC-ROC value of 1 represents perfect classification, where the model 

correctly classifies all positive and negative instances. Conversely, an AUC-ROC value of 0.5 

suggests that the model performs no better than random guessing, indicating that it lacks 

discriminative power.  
 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.6, November 2024 

26 

 
 

Figure 4: Comparison results of AUC scores versus deep learning models with and without class imbalance 

handling techniques.  

 

 
 

Figure 5: CNN AUC score versus Epoch  

 

5. CONCLUSION 
 

This research presents a comparative analysis of class imbalance data handling techniques applied 
to deep learning methods in the context of an electricity anomaly detection problem. The study 

performed in this paper is critical since the dataset for energy consumption in smart grids has a 

class imbalance problem; yet, most papers on this topic do not use balancing approaches before 

the application of the classifier. The study compared three class imbalance handling techniques: 
SMOTE, cost-sensitive learning, and generative adversarial networks. The deep learning 

algorithms used were CNN, LSTM, and BiLSTM. Controlled experiments were carried out using 

a real-world dataset of SGCC. The results reveal that BiLSTM paired with cost-sensitive learning 
achieves the best values for the AUC score, which is a more appropriate metric for problems with 

imbalanced classes than accuracy. Our findings indicate that classifiers performed differently 

with each class imbalance handling technique.  
 

In short, the findings and discussions presented here can be utilized to identify intriguing 

combinations of class imbalance handling approaches and deep learning methods for application 

to the problem of detecting electricity anomalies. The findings can be improved, and this will 
become an interesting feature for power distribution firms to implement in the context of smart 

grids.  
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In the future, the researcher hopes to develop a deep ensemble learning architecture that integrates 
class imbalance handling techniques for anomaly detection for energy consumption data. To 

evaluate the performance of the newly developed deep learning ensemble model in addressing 

class imbalance challenge in the domain of anomaly detection for energy consumption.  
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