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ABSTRACT 
 
Cardiovascular disease (CVD) remains the leading cause of death globally, with roughly 17.9 million 

fatalities each year. Early and accurate diagnosis of heart disease is critical to improving patient 

outcomes. We propose OWE-CVD (Optimized Weighted Ensemble for Cardiovascular Disease), a new 

predictive framework that combines a weighted voting ensemble of three gradient boosting classifiers 

(XGBoost, LightGBM, and CatBoost) with explainable AI (XAI) techniques. We first addressed class 
imbalance using the Synthetic Minority Over-sampling Technique (SMOTE) and optimized each model’s 

hyperparameters using the Optuna framework with stratified 10-fold cross-validation. Ensemble weights 

were derived from cross-validated accuracy scores. On an independent test set, OWE-CVD achieved 

94.44% accuracy with balanced precision, recall, and F1-scores across both classes. We applied SHAP 

and LIME to interpret the ensemble’s predictions at global and local levels. Overall, OWE-CVD 

demonstrates strong predictive performance while providing transparent decision support for heart disease 

diagnosis in clinical settings. 
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1. INTRODUCTION 
 

The Saudi Ministry of Health reports that a large proportion of deaths in the Kingdom is 
attributed to CVD (cardiovascular diseases) as the condition often has many different risk factors 

including obesity, hypertension, diabetes, smoking, physical inactivity [1]. Globally, around 17.9 

million people died from cardiovascular diseases in 2019, making up 32% of all deaths that year. 
Of these, heart attacks and strokes were responsible for roughly 85% [2]. The global concern of 

CVD indicates the need for novel and accurate methods to improve early detection of CVD in 

order to limit the number of deaths and drastically improve patient outcomes.  

 
Advances in artificial intelligence (AI), specifically machine learning (ML), are changing the 

field of healthcare by enabling systems to learn from clinical data, identify patterns and make 

predictions without being coded [3], [4]. The availability of clinical data and powerful algorithms 
allow ML to now take and manage large amounts of complex data leading to increased 

performance. This enables ML to identify patterns and risk factors that may be complicated and 

hard for traditional diagnostic methods to find [5], [6]. Several supervised learning models have 
been tested for predicting heart disease, including decision trees, support vector machines, neural 

networks, and different ensemble methods. While these methods are showing promising results, 
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there is no one ensemble model that consistently provides optimal predictive performance in 
these varied populations. 

 

Ensemble learning in machine learning combines predictions from multiple base models to boost 

accuracy, reduce overfitting, and enhance generalizability in medical diagnosis tasks [7]. For 
example, HeartEnsembleNet leverage ensemble techniques to improve the accuracy of CVD 

detection and outperform individual models [8]. While performance is essential, there are critical 

considerations for AI models to be adopted in practice, such as transparency and interpretability.  
 

Explainable Artificial Intelligence (XAI) refers to methodologies that indicate how machine 

learning participates in its processes, thereby increasing transparency, accountability, and trust 
for users, including in health care [9], [10]. Commonly used XAI methods include SHAP 

(SHapley Additive Explanations), which uses cooperative game theory to provide importance 

scores of features [11], and LIME (Local Interpretable Model-agnostic Explanations), which 

allows for local interpretability based on surrogate models [12]. 
 

In this study, we propose a model called OWE-CVD (Optimized Weighted Ensemble for 

Cardiovascular Disease), a predictive model using a XGBoost, LightGBM and CatBoost using a 
weighted soft voting combination method. The ensemble was optimized using cross-validation 

and hyperparameter tuning (Optuna). OWE-CVD uses SHAP and LIME to ensure transparency 

by enabling users to understand feature importance, making OWE-CVD a reliable and 
interpretable tool for heart disease detection. 

 

2. LITERATURE REVIEW 
 

2.1. Machine Learning Models for Heart Disease Prediction 
 

Machine learning (ML), a subfield of AI, has seen increasing application in cardiovascular 

disease prediction due to its ability to process complex clinical datasets and generate predictive 
models without explicit programming [13]. As clinical datasets are now available in increasing 

amounts in structured form, researchers began to evaluate a number of ML algorithms to detect 

heart disease using patient data. Many datasets available for heart disease prediction (including 
UCI Heart Disease dataset) have a relatively small sample size, which is also limited by missing 

values making it difficult to develop robust predictive ML models.  

