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ABSTRACT 
 
The Internet of Medical Things (IoMT) has transformed healthcare by allowing real-time patient 

monitoring, remote diagnoses, and effective data interchange. The increasing reliance on interconnected 
medical equipment has increased cybersecurity risks for healthcare organizations. This survey offers an 

extensive examination of Intrusion Detection Systems (IDSs) targeted for IoMT contexts. This 

surveyemphasizes the proposed methods that used to build IDS,classifying them into machine learning 

(ML), deep learning (DL), fuzzy logic (FL), and hybrid approaches for safeguarding healthcare networks. 

This paper investigates the IoMT architecture, identifies security concerns across multiple tiers, and 

analyzes potential vulnerabilities including denial-of-service attacks, ransomware, and man-in-the-middle 

attacks. The research highlights the significance of IDSs in alleviating cyber threats and protecting 

sensitive medical information through a comparison of cutting-edge methodologies. We outline significant 

issues that persist and emphasize domains requiring additional research to enhance the security and 

resilience of IoMT systems. 
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1. INTRODUCTION 
 
The exponential growth of networked devices within the Internet of Things (IoT) has 

dramatically improved the effectiveness and simplicity of providing services in various sectors, 

including healthcare [1] [2]. The Internet of Medical Things (IoMT) has provided unprecedented 

prospects in the medical sector to enhance care delivery by improving the collection, transfer, and 
analysis of patient data for healthcare providers [3]. IoMT devices, including wearables, remote 

monitoring systems, and diagnostic equipment specifically developed for home use, enable a 

direct connection between patients and physicians [4]. Moreover, IoMT technologies enable 
direct communication between patients and healthcare providers, decrease the strain on 

healthcare systems, and reduce the number of unnecessary hospital visits. In addition, they assist 

in the earliest possible diagnosis, safeguarding the health and well-being of patients [5]. IoMT 
also holds the potential to improve diagnosis accuracy, lower healthcare costs, and reduce 

medical errors by allowing real-time data transmission [1]. Nevertheless, the expanded 

interconnectivity of IoMT devices raises considerable security and privacy issues, as they are 

susceptible to various kinds of cyber-attacks [6]. IoMT networks are vulnerable to cyber-attacks 
such as ransomware, denial-of-service (DoS) attacks, and man-in-the-middle (MitM) attacks, 

which can compromise sensitive medical data and even endanger patient lives. These devices 

collect and transmit highly sensitive information on medical health problems, including essential 
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biological signs, patient monitoring, and other health-related data [7]. For example, during the 
worldwide COVID-19 pandemic, there was a recognition of the need for robust digital 

technology solutions to provide remote medical interventions, which also increased the 

opportunities for cyber-attacks on healthcare institutions, including hospitals, patient and clinical 

data repositories, and laboratories [8].Over the years, various security measures have been 
devised to safeguard IoMT systems, including encryption, authentication, and intrusion detection 

[7]. However, the interconnectivity of these systems also presents notable security barriers, hence 

requiring the implementation of resilient. IDSs specifically designed for IoMT environments. 
IDSs play a critical role in identifying and mitigating security threats in IoMT networks by 

employing techniques such as signature-based detection, anomaly detection, and policy 

enforcement [9]. On the other hand, existing IDS solutions usually fail due to scalability and the 
continuous creation of new attacks and utilization of advanced hacking techniques by attackers 

[10]. To address this, researchers are exploring new artificial intelligence (AI) methods, 

particularly ML, DL, FL and hybrid approaches, all of which offer promising new avenues for 

enhancing IDS performance in these complex environments. 
 

This survey addresses a notable gap in the literature by providing a focused overview of IDS 

approaches tailored for IoMT contexts. Current studies often emphasize general IoT security or 
underscore traditional IDS approaches, overlookingthe distinct challenges and requirements of 

IoMT systems. Table 1 presents a comprehensive comparison of recently published surveys, 

illustrating the methodologies addressed, and focused areas, and how this study expands upon 
these works. Although each survey provides significant insights regarding IoMT security, they 

vary in scope and depth. 

 
Table 1.  A Comparison of our Survey with Related State-of-the-Art Surveys. 

 

Study Year Field Method Covered Classifica

tion IDS 

Architec

ture of 

IoMT 

Securit

y 

Require

- 

ments 

Attac

ks on 

IoMT 
M

L 

D

L 

Hyb

rid 

Fuzzy 

Logic 

[11] 2022 IoMT √ X X X X √  √  √  

[1] 2022 IoMT √  √   X  X  X  X  X  X 

[12] 2023 IoT √  √ √ X  X  X  X  √ 

[13] 2022 IoMT √  √ X  X  X  √ √ √ 

[14] 2023 IoT √  √ √ X  √ X  X  √ 

[15] 2024 IoMT √  √ X X X √ X √ 

[16] 2022 IoT √ √ X X √ X X X 

[17] 2022 IoT √ √ X X √ X X X 

[10] 2023 IoMT √ X X X X √ √ √ 

[18] 2023 IoMT √ √ √ X √ √ √ √ 

[19] 2024 IoT √ √ √ √ X X X X 

Our 

Survey 

2024  IoMT √ √ √ √ √ √ √ √ 

 

The key contributions of this study include: 
 

 We illustrate the IDS background and a clear framework for evaluating the performance 

of IDS systems using commonly accepted metrics such as accuracy, recall, f1-score, and 

precision.  
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 We propose a classification of the techniques that have been used for the IDS into ML,  

DL, hybrid, and FL approaches. 

 We explain a four-layer IoMT architecture and the potential security threats targeting 
each layer.  

 We illustrate numerous challenges in the advancement and implementation of IDSs 

within the IoMT systems.  

