
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.1, January 2025 

DOI:10.5121/ijaia.2025.16102                                                                                                                       21 

 
DIVERGENT ENSEMBLE NETWORKS : IMPROVING 

PREDICTIVE RELIABILITY AND  
COMPUTATIONAL EFFICIENCY 

 

A. Chandorkar and A. Kharbanda 

 

Indian Institute of Technology, Ropar  
 

ABSTRACT 

 
The effectiveness of ensemble learning in improving prediction accuracy and estimating uncertainty is well-
established. However, conventional ensemble methods often grapple with high computational demands and 

redundant parameters due to independent network training. This study introduces the Divergent Ensemble 

Network (DEN), a novel framework designed to optimize computational efficiency while maintaining 

prediction diversity. DEN achieves superior predictive reliability with reduced parameter overhead by 

leveraging shared representation learning and independent branching. Our results demonstrate the efficacy 

of DEN in balancing accuracy, uncertainty estimation, and scalability, making it a robust choice for real-

world applications. 
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1. INTRODUCTION 
 

In controlled conditions and simulations, contemporary deep-learning networks have shown 

remarkable performance. However, when confronted with unexplored data, unforeseen 
fluctuations, or noisy inputs, its reliability frequently declines in real-world circumstances, 

potentially resulting in predictions that are not accurate. This raises concerns about the 

dependability of these networks in practical applications. [5]. To address this challenge, 
leveraging uncertainty estimation was proposed as a solution to enhance their robustness and 

ensure real-world applicability. Neural networks struggle with quantifying predictive uncertainty 

and often generate overly confident predictions. Such overconfident incorrect predictions can lead 

to detrimental results [7].  
 

In deep learning, there are twotypes of uncertainties: aleatoric uncertainty and epistemic 

uncertainty.  
 

1. Aleatoric uncertainty originates from the inherent noise or randomness in the data. This 

type of uncertainty cannot be reduced by altering the model, as it is an intrinsic 

characteristic of the data itself [4].  
2. Epistemic uncertainty arises from a lack of knowledge or information regarding the model. 

Unlike aleatoric uncertainty, epistemic uncertainty can be mitigated by improving the 

model design or gathering additional data [4].  
 

Aleatoric uncertainty can be quantified using the entropy of the predictive distribution, which 

captures the uncertainty intrinsic to the data itself [12]. In contrast, epistemic uncertainty is often 
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measured by examining the variation among different models, representing the extent to which 
predictions fluctuate due to limited knowledge. 

 

These methods offer distinct approaches to quantifying and reducing uncertainty in deep learning 

models, helping to enhance model reliability and performance. The ensemble’s biggest challenge 
is reducing redundancy while preserving its diversity. While techniques like Monte Carlo Dropout 

(MC Dropout) approximate ensembles by stochastic regularization, they may compromise 

predictions’ independence [13]. Similarly, approaches like Batch Ensemble aim to reduce 
computation but need help with flexibility in capturing model variance. This trade-off between 

computational efficiency and one of the primary obstacles to ensemble learning is still ensemble 

diversity. To address these challenges, we propose the Divergent Ensemble Network (DEN), a 
novel architecture that combines the benefits of shared representation learning and ensemble 

diversity. DEN features a shared input layer that captures a common representation across all 

ensemble members, followed by independent branching layers that train separately to maintain 

prediction diversity. This architecture balances computational efficiency with predictive 
robustness, making it suitable for scenarios where both accuracy and uncertainty estimation are 

critical.  

 
In this study, we assess DEN across various tasks, emphasizing its ability to estimate uncertainty 

while preserving predictive accuracy. Our findings indicate that DEN surpasses conventional 

ensembles in computational efficiency and achieves similar or superior uncertainty estimation. 
Additionally, its scalable nature allows for adaptability in a wide range of applications, including 

those that require real-time predictions. The remainder of this paper is structured as follows: 

Section 2 provides an overview of the DEN architecture and its training approach. Section 3 

showcases the findings, while Section 4 explores the applications and constraints, and Section 5 
offers concluding remarks.  