 

Past studies used models including neural networks, K-nearest neighbours (KNN), Naive Bayes, 
and logistic regression, on the UCI Cleveland dataset, and noted that performance varied greatly 

depending on the approach of feature selection in conjunction with data cleaning and data 

preprocessing strategies [14]. While neural networks achieved reasonable accuracy, a drawback 
with this method was the extensive amount of parameter tuning required with small sample sizes. 

Some studies note that KNN and Decision Trees achieved better overall performance than more 

complex models, as KNN used effective feature selection and reduced dimensionality [15].  
 

Other approaches have proposed stacking ensembles of multiple learners, for example, a two-

level model including Random Forest, Multilayer Perceptron (MLP), and XGBoost predicted a 

92% accuracy once cross-validation and preprocessing was applied [16]. Similarly, they 
examined combining datasets from different sources (Cleveland, Statlog, Long Beach) which 

achieved higher ensemble accuracy: one model with Random Forest, XGBoost, and Extra Trees 

had a score of 92.34%, and used ROC and MCCs scores [17]. 
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A recent study proposed a stacking ensemble for heart disease prediction using Logistic 
Regression as the meta-classifier and base learners including SVM, Random Forest, and 

CatBoost. SHAP values were used for interpretability, highlighting key contributing features. The 

model also had better performance than each individual classifier when combining multiple 

datasets and when there was noisy and imbalanced data [18]. 
 

2.2. Ensemble Techniques for Cardiovascular Diagnosis 
 

Ensemble learning techniques, particularly stacking and weighted voting models, have 

consistently outperformed single classifiers in cardiac diagnostics. In one study, a hybrid model 

ensemble that combined Random Forest, SVM, and LightGBM predicted ICU mortality with an 
accuracy of 95.25%. Among many features, blood urea nitrogen and glucose were important to 

the prediction [19]. Another study used an ensemble model to predict carotid atherosclerosis. 

This ensemble model combined Random Forest, XGBoost, and a gradient boosting classifier, and 
also used SHAP to demonstrate interpretability, and feature ranking [20].  

 

The SDKABL hybrid architecture used KNN, decision tree, and SVM as base learners, as well as 
a BiLSTM-based attention mechanism at the meta-layer. The architecture also performed PCA to 

dimensionally reduce the input to improve predictive performance, ultimately outperforming 

baseline ensemble models [21]. Similarly, the NCDG stacking framework used Naive Bayes, 

CatBoost, and decision trees as the base-level classifiers, and a gradient boosting classifier as a 
meta-classifier. They combined SMOTE and Borderline-SMOTE to address class imbalance 

when predictive uncertainty in the individual base-level classifiers. The NCDG average accuracy 

was close to 91%, and they used SHAP tables to add model interpretability [22].  
 

These studies and results emphasize an increasing importance of ensemble models in clinical 

prediction tasks. When combining various classifications models and utilizing preprocessing 
strategies (for example, SMOTE), ensemble learners outperform individual learners with more 

stable and accurate performance. 

 

2.3. Explainable AI in Healthcare 
 

Predictive accuracy is important, but trust and transparency are also critical for medical 

applications. Explainable AI (XAI) frameworks have been an attempt to mitigate the "black-box" 
nature of many ML models. LIME explains individual predictions using interpretable local 

models, whereas SHAP uses game-theoretic principles to get consistent importance scores among 

features [11], [12].  
 

While SHAP is theoretically grounded, some scholars have noted pitfalls using it when used for 

clinical studies—specifically, the lack of alignment with mechanistic goals of human 
interpretation [23]. Still, using combined explanations using both feature-based explanations, and 

example-based explanations to improve the clinician's ability to understand complex models [24]. 

In a high-risk environment such as healthcare, present models that mitigate uncertainty by 

applying transparency and accountably by using XAI [25].  
 