 

The remaining sections of this research are organized as follows: Section 2 provides fundamental 
insights into Intrusion Detection System within the IoMT, including an evaluation of IDS 

performance and the role of AI in IDS. Section 3 presents an overview of related works. Section 

4 describes the IoMT architecture and examines the security threats associated with each layer. 
Section 5 outlines the security requirements for protecting IoMT environments. Section 6 

explores the different categories of attacks targeting IoMT systems. Section 7 details the 

challenges associated with the security of IoMT. Finally, Section 8 concludes our paper. 
 

2. INTRUSION DETECTION SYSTEM 
 

2.1. Background on IDSs in the IoMT 
 

An Intrusion Detection System is a component of hardware or software that monitors networks 

and computer systems for suspicious activity. In the context of the IoMT, an IDS is critical in 
protecting medical data and guaranteeing the efficient functioning of interconnected medical 

equipment. According to Attou (2023), it entails a methodical approach to the monitoring, 

detection, and identification of detrimental behaviors that occur within the network environment. 
The IDS framework consists of three primary components. The monitoring component analyzes 

traffic flow behaviors. The detection component recognizes potentially suspicious actions and 

rapidly notifies the reaction component of any detected occurrences [20]. lastly, the reaction 

component activates an alarm or alerts network management.  
 

2.2. IDSs in IoMT Security 
 

IDSs are a key component of IoMT security, addressing growing concerns about cyber threats 

and vulnerabilities by protecting sensitive medical data and ensuring reliable operation of 

interconnected devices. Unlike conventional firewalls, IDSs identify and classify various forms 
of suspicious network traffic and cyber activities, effectively detecting and monitoring potential 

security breaches [21]. 

 
Among their many benefits, IDSs offer the ability to promptly identify and neutralize cyber 

threats through real-time detection mechanisms. Their dynamic nature, leveraging anomaly 

detection and machine learning, enables them to address emerging and previously unknown 
threats, such as zero-day attacks. By mitigating the impact of cyber incidents, IDSs help ensure 

the seamless operation of healthcare systems, preserving both patient safety and the efficiency of 

IoMT environments. 

 
IDSs use two main detection methods: signature-based detection (SIDS) and anomaly-based 

detection (AIDS). SIDS, or knowledge-based detection, matches data patterns against a database 

of known attack signatures. However, it cannot detect new attacks and is resource-intensive due 
to maintaining a large signature database [22]. AIDS, or AI-based IDS, assumes malicious 

behaviors differ from normal activity, using AI algorithms to model standard behaviors and flag 

deviations as potential attacks [23]. AIDS can detect new and unknown attacks and is effective 

for zero-day threats, offering adaptability to specific networks and applications [24]. 
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2.3. Evaluating IDS Performance 
 

Understanding the performance metrics frequently employed in IDS research is essential to 

evaluating an IDS effectively. These metrics are crucial for evaluating the accuracy and 
reliability of intrusion detection algorithms[25]. The confusion matrix is an essential tool for this 

assessment, categorizing detection results into the following: True Negative (TN), True Positive 

(TP), False Negative (FN), and False Positive (FP) rates. The definitions of these metrics are as 
follows: 

 

● TN refers to the quantity of benign data included in the IoMT network traffic, which is 

considered harmless. 
● TP is the quantity of malicious data within network traffic on IoMT that is classified as 

suspicious. 

● FN refers to the malicious samples in the IoMT network traffic that are incorrectly 
considered normal. 

● FP represents the benign or regular samples in the IoMT network traffic incorrectly 

identified as harmful samples or assaults. From the confusion matrix, key performance 
metrics such as accuracy, recall, f1-score, precision. 

 

Key performance metrics such as accuracy, recall, f1-score, precision, TPR, and FPR can be 

derived from these categories. The following formulas define the metrics commonly used to assess 
IDS performance: 

 

 Accuracyis a measure that quantifies the ratio of accurately predicted samples to the total 

number of instances.  
 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (1) 

 

● Recall: is computed as the percentage of the total count of true positives divided by the 
sum of all true positives. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (2) 

● F1-score is calculated as the harmonic average of the recall and precision measures, with 

their weights considered. The harmonic average is employed as an alternative to the basic 

arithmetic mean to assign greater importance to smaller values, effectively penalizing 
any disparities in precision and memory. 

F1-score=2∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (3) 

● Precision is a measure that quantifies the ratio of accurately detected positive results 

among all the observations that are predicted as positive.  

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (4) 

● TPR is the ratio of the number of correctly identified positive samples to the total 

number of actual positive samples. 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (5) 

● FPR represents the proportion of negative events incorrectly forecasted as positive out of 
the total negative events. 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
        (6) 

 

An additional crucial component in assessing classification efficacy is the receiver operating 

characteristic (ROC) curve, along with the area under the curve (AuC) score. The ROC curve 
illustrates the TPRvs the FPR, while the AuC score, which ranges from 0.5 to 1.0, indicates the 
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classification performance of an IDS. In evaluating an IDS, both FPR and accuracy are critical, as 
high accuracy and low FPR are needed to detect threats while minimizing interruptions. For 

example, a study [26] using the UNSW-NB15 dataset assessed IDS models with these metrics, 

noting that high accuracy can obscure a high FPR, especially in imbalanced datasets. A low FPR 

reduces false alarms, enhancing system usability, highlighting the need to balance accuracy and 
FPR for effective IDS development. 

 

2.4. AI in IDS for the IoMT 
 

The integration of AI methods, such as ML, DL, and FL has significantly enhanced IDSs in 

addressingdiverse cyber threats while safeguarding sensitive medical information. These AI-
driven systems monitor network traffic, detect irregularities, and implement responses to 

minimize risks [7]. Unlike conventional IDSs, IoMT systems require advanced methods to 

manage the large-scale, fast-paced data that generated by medical devices,which often utilize 
complex communication protocols and data formats. Table 2 below summarizes the advantages 

and disadvantages of three AI methods frequently employed in IDSs for IoMT security. 