 

2. ARCHITECTURE 
 

2.1. Problem Statement and Overview 
 

We assume that the training dataset D consists of N Independent and Identically Distributed (i.i.d) 
data points. For classification problems, the label is assumed to be one of K classes, that is y  {1, 

2,3..., K}. For regression problems, the label is assumed to be real-valued, that is y  R.  

 

Given the input features x, we use a neural network to model the probabilistic predictive 
distribution pθ(y|x) over the labels, where θ are the parameters of the neural network.  

 

The Divergent Ensemble Network (DEN) uses a shared-to-branching architecture for ensemble 
learning. A common input layer processes shared features, followed by a single shared 

representation layer that extracts fundamental features. After this, the network diverges into 

multiple independent branches, each trained with distinct parameters to have independent 
predictions. These branches operate on the shared features and produce independent outputs. This 

model thus provides independent predictions while also giving faster predictions.  
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Fig.1. Visual representation of the proposed neural network architecture.  

 

The shared layer in DEN ensures efficient parameter usage by processing input features once, 

reducing redundancy. Meanwhile, the divergent branches maintain the independence necessary 
for effective ensemble learning. By decoupling shared representation from individual predictions, 

DEN achieves a unique balance between computational efficiency and predictive variance.  

 

2.2. Shared Input and Divergent Branches for Independent Predictions  
 

After the architecture is divided into several independent networks after the shared layers. Each 
branch processes the shared representation further, utilizing distinct weights and biases to enable 

independent predictions. These branches act as independent ensemble members while benefiting 

from the common input processing. Each branch consists of multiple fully connected layers, with 
the activation functions being considered as a hyperparameter. Dropout layers are also 

incorporated, as they can improve accuracy by reducing overfitting.  

 

However, increasing the number of branches introduces trade-offs in terms of computational 
resources. While adding more branches can potentially improve model performance by enhancing 

ensemble diversity, it also requires more memory and computational power, as each additional 

branch adds extra parameters and layers to the model. This results in higher processing time 
during both training and inference stages, which can be particularly costly in resource-constrained 

environments. Therefore, a balance must be struck between the number of branches and available 

computational resources to ensure efficient use of the system.  

 

2.3. Loss Function and Optimization  
 
Each branch is trained independently using a loss function specific to the task, and each branch 

gets to see the data in a loop so that the common layers are trained. For classification tasks, the 

softmax cross-entropy loss is typically used, and the mean squared error for regression tasks. 

Additionally, ensemble diversity is encouraged by training branches independently, ensuring 
variance in predictions and robust uncertainty estimation. As in traditional deep learning models, 

the selection of loss functions and strategies remains flexible, allowing users to adapt them to 

their needs and also use trainable activation functions if needed. 
 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.1, January 2025 

24 

3. OBSERVATIONS AND RESULTS  
 

3.1. Dataset  
 

We first used the MNIST dataset to train our model. The MNIST dataset is a large, well-known 
database of handwritten digits comprising 70,000 images, of which 60,000 are used for training 

and 10,000 for testing. Each image is a grayscale representation of a digit (0–9) with a resolution 

of 28×28 pixels. As one of the benchmark datasets in machine learning and computer vision, 
MNIST provides a simple yet effective framework for evaluating classification algorithms. To 

further test our model’s robustness, we utilized the NotMNIST dataset, which offers a similar 

structure but focuses on the classification of letters A through J in a variety of fonts. The dataset 

comprises 18,724 training images and 1,872 testing images, all grayscale and sized at 28×28 
pixels.  

 

  
 

Fig.2. Comparison of the MNIST and NotMNIST Datasets.  

 

After comparing the results with the MNIST dataset, we extended our evaluation to test the 

model’s ability to quantify uncertainty by using it on the NotMNIST datasets. The NotMNIST 
dataset contains not only numbers but also letters, which provides a way to test how the model 

performs on unseen data. By analyzing the model’s performance on these NotMNIST datasets, we 

aimed to evaluate how effectively it distinguishes between familiar (in-distribution) and 
unfamiliar (out-of-distribution) data. This approach has been widely practiced [7] involving 

unpredictable or previously unseen data. To evaluate the performance of our proposed model in 

uncertainty estimation on regression data we use a toy function.  