In a regulatory context, counterfactual explanations can provide more benefits from XAI models 

because this type of explanation can align with legal privacy regulations, like the GDPR. 
Counterfactual explanations can inform patients of an actionable steps and insights without 

exposing those sensitive details of the algorithm [19]. One of the main obstacles to the 

widespread integration of AI into clinical workflows is the lack of an integrated healthcare 
structure [21]. 
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Table 1.  Literature Review Comparison Table. 

 

Reference Methodology Key Findings 

Sadr et al. [5] 
CNN + LSTM + KNN 

+ XGBoost 

Combined deep learning and machine learning 

models improved heart disease prediction. 

Rezk et al. [26] 

Voting Ensemble 

(LightBoost + 

XGBoost) 

Voting ensemble model gave better results than 

using LightBoost or XGBoost alone. 

Tiwari et al. [17] 

Stacking Ensemble 

(ExtraTrees, Random 

Forest, XGBoost) 

Proposed a stacked ensemble framework that 

predicted heart disease better than older 

models. 

Sultan et al. [22] 

NCDG Model (Naive 

Bayes, CatBoost, 

Decision Tree + 

Gradient Boosting 

arner) 

NCDG stacking model achieved better 

prediction accuracy than single models. 

Mohapatra et al. 

[16] 

Stacking Classifiers 

Model 

Two-level stacking model improved accuracy 

by combining different classifiers. 

Zhang et al. [20] 

Norks Arbitration 

Model (Feedforward 

MLP + SVM) 

Compared two models; SVM had better 

performance than MLP. 

 
The recent methods for predicting heart disease are summarized in Table 1, and ensemble 

learning is used most frequently and seems to be the most widely used. Studies by Rezk et al. 

[26], Tiwari et al. [17], Sultan et al. [22], and Mohapatra et al. [16] demonstrated that combining 
models often produced better results than using a single model. For instance, Rezk’s simple 

voting ensemble produced superior results than when he used single learners, and Tiwari's and 

Mohapatra's methods used stacking to improve generalization. Sadr et al. [5] used the hybrid 

CNN-LSTM ensemble learning, without interpretability. Sultan's new model NCDG achieved a 

more balanced output than other methods, and Zhang [20], concluded that SVMs outperformed 

many MLPs. While ensemble learning and hybrid methods are used increasingly but lack of 
transparency, an issue OWE-CVD's addresses through using explainable artificial intelligence. 

 

3. METHODOLOGY 
 

This study offers a high performing, interpretable, heart disease prediction model using a 
weighted ensemble framework that is optimized and enhanced with explainable AI methods. The 

workflow includes five core stages: gathering data, preprocessing it, building the model, 

evaluating its performance, and interpreting the results using explainable AI (XAI). 
 

3.1. The Dataset 
 
The dataset used was acquired by merging the Cleveland and Hungarian subsets from the UCI 

Heart Disease datasets [27]. The whole dataset consists of 1,190 patient records each with 11 

input features and one binary outcome variable which describes the presence (1) or absence (0) of 
heart disease. 
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Table 2.  Features Description. 

 

Feature Description 

age Age of the patient 

sex Biological sex 

chest pain type Type of chest pain experienced 

resting bp s Resting blood pressure 

cholesterol Serum cholesterol level 

fasting blood sugar 
Fasting blood sugar level (>120 

mg/dl) 

resting ecg Resting ECG results 

max heart rate Maximum heart rate achieved 

exercise angina Exercise-induced angina 

oldpeak ST depression induced by exercise 

ST slope Slope of ST segment 

target Presence of heart disease 

 

These features were chosen for their clinical significance and their role in diagnosing 

cardiovascular conditions [27]. 

 

3.1.1. Data Exploration 

 

Most features provided for statistical analysis and machine learning are categorical, but these 
features can also be used with several algorithms as they have integer encoding. Exercise and 

ECG parameters including chest pain type, ST slope, and oldpeak can be utilised to enhance 

predictive models (diagnostic quality) reflecting their clinically relevant values. 

 

 
 

Figure 1.  Age Distribution. 
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In figure 1 we can see the age feature has a normal distribution with its center point between 55 
and 60 years of age. The majority of participants are age 45 to 65 years, which is at the normal 

age range of likely patients for heart problems. 