 
Table 1. Advantages and disadvantages of AI methods in IDS for IoMT security 

 
Method Advantages Disadvantages 

Machine Learning 

(ML) 

Widely used for recognizing 

malicious patterns and adapting to 

new threats[27]. Excels at 
identifying known attacks 

(supervised learning) and 

discovering unknown patterns 

(unsupervised learning). 

Relies on labelled datasets and is 
susceptible to false positives in 

imbalanced data. 

Deep Learning 

(DL) 

Efficiently processes high-

dimensional data and automates 
feature extraction. Enables 

accurate detection of complex 

threats, including zero-day 

attacks. 

High computational requirements 
and ‘black-box’ nature may limit 

its use in resource-constrained 

IoMT environments. 

Fuzzy Logic (FL) 

Effectively handles uncertainty in 

medical data, reducing false 

positives and enhancing reliability 
in sensitive contexts [28]. 

Rule-based systems can be hard 

to scale and may struggle with 

complex attack patterns without 
integration with other techniques. 

 

 
By combining these methods, IDSs in IoMT security can address evolving threats, leveraging the 

strengths of each approach to enhance adaptability, accuracy, and reliability. 

 

3. RELATED WORKS 
 

Several surveys discuss various facets of cybersecurity in IoMT contexts. However, only a few 

studies specifically address using AI approaches in IDSs to enable the security of smart 

healthcare organizations. We present a complete taxonomy to clarify the various IDS 
methodologies utilized in the IoMT. Our taxonomy classifies IDS systems according to advanced 

detection methods, covering ML, DL, hybrid approaches, and fuzzy logic techniques, as 

illustrated in Figure 3. 
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Figure. 3. IDS Classification Taxonomy in IoMT based on Detection Methods. 
 

3.1. IDS-Based ML 
 
The work presented by [29], the authors adeptly combined the Random Forest (RF) algorithm 

with a complex feature scaling method to manage extensive and intricate categorical data in 

IoMT networks. This method is especially valuable for e-healthcare systems, where processing 
large datasets efficiently is crucial. By reducing both the feature size and the number of instances, 

the framework significantly improved classification speed while maintaining high accuracy, 

achieving an average accuracy of 94.23%. 

 
This research emphasizes the most recent scholarly works on attack types and employs an ML-

based framework for network assistance in the IoT and intrusion detection [30]. Hence, the 

present study encompasses a comprehensive examination of various intelligence techniques and 
their implemented frameworks for network IDSs, with a specific emphasis on IoT threats and 

intrusion detection strategies based on ML. 

 
The authors in [31] propose a decision-making system utilizing the IoMT to identify breast 

cancer detection. The system utilizes a region expanding algorithm to identify concerning areas 

in the breast, subsequently applying texture and shape-based feature extraction approaches, such 

as center-symmetric local binary pattern (CS-LBP), histogram of oriented gradients (HOG), and 
statistical techniques. A combination of ML algorithms, such as K-Nearest Neighbor (KNN), 

Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA), are then used to 

classify these features. The model shows promise for precise early breast cancer detection with 
96.3% accuracy, 94.1% sensitivity, and 98.2% specificity when tested on the MIAS database. 

 

The research introduces a novel form of insider attack known as a loophole attack, which 

capitalizes on the weaknesses inherent in the routing over low power and lossy networks (RPL) 
routing protocol, which is extensively employed in IoT devices [32]. The suggested attack was 

executed utilizing a Contiki IoT operating system that operates on the Cooja simulator, and an 

analysis was conducted to assess the consequences of the assault. The analysis of the gathered 
online traffic data reveals that the utilization of ML techniques, in conjunction with the suggested 

characteristics, effectively facilitates the precise identification of insider attacks within network 

traffic data. 
 

The study utilizes an ML-supervised algorithm-based IDS for the IoT [33]. The initial phase of 

this study approach involved applying feature scaling to the UNSW-NB15 dataset using the 

minimum-maximum (min-max) normalization concept. This was done to prevent any loss of 
information on the test data. The data set consists of a blend of contemporary attacks and routine 

network traffic activities. Principal component analysis (PCA) was used to conduct 

dimensionality reduction in the subsequent stage. The results were compared to previous studies, 
and the findings demonstrated competitiveness, with an accuracy rate of 99.9% and a mean 

squared error (MCC) of 99.97%. 
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3.2. IDS-Based DL 

 

The study presents an improved anomaly-based DL approach for IDSs [34]. The CICIDS2017 

dataset has a multi-class classification model (EIDM) capable of accurately classifying 15 traffic 
behaviors encompassing 14 different attack types, with a classification accuracy of 95%. A 

comprehensive comparison analysis is undertaken to evaluate the classification accuracy and 

efficiency metrics of EIDM with other advanced DL-based IDSs.  
 

Another research introduces a novel methodology for network-based ID in the context of IoMT 

systems [35]. The proposed strategy leverages DL techniques to analyse network traffic and 

patient biometrics. The model under consideration demonstrated a 10-fold cross-validation 
accuracy of 95% when applied to network features, 89\% when applied to patient biometrics, and 

99% when applied to combination features. The proposed model's resilience and generalization 

ability is demonstrated by tests conducted on several network-based intrusion datasets in addition 
to the IoMT environment.  

 

The literature study proposed a methodology for identifying unauthorized individuals during the 
transmission of data, enabling the effective and precise examination of medical data at the 

periphery of the network [36]. A real-time NF-ToN-IoT dataset was utilized to evaluate the 

system's performance in the context of IoT applications. This dataset encompassed operating 

systems and healthcare data. The experimental findings demonstrate that the suggested model 
achieves an accuracy rate of 89.0% when applied to the ToN-IoT dataset.  