 
                                                                  y = 10sin(x) + ϵ                                                      (1)  

 

where ϵ is a small noise term sampled from a normal distribution, ϵ ∼ N(0,σ2), added to introduce 
variability in the data. The input values, x, are sampled from the range [−3,3] with a step size of 

0.001. For x < 0, the noise term is sampled with a standard deviation of σ1 = 3, and for x ≥ 0, the 

noise term has a standard deviation of σ2 = 1. The corresponding true values ytrue are calculated 

without noise, following the equation  
 

ytrue = 10sin(x).                                                         (2) 

 
For uncertainty estimation, we extend the evaluation to include test data sampled from values 

outside the domain of the training dataset (e.g., x ∈ [b+δ,c] for some δ > 0). This setup allows us 

to assess the model’s ability to identify epistemic uncertainty, as these test points lie in regions not 

seen during training. The increased uncertainty in such out-of-distribution (OoD) regions 
provides a robust measure of the model’s performance in handling unknown scenarios.  
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We compare the results of our model with other standard approaches such as deep ensembles, 
Bootstrap and MC Dropout. By examining the predicted values, their confidence intervals, and 

uncertainty metrics.  

 

3.2. Uncertainty Evaluation  
 

Overconfident predictions on unseen classes pose a challenge for the reliable deployment of deep 
learning models in real-world applications. Therefore, we expected the predictions to exhibit 

higher uncertainty for test data that was much different from the training data. To test if the 

proposed method possesses this desirable property, we trained a Multilayer Perceptron (MLP) on 

the standard MNIST train/test split using the proposed neural architecture.  
 

In addition to the regular test set with known classes, we also evaluated the model on a test set 

containing unknown classes. For this, we used the test split of the NotMNIST dataset, where the 
images have the same size as in the MNIST dataset, but the labels are alphabets instead of digits. 

Though we do not have access to the true conditional probabilities, we expected the predictions to 

be closer to a uniform value on unseen classes compared to the known classes, where the 
predictive probabilities should concentrate on the true targets. We evaluated the entropy of the 

predictive distribution and used this to assess the quality of the uncertainty estimates.  

 

We trained a Multilayer Perceptron (MLP) using the proposed neural architecture on a toy 
regression problem with Mean Squared Error (MSE) as the loss function to evaluate whether the 

proposed method demonstrates this desirable property on regression as well.  

 

The training data consisted of input values sampled from a specific domain, x ∈ [a,b], and 

corresponding noisy targets generated from the function y = 10sin(x) + ϵ, where ϵ ∼ N(0,σ2).  

After training, we tested the model on two distinct sets of data:  

 

1. In-Domain Test Set: Samples from the same range as the training domain (x ∈[a,b]).  

2. Out-of-Domain Test Set: Samples drawn from a different range not seen during training (x 

∈ [b + δ,c], for some δ > 0).  
 

We hypothesized that the model’s predictions on the out-of-domain test set would reflect higher 

uncertainty compared to the in-domain test set, where the model had been trained to approximate 

the function. Since the true conditional variance of the target is known for the toy function, this 
setup allows us to qualitatively and quantitatively assess the model’s ability to identify epistemic 

uncertainty.  

 
To measure the uncertainty, we analysed the entropy of the predictive distribution for each test 

point. For out-of-domain samples, we expect the predictions to reflect a more uniform 

distribution, indicating a lack of confidence.  
 

 Confidence = 𝑛 𝑛𝑖=1 ŷ   (3)  

 

where ˆyi is the predicted probability or confidence score for each sample.  

 

 Variance = 𝑛 1 ∑𝑛𝑖=1(𝑦̂̂𝑖 − 𝑦̂ ̂)2      (4)  

 

where ˆyi is the predicted value for each sample, and y¯ˆ is the mean of the predicted values.  

 

 (𝑝) = −∑𝑛𝑖=1 (𝑥𝑖) . log(𝑥𝑖)       (5)                         
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where p(xi) is the probability of class xi, and the sum is taken over all possible classes. Entropy 

measures the uncertainty of the predicted probability distribution. As shown in Figure 4, while 
the MSE, MAE, and R² scores remain relatively consistent, there is a significant reduction in 
inference time. 
 