 

 
 

Figure 2.  Cholesterol Level. 

 

The cholesterol level shown in figure 2 displays distribution with a peak at 0, which indicates the 
possibility of missing or invalid values encoded as zeros. Many patients are in the 200 to 300 

mg/dL range which is consistent with borderline or high cholesterol levels that are clinically 

relevant to heart disease risk.  
 

 
 

Figure 3.  Correlation heatmap. 

 
Figure 3 demonstrates the strength of the associations between each feature and the target. The 

target and a number of features also show moderate association: Heart disease has a positive 

relationship with ST Slope, Exercise Angina, Chest Pain Type, and Old peak; participants with 
heart conditions are likely to have higher values in these characteristics. However, the negative 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025 

35 

association between maximum heart rate and heart disease indicates that a low heart rate during 
exercise may be associated with having heart disease. The chart shows that no strong 

redundancies are present within the data because most features have low correlation with each 

other. This will lower the chance for overfitting or redundant data when the data is used to create 

machine learning models.  
 

3.1.2. Features Relationships 

 

 
 

Figure 4.  Distribution of Heart Disease Status by Chest Pain Type and Sex 

 

The dataset outlines patterns that make medical sense: Asymptomatic chest pain (Type 4) is most 

associated with heart disease, while Types 2 and 3 appear in non-disease cases more often. 
Moreover, males display a greater percentage of heart disease cases, indicating a possible risk 

trend associated with sex. These medical findings allow a level of clinical validity for the dataset, 

which allows for relevance of ranked feature importance in further model explanations. 

 

3.1.3. Class Balancing 

 

 
 

Figure 5.  Class Distribution Before and After SMOTE. 

 

In Figure 4 we represent class distribution before and after SMOTE (Synthetic Minority Over-

sampling Technique) is applied. before the sampling, Class 0 (no heart disease) is slightly 

underrepresented compared to Class 1, which could bias models towards the class with the most 
samples. After applying SMOTE both classes are very similar with respect to sample sizes. 
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SMOTE improves generalization by generating synthetic examples of minority class, which 
decreases bias, and helps prevent overfitting. 

 

3.2. Data Preprocessing 
 

The data exploration showed some class imbalance and potential outliers (e.g. cholesterol with 

zero values). Based on our understanding of the dataset, we carried out the following steps before 
starting the analysis: 

 

1. Low Variance Feature Removal: Any features with variance lower than 0.01 were 

removed with Variance Threshold, to ensure only informative features were kept.  
2. Standardization: all numeric data was standardized using z-score standardization with 

StandardScaler, through this process all models would view features at the same scale.  

3. Class Balancing using SMOTE: To correct the class imbalance, we applied SMOTE 
(Synthetic Minority Over-Sampling Technique), which generates synthetic samples for 

the minority class (no disease) to balance the dataset. This will increase generalization 

and reduce bias in the classification  
4. Train-Test splitting: Once we completed the previous steps the data will be divided into 

80:20 split for training and testing, maintaining the information of each class.  

 

3.3. OWE-CVD: Model Architecture, Optimization, and Weighting 
 

The OWE-CVD model was built as a weighted soft voting ensemble that combines three gradient 
boosting algorithms: XGBoost, LightGBM, and CatBoost. We separately trained each model on 

the same pre-processed dataset to ensure models had no difference in feature representation and 

learning environment. The ensemble was implemented through soft voting, meaning that based 

on the weighted average of predicted class probabilities across all models, the final class 
prediction was determined.  

 

In order to optimize the individual learning performance of each base learner we used Optuna, a 
state-of-the-art hyperparameter optimization framework that utilizes Tree-structured Parzen 

Estimators (TPE) to navigate complex search spaces with minimal sampling overhead. For every 

algorithm there were twenty trials with stratified 10-fold cross-validation during the optimization, 

ensuring accurate, realistic metric estimates of discriminative learning performance.  
Hyperparameter tuning was performed for each model within their respective algorithmic search 

space for each model, then the identified hyperparameter configurations were retained for the 

ensemble.  
 