 

In the study [37], the authors utilized particle swarm optimization (PSO) to choose features and 
subsequently employed ML/DL models to identify cyber assaults in the IoMT. An evaluation of 

the performance of the suggested approach was conducted using the NSL-KDD datasets. The 

PSO and RF-based solution achieved the maximum accuracy of 99.76%. Nevertheless, the 
evaluation of threat detection in IoMT networks should not be done using the NSL-KDD dataset 

since it was not designed with the IoT network environment in perspective.  

 

Cybersecurity threats, such as man-in-the-middle assaults on the IoMT communication network, 
are highlighted in the study [38]. PCA is utilized to optimize the features, while a multi-layer 

perceptron is employed to categorize unforeseen cyber-attacks on healthcare equipment, with a 

specific focus on those originating from the IoT. The technique's efficacy is evaluated using real-
time data from the WUSTL-EHMS, which stands for the St. Louis Enhanced Healthcare 

Monitoring System. According to the results, the multi-layer perceptron outperformed the other 

classifiers tested with a 96.39% accuracy rate. 

 

3.3. IDS-Based Hybrid 

 
The authors in [39] proposed a novel hybrid method that combines ML and DL to enhance 

detection rates while ensuring dependability. A comparative analysis is conducted between the 

created technique and many ML, and DL approaches to determine the most efficient algorithm 

for integration into the pipeline. The optimal network intrusion model is chosen by evaluating a 
stringent set of evaluated performance analysis criteria. The suggested method demonstrates 

exceptional efficacy on two distinct datasets, namely KDDCUP’99 and CIC-MalMem-2022, 

achieving accuracy rates of 99.99% and 100\%, respectively. Notably, there are no cases of 
overfitting or Type-1 for either dataset.  

 

An intrusion detection model for the industrial IoT was created by [40] using a two-phase hybrid 
approach. In the first step, we combine SVM and NB into an ensemble. I utilized the RF 

approach to predict the labels for the classes. To improve the accuracy of the predictions even 
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further, an ANN classifier based on Adam's optimization was employed. While taking into 
consideration the maximum accuracy value, the second phase is fed the outputs of the ANN and 

RF.  

 

In another study [41], a novel hybrid IDS model for the IoMT network was introduced. The 
model involves the analysis of patients’ health data collected from various wearable sensors and 

utilizes a genetic algorithm to forecast unexpected intrusions at the network's edge. The aim is to 

address and avoid security and privacy issues. The research results showed more accurate and 
precise identification of attacks taking place during data transmission in the network compared to 

the ToN-IoT data set.  

 
The research introduces a hybrid intelligent IDS that combines ML and metaheuristic methods 

[42]. The HHIIDS is designed for IoT applications, specifically in the healthcare sector. The 

performance evaluation of the proposed HIIDS was conducted using the widely used NSL-KDD 

dataset, which consists of 41 characteristics and 125,973 samples. The implementation of six 
variations of suggested hybrid algorithms, which combine GA, PSO, and DE with KNN and DT, 

is carried out using MATLAB 2019b. The accuracy achieved by the GA-DT version is 99.88%. 

A healthcare architecture based on the IoT is developed, employing a hybrid GA-DT version-
based HIIDS to effectively identify and mitigate harmful network traffic.  

 

The study [43] introduces SafetyMed, a specialized IDS designed to enhance the security of the 
IoMT. The author improved the reliability of IDSs and decreased the number of false alarms by 

combining convolutional neural networks (CNNs) with long short-term memory (LSTM) models 

to examine data that are structured in a grid or a sequence. This study successfully implemented 

network monitoring to ensure that only authorized devices were allowed to connect. Through the 
implementation of these security measures, confidential patient data was safeguarded against 

unauthorized access.  

 
Another research presents a novel hybrid architecture called "Immune-Net" that utilizes DL to 

identify and protect healthcare data from the most recent intrusion assaults [44]. To achieve high 

accuracy and performance, the given model employs several procedures under biomedical 

engineering, oversampling approaches to enhance hyper-parameter optimization, and class 
balancing strategies. Immune-Net demonstrated superior performance on the CIC Bell DNS 2021 

dataset, achieving an accuracy of approximately 99.19%, precision of 99.22%, recall of 99.19%, 

and ROC-AUC scores of 99.2%. 
 

3.4. IDS-Based Fuzzy Logic 

 
The research presents the design of a failure detection framework for the Internet of Nano Things 

architecture in the medical field using fuzzy logic [45]. The design of the fuzzy defect detection 

system was informed by two established methodologies, namely the Takagi-Sugeno-Kang (TSK) 
and Mamdani fuzzy systems. The computer simulation and comparison analysis conducted on 37 

individuals with atherosclerosis provide evidence that the suggested technique effectively 

identifies the underlying cause and extent of defects in the nanonetwork.  
 

The research study examines the issue of achieving precise and comprehensible intrusion 

detection in IoT systems through the knowledge-discovery ML methodology designed for threat 

detection [46]. The study utilizes a fuzzy rule-based classifier to optimize the accuracy-
interpretability trade-off of IoT IDSs. The proposed technique is based on an extension of the 

widely recognized multi-objective evolutionary optimization algorithm. The primary contribution 

of the study is the development of precise and comprehensible IoT IDSs using the latest data sets, 
known as the MQTT-IOT-IDS2020 data sets.  
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Literature research offers a meticulous examination of the latest and most pertinent cutting-edge 

techniques for ensuring security in the IoT. The study presents a novel security mechanism, 

referred to as GLSF2IoT, which aims to identify malevolent behaviors in undetermined IoT 

settings by using a fog-based and fuzzy logic-based method [47]. The concept is founded around 
the premise of "zero trust," which entails placing no faith in anything and perceiving everything 

as hostile. Upon the detection of malicious behaviors, GLSF2IoT promptly restricts network 

access to the IoT device responsible for initiating the activity, therefore preventing it from 
affecting other devices.  