Table 1. Evaluation Results (MNIST) (Classification) 

 

Model Ensemble 

Accuracy(%) 

Single Model 

Accuracy(%) 

Average Inference Time 

(s) 

Ensemble 98.56 97.78 0.263453 

MC Dropout 97.33 97.67 0.158070 

Bootstrap 97.67 96.67 0.277438 

DEN 98.78 98.44 0.056009 

 
Table 2. Evaluation Results (NotMNIST) (Classification) 

 

Model Accuracy Average 

Confidence 

Average 

Variance 

Average 

Entropy 

Inference Time 

(s) 

Ensemble 10.22 0.6754 0.0406 0.6707 0.228371 

MC Dropout 9.78 0.7545 0.0053 0.5987 0.164834 

Bootstrap 10.78 0.6691 0.0416 0.6853 0.229866 

DEN 10.78 0.7019 0.0375 0.6125 0.045510 

 
Table 3. Evaluation Results (Regression) 

 

Model MSE MAE R² Inference Time (s) 

Ensemble 5.1846 1.6353 0.9088 0.298662 

MC Dropout 5.4889 1.7045 0.9034 0.159630 

Bootstrap 5.2421 1.6383 0.9078 0.308347 

DEN  5.3483 1.6703 0.9059 0.065887 

 

3.3. Results  
 

The code used for the experiments in this paper is publicly available on GitHub: 

https://github.com/Arker123/Divergent-Ensemble-Networks. 

 
We ran the model on an Intel i5 12th gen processor, utilizing only a single core for performance 

comparison purposes. We found an approximate 6x improvement in execution time compared to 

other models (see Table 1), making it suitable for real-time predictions. We tested the model on 
9000 examples from each class and evaluated the uncertainty on out-of-distribution examples 

from unseen classes for classification. 

 
For the MNIST dataset, our model outperforms the existing Ensemble, MC Dropout, and 

Bootstrap methods by about 6x, and about 4x in the case of the NotMNIST dataset. All of the 

methods show low entropy as expected. However, MC Dropout seems to give high confidence 

predictions for some of the test examples, even for unseen classes. The results are shown in 
Tables 1 and 2. Such overconfident wrong predictions can be problematic in practice when tested 
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on a mixture of known and unknown classes. DEN, Bootstrap, and Ensemble produce higher 
uncertainty on unseen classes, which is a desirable feature for reliable model deployment in real 

world applications.  

 

The following plots showcase the robustness of our model (DEN). As shown, DEN excels in the 
inference time metric compared to all other models, while maintaining comparable performance 

across the other metrics. 

 

 
Fig.3. Classification performance metrics: (a) Model Accuracy Comparison between Ensemble and Single 

Model Approaches, (b) Average Inference Time per Model, (c) Performance  

Metrics: Accuracy and Inference Time for Different Models  

 

For regression on toy function our model outperforms the Ensemble and bootstrap by a factor of 
about 5 and MC Dropout by a factor of about 2.5. All the methods have about the same MSE, 

MAE and R² Score. The result is shown in Table 3.  

 

 
Fig.4. Regression performance metrics: (a) Mean Squared Error (MSE), (b) Mean Absolute Error (MAE), 

(c) R² Score, and (d) Average Inference Time.  

 

3.4. Scalability Analysis and Branch-Based Decomposition of DEN 
 

We performed a scalability analysis of our proposed model (DEN) against Ensemble Networks, 
MC Dropout, and Bootstrap methods. The evaluation was conducted for varying ensemble sizes: 

1, 5, 10, 20, and 50. As shown in Figure 5 in the appendix, the accuracy remains consistent across 

all models regardless of ensemble size. Training time is nearly identical for DEN, Bootstrap, and 
Ensemble Networks, whereas MC Dropout exhibits significantly lower training times, as 

expected. Regarding inference time, DEN demonstrates the lowest latency, followed by MC 

Dropout, with Ensemble and Bootstrap methods having comparatively higher inference times. 
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Fig.5. Scalability Analysis: (a) Model Accuracy vs Size of Ensemble Network, (b) Training Time of Models 

vs Size of Ensemble Network, (c) Inference Time vs Ensemble Size  

 
To further analyse the scalability and adaptability of DEN, we explored a branch-based 

decomposition approach. This involved dividing the DEN model into multiple sub-models while 

maintaining the same number of outputs. For example, a DEN model with 50 branches was split 
into configurations such as two models with 25 branches each, five with 10 branches each, and so 

on. Notably, a configuration with 50 models, each having one branch, resembles an ensemble 

network. The results of this analysis are presented in Figure 6 in the appendix. 