Ensemble weights were determined using five-fold cross-validation on the training data. The 

accuracy scores from this validation process were used to assign weights in the VotingClassifier, 
allowing models with superior predictive performance to exert greater influence on the final 

output. This weighted strategy enabled the OWE-CVD ensemble to capitalize on the individual 

strengths of each model, thereby improving overall predictive accuracy.  

 

3.4. Evaluation and Explainability 
 
Post hyperparameter optimization, the final model of the OWE-CVD ensemble was retrained on 

the complete set of training data. We assessed the model's performance on the independent test 

set using several metrics: accuracy, precision, recall, F1-score, confusion matrix, and the area 

under the ROC curve (AUC). The inclusion of these metrics was intended to provide an overall 
perspective of classification performance while maintaining care about the balance of both 

classes with regards to sensitivity and specificity.  
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To enhance model transparency and support clinical validation, two model-agnostic 

explainability methods were applied. They were SHAP (SHapley Additive Explanations) and 

LIME (Local Interpretable Model-agnostic Explanations) algorithms. Both SHAP and LIME 

allow the data scientists to establish, both global and local insights into model behavior, with 
visualizations like SHAP summary and waterfall plots to show the features importance and 

reasoning behind its predictions. In contrast, LIME allows researchers to deduce the most 

impactful features of a specific instance using a local approximation. These tools provided the 
means to understanding how the model decided a path, and thus create a dialogue with domain 

experts. 

 

 
 

Figure 6.  The proposed model (OWE-CVD). 

 

Figure 6 outlines the full process used in this study, covering each step from data collection 
through model evaluation and interpretation. 

 

4. RESULTS AND DISCUSSION 
 

The performance of the proposed OWE-CVD model was evaluated using several standard 
classification metrics. These included accuracy, precision, recall, F1-score, confusion matrix, and 

the area under the receiver operating characteristic curve (ROC AUC). 
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4.1. Performance Metrics 
 

The weighted soft voting ensemble model achieved an accuracy of 94.44% on the test data. 

Furthermore, precision, recall, and F1- scores were uniformly balanced across both classes, with 
a score of 0.94. The consistency of these scores demonstrates the model’s ability to accurately 

classify both heart disease patients and non-heart disease patients. 

 

 
 

Figure 7.  Classification Report. 

 

 
 

Figure 8.  Confusion Matrix. 

 

In figure 8 the confusion matrix illustrates a strong model performance on both classes, with only 
14 misclassified samples out of 252 samples. It also illustrates identically high accuracy in the 

identification of both true positives and true negatives, and indicating balanced sensitivity and 

specificity. 
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Figure 9.  ROC Curve. 

 

The ROC curve in figure 9 illustrates the model’s discriminative capacity. The model achieved an 
AUC score of 0.96, indicating excellent class separation. This is a key indicator of performance 

in clinical decision contexts where distinguishing between disease presence and absence is 

critical. 

 

4.2. Explainability Analysis 
 
Model interpretability was assessed using SHAP and LIME explanations: 

 

 
 

Figure 10.  SHAP Summary Plot. 
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Figure 10 shows the SHAP summary plot which identified ST slope, chest pain type, and sex as 
the most influential features. High values of ST slope and chest pain were positively correlated 

with disease presence, which aligns with clinical findings. 

 

 
 

Figure 11.  SHAP Waterfall Plot. 

 

Figure 13 shows the contributions of individual features for a single prediction. ST slope, 

exercise angina, and oldpeak contributed positively to the heart disease prediction in this case. 
 

 
 

Figure 12.  SHAP Waterfall Plot. 

 

SHAP Feature Importance Plot (Figure 14): Ranked features by average absolute SHAP value, 

with ST slope leading as the most impactful feature, followed by chest pain type, sex, and 
oldpeak. 
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Figure 13.  LIME Explanation for Instance 6. 

 

In figure 13 ST slope and oldpeak were the strongest positive contributors to the disease 
prediction. These matched the findings from SHAP. 

 

 
 

Figure 14.  LIME Explanation for Instance 6. 

 

The model predicted a low risk of heart disease in figure 14, driven by negative contributions 
from cholesterol, chest pain type, and exercise angina, further validating the model’s 

interpretability. 