 

The IoMT sensors transmit data to a server for rapid diagnosis in the medical field. The biometric 
input employed in the literature is frequency domain-based bio-acoustics. The study presents a 

novel user authentication scheme for IoMT applications by utilizing a secure lightweight 

bioacoustics approach and including a fuzzy embedder [48]. To safeguard the network from 

attacks by previous sensor nodes, the suggested strategy utilizes the remainder technique to 
produce a group secret key. The security of the proposed system is assessed using the formal 

verification tool AVISPA.   

 
Literature research presents the Duo-Secure IoMT framework, which utilizes data from multi-

modal sensory signals to distinguish between attack patterns and normal data from IoMT devices 

[49]. The suggested model employs a hybrid approach, integrating dynamic Fuzzy C-Means 
clustering with a customized Bi-LSTM algorithm. The study utilizes a dataset of 36 variables and 

18940 cases to assess heart disease. The proposed model effectively analyses two aspects: a) the 

prediction of cardiac difficulties and b) the detection of network malware. The individual 

accuracy achieved by the model is 92.95%, while the multi-modal joint precision is 89.67% in 
the distributed network environment based on the IoMT.  

 

Literature work introduces a novel clustering approach for IoMT applications, referred to as the 
FC-IoMT technique, which utilizes fuzzy logic [50]. The FC-IoMT approach employs five input 

factors: Energy, Distance, Delay, Capacity, and Queue to determine the cluster heads (CHs). The 

use of the FC-IoMT technology has the potential to yield a substantial reduction in energy usage 

inside the IoMT system. The suggested model has been subjected to thorough validation, and the 
outcomes have consistently demonstrated higher performance across several metrics. 

 

4. IOMT ARCHITECTURE 
 
Utilizing the architecture of the IoMT is vital for this work, and the following section investigates 

security attacks that target these environments. Several studies suggest different IoMT 

architectures. Some recommend a three-layer architecture [11][51][10]. Other researchers 

recommend using more than three layers [18][52][53]. Researchers have not reached a consensus 
on a single IoMT architecture. The various structures of the IoMT are formed by important 

aspects such as the development of the IoMT, the functional requirements of applications, and 

significant concerns about security and privacy in the IoMT. This survey represents a four-layer 
architecture as the most logical division for the IoMT framework. The four layers are the 

perception layer, network layer, middleware layer, and application layer, as illustrated in Figure 

4. Each layer serves a particular purpose in the IoMT process, encompassing data collection via 
sensors and wearable devices from patients, as well as the storage, processing, and presentation 

of this data to both patients and healthcare providers. The IoMT architecture facilitates the 

effective transmission of substantial data amounts, enabling the remote monitoring of diverse 

health metrics in patients. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.15, No.6, November 2024 

60 

 
 

Figure 3: The Four-Layers Architecture of The IoMT 

 

4.1. Perception Layer 

 

The perception layer is the initial layer of the IoMT architecture, comprising medical devices that 

collect, analyze, and organize sensor data, such as temperature, heart rate, and pressure. These 
devices facilitate further analysis and decision-making and are categorized based on their 

placement in the human body [54]: 

 
● Implantable devices: are inserted into the body through surgery to assist with or replace 

physiological activities; examples include insulin pumps, artificial joints, and heart 

pacemakers. 

● Wearable devices: provide ongoing monitoring and customized health services that can 
be worn on the human body; examples include pulse generators (PG), pain relief devices, 

fitness devices, and smartwatches. 

● Ambient devices: These blend seamlessly into the patient’s environment, constantly 
monitoring health metrics without necessitating direct user engagement; examples 

include bed sensors, room temperature, and humidity. 

● Stationary devices: Primarily found in clinical settings, these are utilized for diagnosis, 
treatment, and monitoring, including x-ray machines and computed tomography (CT) 

scanners. 

 

The FDA categorizes IoMT devices by patient risk. High-risk devices like EEGs and 
defibrillators undergo strict regulation, while low-risk devices such as fitness monitors and 

smartwatches face less scrutiny. Medical equipment and sensors transmit raw biological data 

(e.g., brain signals, heart rate) in real-time through communication protocols to the network layer 
for further processing [55]. 

 

4.2. Network Layer 

 

The network layer facilitates connectivity in the IoMT environment by enabling interaction and 
data transfer between medical devices, healthcare applications, and sensors. It forms the 

foundation of healthcare platform architecture but faces significant security challenges due to 

sensitive data transmission. Protocols in this layer often adhere to the IEEE 802.15 standard [56] 

and operate on short-range (e.g., Bluetooth, NFC, WSNs, RFID, UWB, Zigbee) or long-range 
(e.g., blockchain, LoRaWAN) communication frequencies [53]. Wi-Fi and ZigBee are the most 

widely used protocols in IoMT for their adaptability, while Bluetooth sees limited use due to its 
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shorter range [11]. UWB is another cost-effective option for short-distance data transmission 
using infrared light. 

 

4.3. Middle-Ware Layer 

 

Introducing this layer into the IoMT structure is crucial for effectively managing the diversity of 

interconnected medical devices and objects within the network. The primary role of the middle-
ware layer is to provide seamless end-to-end communication, transmitting gathered physiological 

data to central medical servers or cloud storage for analysis and retention [18]. This analysis may 

involve processing the data to detect alterations in the patient's health, which can then be 

presented to medical professionals or patients to make intelligent decisions for subsequent action 
[2]. In addition, the middle-ware layer includes a data processing unit and a local database to 

store the patient's initial data. This layer acts as an alarm generator, notifying patients and 

healthcare providers of any detected abnormalities. By using a wireless transmission module, it 
establishes secure connections between patients, healthcare providers, and medical servers, 

ensuring real-time access to health data and facilitating prompt medical interventions when 

necessary. 
 