 
The accuracy remains consistent across all configurations, demonstrating the robustness of DEN 

to such decompositions. However, training time is highest for the configuration with 10 branches 

per model and five models to be trained. This can be attributed to the increased complexity of 
training multiple models concurrently while managing inter-branch dependencies. Despite this, 

the training time difference is marginal, approximately 1000 seconds (1316 vs. 1414 seconds). 

Significantly, inference time decreases exponentially as the number of models decreases and the 
number of branches per model increases, showcasing the efficiency of DEN in resource-

constrained environments. 
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Fig.6. Effect of Branch-Based Decomposition on (a) Accuracy, (b) Training Time, and (c) Inference Time 

for DEN Models 

 

4. APPLICATIONS 
 

Uncertainty estimation methods have shown great potential in domains like computer vision and 

medical imaging [10]. Deep ensembles effectively detect epistemic uncertainties, such as out of 
distribution (OoD) data and adversarial samples, enhancing neural network robustness [10]. 

Integrating ensembles with probabilistic embeddings further improves uncertainty quantification, 

essential for real-world tasks [11].  

 
In continual learning, ensembles address uncertainty by enabling robust learning in dynamic 

environments [14]. In medical imaging, they enhance confidence calibration and prediction 

reliability [8]. Divergent Ensemble Networks, with their multi-branch architecture, provide 
efficient uncertainty estimation and are faster at inference, making them ideal for realtime 

applications like robotics, manufacturing testing, and more.  

 

5. CONCLUSION 
 
This model achieved significant results on standard datasets for uncertainty estimation. The 

proposed architecture requires less space and computation time compared to traditional ensemble 

architectures. While Monte Carlo methods are more space-efficient than the proposed model, 
Bootstrap, ensembles, and Monte Carlo approaches require multiple inferences, increasing the 

time needed to generate results. In contrast, the proposed model is well-suited for time-sensitive 

and real-time applications.  
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5.1. Limitations of DEN  
 

One of the current limitations of the Divergent Ensemble Networks (DEN) is its dependence on 

the choice of shared representations. The effectiveness of these representations is crucial for the 
overall model performance and may require substantial hyperparameter tuning. Furthermore, as 

the number of branches increases, computational resources required for both training and 

inference also increase. This can pose scalability challenges, particularly when dealing with very 
large ensembles. These factors may limit DEN’s application to resource-constrained 

environments or larger datasets without further optimization.  

 

5.2. Future Work  
 

In future work, the DEN model should be explored using different activation and loss functions to 
study their effects on uncertainty estimation. Furthermore, the model could be extended to 

architectures like Kolmogorov-Arnold Networks (KAN) [15] to evaluate the impact of trainable 

activation functions and newer architectural designs on performance and uncertainty metrics. 

 
Additionally, the proposed model should be implemented on hardware platforms to assess its 

performance in real-world scenarios, especially in applications for Internet of Things (IoT) 

devices and other real-time systems. Hardware implementation will provide insights into 
challenges such as computational overhead and integration with existing IoT ecosystems. A 

scalability analysis of the model is also essential to evaluate its efficiency as the number of 

branches increases. Optimizations focused on reducing computational costs and enhancing 
resource efficiency will be critical for scaling DEN to larger, more complex tasks. 

 

5.3. Broader Impact  
 

DEN has the potential to make a positive societal impact by reducing biases in AI systems. By 

leveraging uncertainty estimation, DEN can enhance the fairness and adaptability of models, 
making them more robust to changes in input data and ensuring that decisions are made with 

higher confidence. Furthermore, DEN can contribute to ethical AI deployment by providing 

transparency into model predictions and supporting decision-making processes that are more 

explainable and reliable.  
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