4.4. Application Layer 

 
The application layer is the highest tier of the IoMT architecture, acting as the interface between 

patients, doctors, and healthcare applications. Its primary goal is to connect the middleware layer 

with end users, providing personalized interfaces and control panels tailored to specific roles 
[11]. This layer facilitates efficient diagnostics by integrating data into electronic medical records 

(EMRs) accessible to both patients and healthcare professionals. Patients can review their 

medical history and invoices through apps, while physicians monitor health and adjust 

treatments. It encompasses systems for monitoring, tracking, fitness, smart health records, remote 
diagnosis, and telemedicine. Ensuring data security is critical, as the growing number of 

connected devices increases the risk of cyberattacks [57]. Encrypted and untraceable 

communication is essential to protect sensitive information and prevent breaches that threaten 
patient privacy and healthcare security [58]. 

 

5. IOMT SECURITY 
 

5.1. Security Requirements of the IoMT 

 

The four mentioned layers represent the fundamental elements of the IoMT that must be secured 
to safeguard patient data at every level. Establishing a comprehensive set of security 

requirements is crucial for preventing, detecting, and responding to attacks in real time [10]. The 

CIA triad, which is comprised of Confidentiality, Integrity, and Availability, are the primary 

security requirements of the IoMT. These principles, as highlighted in numerous studies 
[59][60][13] form the fundamental basis for secure healthcare systems. 

 

5.1.1. Confidentiality 
 

This requirement guarantees that unauthorized third parties cannot access personal or sensitive 

information about the patient’s health status or treatment, which could endanger patient privacy 

and safety. Thus, protecting such information during storage and exchange across IoMT devices 
is vital. Although the standards provide general guidelines, ensuring confidentiality in IoMT 

systems requires certain measures, including robust network access controls and strong 

encryption protocols to prevent unauthorized data access [2]. 
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5.1.2. Integrity 
 

Data integrity is essential for the healthcare sector as it guarantees that the data remain unaltered 

during transmission to ensure that the data are received exactly as they were sent. This means that 

patients' health data are received exactly as transmitted and have not been tampered with during 
transmission. It is crucial to provide this safeguard to preserve the accuracy and reliability of 

medical data, which directly influences diagnoses, treatments, and patient results. Healthcare 

providers are becoming more aware of the need to maintain data integrity to preserve the 
confidence and effectiveness of healthcare systems [61].   

 

5.1.3. Availability 
 

Availability refers to an IoMT system's ability to function continuously and reliably to ensure that 

users can always access vital data and services. This is a critical element of healthcare systems, 

particularly when continuous patient health monitoring is necessary. To ensure availability, IoMT 
systems must be updated regularly, and redundant measures should be in place to enable 

additional paths for data access in the case of an attack, such as a distributed denial of service 

(DDoS) incident [62]. Additionally, the system infrastructure should be strengthened to improve 
its durability and ability to fix problems quickly [63]. 

 

5.2. Security Threats in the IoMT 

 

While the rapid growth of IoMT has enhanced healthcare, it has also made these networks 

attractive targets for attackers. Vulnerabilities arise due to limited device resources, data 
heterogeneity, and evolving systems, along with cybercriminals targeting medical devices and 

sensitive data for financial gain, such as extortion or data sale on dark websites [64]. IoMT 

devices relying on wireless communication are especially prone to breaches in wireless sensor 
networks (WSNs) [65]. These threats jeopardize patient safety and the healthcare system’s 

confidentiality, integrity, and availability (CIA) [66]. Securing IoMT is critical, as weak security 

measures risk patient confidentiality and lives. Healthcare providers recognize these risks, 

slowing IoMT adoption. Cybercriminals increasingly exploit wearable devices through remote 
malware planting or programmable interfaces to steal data, control devices, or cause harm. 

Attacks on IoMT are categorized into four types: on sensors, communication mediums, medical 

professionals, and patients [67]. These occur due to design flaws or weak authentication, 
allowing hackers to monitor data, inject malicious code, or gain elevated privileges undetected 

[5][23]. High computational demands further limit robust security measures, exposing IoMT 

devices to compromise [24]. This survey primarily focuses on the cyber risks faced by IoMT 

environments and examines how AI methods are integrated into IDS solutions to enhance the 
security of these systems. The following section is a list of the various attacks associated with 

each level of the IoMT. 

 

6. ATTACKS ON THE IOMT 
 

The purpose of this section is to explain the various types of attacks that target the IoMT 

ecosystem. These assaults can result in irreparable financial and reputational harm in addition to 

compromising patient privacy [63]. Unsecured data in IoMT systems are vulnerable to 
destruction, alteration, theft, and other types of attacks. According to a recent report by 

Comparitech, the healthcare industry has incurred a loss of over $160 million due to these cyber-

attacks since 2016 [68]. To guarantee maximum medical data security throughout collecting and 
processing, it is imperative to adopt precautionary measures by being aware of the potential risks 
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and vulnerabilities in IoMT contexts. The following section, we have categorized these assaults 
into four sections following the IoMT layered architecture based on the current state of the art. 

 

6.1. Attacks on the Perception Layer 
 

The initial phase of an IoMT system involves gathering patient data in the perception layer. 

Attacks on this layer of devices can jeopardize the integrity and confidentiality of the data, 
potentially leading to severe and even fatal consequences. The following are some of the most 

common assaults that target this layer, along with strategies to address them: 

 

● Tampering of Devices: A tampering attack refers to the deliberate modification, 
insertion, or removal of data on IoMT devices [65]. These attacks occur when 

vulnerabilities in device firmware allow intruders to implant malware and gain control 

over the device. The goal is to capture, alter, or replicate sensitive information 
transmitted or stored within the device. It has been widely recognized that IoT devices 

are susceptible to such attacks. 

● Side-Channel Attacks: This attack take advantage of data leakage within 
electromagnetic emissions, power consumption, or timing information, present a 

substantial risk to this layer. By analyzing this spilled information, attackers can gain 

access to sensitive data, such as encryption keys or medical information [65]. Medical 

devices are particularly susceptible to this type of attack due to their limited 
computational capabilities, leading to robust encryption and the protection of critical 

defences [69]. If a side-channel assault is successful, confidential data might be revealed 

[52]. 
● Sensor Tracking: Unsecured devices may enable attackers to access patients' location 

information or falsify GPS data, which can expose patient location information, violating 

privacy [65]. If there is a vulnerability in a device, the attacker may fake GPS data and 
find out the patient’s location. For example, devices that are used in fall prevention 

systems can be used to reveal private patient information or interfere with patient safety 

protocols [70]. 

● Tag Cloning: It refers to the replication of fake RFID tags by an attacker using 
information obtained from side-channel attacks [69]. In such a cyber-attack, the attacker 

can access unauthorized information, potentially compromising patient data [65]. This 

type of attack disrupts the perception layer of the IoMT network, which could result in 
varying degrees of system failure. Adopting a challenge-response authentication system 

is an effective strategy for preventing this danger by verifying RFID tags' authenticity 

and preventing unauthorized access [71]. 

 

6.2. Attacks on the Network Layer 

 
The primary objective of this layer is to ensure dependable communication between the 

middleware layer and the perception layer; however, this layer poses a significant concern due to 

the vulnerability of using wireless communication, which makes it susceptible to various types of 

attacks. The following are the most common kinds of attacks that target the network layer, along 
with an explanation of how and what damage they cause: 

 

● Denial of Service (DoS) and Distributed Denial of Service (DDoS): DoS attacks 
overwhelm healthcare devices with excessive demands, rendering them unavailable to 

users [72]. IoMT devices, with limited capacity, are particularly susceptible, leading to 

disruptions in medical operations and patient care [73]. For example, the SweynTooth 
vulnerability affects Bluetooth low energy (BLE)-enabled devices, allowing attackers to 

exploit buffer overflows, causing system crashes and shutdowns. DDoS Attacks: A more 
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aggressive form of DoS, DDoS floods systems with botnets, complicating source 
identification and attack prevention [18]. For instance, the hacktivist group “Kill-Net” 

recently launched DDoS assaults on US hospital websites, highlighting the severe 

damage such attacks can cause to IoMT devices [74]. 

● Eavesdropping: Because IoMT devices transmit data through wireless networks, all 
traffic is susceptible to detection, attackers can capture sensitive information, including 

biological data, and can even gather information on the specific medical device linked to 

the patient [75]. While encryption can potentially resolve this issue, many low-powered 
IoMT devices have limited processing power and memory for robust encryption [65]. 

● Man-in-the-Middle Attack (MitM): The IoMT and wireless sensor networks (WSNs) 

are particularly susceptible to security vulnerabilities, including MitM attacks. In this 
type of attack, an attacker intercepts communications between two devices, enabling 

them to monitor, change, or replay data without the victims' awareness. In an MitM 

attack, the attacker takes advantage of a security vulnerability, which can lead to severe 

consequences, such as the manipulation or disclosure of sensitive patient information 
[76]. These data can subsequently be traded in, exploited for other kinds of cybercrime, 

or even used as blackmail. For instance, modifying the data while being transmitted by 

medical devices could result in mistreatment, such as medicine overdosing [73]. 
● Replay Attack: A replay attack refers to an attacker’s act of reusing a recently 

exchanged message among authorized users for authentication [77]. In such a scenario, 

an intruder can intercept a signed message and retransmit it to the target numerous times. 
Devices such as One Touch Ping insulin and blood glucose meters do not employ 

sequence numbers or timestamps. Consequently, attackers can capture transmissions and 

replay them later to administer an insulin bolus without specialized knowledge [78]. 

● Sybil Attack: This prevalent type of assault specifically targets WSNs within the IoMT 
system. By granting the victim node several identities, a malicious node can execute a 

single operation repeatedly. Due to the attacker's ability to assume various identities 

within the WSN, the target node unknowingly routes its data across hacked nodes, 
thereby leaking important information [79]. 

 

6.3. Attacks on the Middleware Layer 

 

At this level, the patient's health state, identity, and treatment are all stored, making it an 

attractive target for attackers seeking to acquire this data. Several potential attacks that may occur 
include: 

 

● Malicious Insider: A malicious insider could be an employee, medical staff member, or 

business partner who misuses their access to intentionally harm the medical organization. 
Furthermore, they can engage in malicious behaviors such as modifying, eliminating, or 

altering the original dataset. Such occurrences frequently arise when someone has 

authorized access and can be challenging to identify and prevent, yet their impact on 
patient privacy and system integrity is substantial [80]. 

● Unauthorized Access to the Tags: RFID tags employ frequency bands to facilitate 

identifying, tracking, and data interchange with IoMT equipment. Robust access controls 
are necessary for these tags to guarantee that only individuals with the proper 

authorization can communicate with them. If an attacker gains access to these tags, the 

entire system's security is compromised. To prevent this, systems must use advanced user 

authentication mechanisms.  
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6.4. Attacks on the Application Layer 

 

This uppermost layer of the IoMT architecture is responsible for providing end-user services. 

This layer is responsible for allowing communication between patients, medical professionals, 
and IoMT equipment; however, software and hardware flaws make it highly vulnerable to 

attacks. These attacks usually exploit coding flaws such as code injections or buffer overflows. In 

addition to these assaults, applications and services are frequently threatened by various types of 
malware, including viruses, worms, and trojans [79]. Below are some of the most prevalent 

threats: 

 

● Ransomware: is a distinctive subset of malware that restricts or prevents users’ access 
by encrypting data or locking users out of systems until a ransom is paid. If an infected 

device is connected to the network, the ransomware can spread throughout the entire 

network, potentially crippling entire systems. Healthcare facilities are increasingly 
concerned about this type of attack due to the financial burden and service disruptions it 

can cause [81]. This threat, which has even prompted a notice from Interpol, specifically 

targets sensitive information such as patients’ private health records stored in healthcare 
systems [76]. A notable example is the 2020 ransomware attack that completely shut 

down systems and data at Germany’s University Hospital of Düsseldorf, rendering the 

hospital’s emergency room inaccessible [82].  

● Brute Force Attacks: A basic brute force attack can quickly breach a device’s access 
control. Due to the weaker computational capacity of most IoMT devices in a medical 

network, attackers can further compromise the network by installing malware [65]. One 

form of a brute force attack is known as a dictionary attack and is particularly risky for 
devices with weak security [83]. 

● Phishing attack: In a typical phishing assault, the attacker pretends to be a trusted 

source, such as a healthcare organization or individual, to attempt to get sensitive 
information, such as credit card details or user login credentials [65]. To secretly obtain 

valuable data from approved users, attackers create malicious links or attempt to get 

users to download harmful attachments. When executed, these acts damage the user's 

device, giving attackers access to confidential data [79]. 
● Location threats: The majority of medical devices are designed with a location 

component to aid in emergency response or continuous monitoring; however, if it is not 

properly protected, attackers can breach this feature to track patients’ locations. This type 
of attack poses a direct threat to patients’ privacy [84]. 

 

It is vital to secure the entire system, not just certain technologies within a single layer, because 

assaults can happen at any level of the IoMT ecosystem. A comprehensive strategy that protects 
all layers of the IoMT ecosystem is required to guarantee the maximum degree of security, 

preserve patient data, and keep healthcare systems operating. 

 

7. CHALLENGES IN THE IOMT 
 

● Data Privacy and Security: Ensuring patient privacy and protecting sensitive data is a 

paramount concern in the IoMT ecosystem. Healthcare businesses are often targeted by 

cyberattacks due to their management of enormous amounts of sensitive medical 
information. The potential for malicious individuals to attack hospital servers and exploit 

private information presents significant threats to patient data. Traditional security 

protocols or encryption methods are sometimes unsuitable for direct implementation 
because of the limited computational power and memory of IoMT sensors. 
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● Power Efficiency: Since medical equipment, machinery, and applications depend on 
electrical or solar energy, controlling power efficiency is among the most significant 

issues in IoMT systems. Sensors are necessary for continuous patient monitoring, and to 

continue to remain connected and send data effectively, they need constant power 

sources. 
● System Compatibility: In healthcare, system compatibility indicates the seamless, 

secure, and efficient transfer of data among interconnected devices to guarantee optimal 

performance. The incompatibility of equipment, software, machinery, and applications 
can cause ineffective communication and data sharing, resulting in elevated costs and 

reduced operational efficiency. 

● AI Model Training and Performance Concerns: Training is an essential component of 
AI models, particularly within the context of the IoMT. AI models must be retrained and 

reparametrized when environmental conditions or device features are altered. For DL and 

ML algorithms, a lack of training data may result in overfitting, which decreases model 

performance. Medical experts are concerned about AI performance in IoMT devices, 
especially when invalid information leads to incorrect diagnoses or high FPRs, resulting 

in unneeded alerts. The accuracy and precision of AI models ensure these devices' 

credibility, particularly in clinical decision-making platforms where it is critical to 
minimize false positives and identify real positives. 

 

8. CONCLUSION 
 

Due to the growing number of cyber threats, a robust and reliable IDS is essential in the 
healthcare industry. This survey provided a comprehensive analysis of an IDS tailored for IoMT, 

a critical component in safeguarding healthcare systems against emerging cyber threats. We 

proposed a new classification to classify the proposed techniques used to build IDS for detecting 
and mitigating cyber threats in IoMT environments into ML, DL, fuzzy logic, and hybrid 

approaches. These AI-driven approaches are vital in addressing the limitations of traditional 

security methods, enhancing the accuracy and adaptability of IDSs in a rapidly evolving cyber 
threat landscape.While ML, DL, and FL methods offer distinct advantages, such as adaptability 

and managing uncertainty, they also face challenges like resource demands and scalability, 

highlighting the need for optimized hybrid approaches.Our survey highlighted the critical role of 

robust IDS mechanisms in enhancing the security of the IoMT architecture at multiple layers 
along with their potential vulnerabilities, ensuring the confidentiality, integrity, and availability 

of sensitive medical data. This paper also identified several unresolved challenges in IoMT 

security, including the importance of ensuring data privacy and security, addressing power 
efficiency constraints, enabling system compatibility across diverse devices, and overcoming AI 

model training and performance concerns. Despite the significant progress in the development of 

AI-based IDSs for the IoMT, further research is needed to address the particle challenges of real-

world deployment, scalability, and the handling of highly dynamic and heterogeneous IoMT 
environments. Future studies should focus on developing lightweight, scalable, and adaptive IDS 

models that can effectively balance the resource constraints of IoMT devices with the increasing 

complexity of cyber threats. Additionally, ongoing research is needed to improve AI models 
accuracy, minimize false positive, and enhance system compatibility within IoMT ecosystems. 
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