 

 
 

 

 
 

 

 
 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025 

42 

4.3. Comparative Evaluation 
 

Table 3.  Result Comparison Table. 

 
Reference Methodology Accuracy 

OWE-CVD Weighted Voting Ensemble (XGB+LGBM+CatBoost, Tuned) 94.44 

Sadr et al. [5] CNN + LSTM + KNN + XGBoost 90.87 

Rezk et al. [26] Voting Ensemble (LightBoost + XGBoost) 96.22 

Tiwari et al. [17] Stacking Ensemble (ExtraTrees, Random Forest, XGBoost) 92.34 

Sultan et al. [22] NCDG Model (stacking model) 91.00 

Mohapatra et al. 

[16] 
Stacking Classifiers Model 91.8 

Zhang et al. [20] Neural Networks Arbitration Model (Feedforward MLP + SVM) 87.5 

 
Table III provides the classification accuracy results that show the proposed OWE-CVD model 

provides competitive performance compared to current cardiovascular disease (CVD) prediction 

methods. Rezk et al. [26] had the highest accuracy of 96.22%, using an ensemble of LightBoost 
combined with XGBoost. However, they did not offer built-in interpretability, which is an 

important and growing reporting element for models used in clinical settings.  

 

In comparison to the ensemble-based models from Tiwari et al. [17] (92.34%), Sultan et al. [22] 
(91.00%), and Mohapatra et al. [16] (91.80%), OWE-CVD achieved a slightly higher accuracy 

(94.44%), whilst employing XAI (Explainable AI) techniques such as SHAP and LIME. These 

tools enabled both global and local explanations for the model, giving indications of feature 
contribution at a generalized level and thus enabling users to develop trust and understanding. 

 

Comparing to deep learning-based models such as those from Sadr et al. [5] (90.874%) and 

Zhanget al. [20] (87.50%), which provided high accuracy based on applying strong models, but 

with no ability to provide interpretability due to their black-box nature.  

 
OWE-CVD improves on existing models by utilizing both accuracy and transparency. The 

classification accuracy benefits from hyperparameter tuning via Optuna and cross-validated 

weighted risk adjustment, improving reliability across datasets.  

 
In the context of cardiovascular disease diagnostics, it is just as important to understand how 

predictions were derived and not simply that predictions were made. OWE-CVD was designed 

with this approach to ensure that interpretability was inherently built into its operation. 
 

4.4. Discussion and Clinical Implications 
 
The results suggest that OWE-CVD achieves high classification accuracy while having 

acceptable precision and recall, which is especially useful in minimizing false negatives and false 

positives in the healthcare context. The incorporated ensemble learning enhances predictive 
power, while Optuna tuning and SMOTE rebalancing improve model performance reliability. 

The SHAP and LIME model explainability provide interpretability that allows clinicians to trust 

the decision made by the model.  
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This model shows great promise in being integrated into clinical workflows or decision support 
systems to detect cardiovascular disease. Future work should investigate predictions on larger, 

multi-institutional datasets, and also implement it in real-time in electronic health record systems. 

 

5. CONCLUSION 
 
This study presented OWE-CVD, an optimized weighted ensemble model utilizing XGBoost, 

LightGBM, and CatBoost through a soft voting process. The design process included 

hyperparameter optimization with Optuna and was balanced with SMOTE because of the class 
imbalance in clinical datasets. OWE-CVD demonstrated strong predictive performance, 

achieving 94.44% accuracy and an AUC of 0.9627 on the test set. These results speak to the 

model's robustness, generalizability, and ability to accurately detect heart disease across a 

balanced population of samples. 
  

In addition to the predictive ability, one prominent feature of the proposed design is the 

explainability. By including SHAP and LIME in the model, OWE-CVD is interpretable and 
provides explanations about feature importance globally and for each individual patient. 

Clinically relevant features (e.g., ST slope, chest pain type, oldpeak) ranked as the most 

important features, supporting—without bias—the context of already known cardiovascular risk 
factors. This dual-explaining facilitate clinical decision-making and verification of what the 

model predicted, in an easy-to-understand medical context.  

 

OWE-CVD was also compared against previously published models using more traditional 
stacking classifiers, hybrid neural models, and ensemble models of a variety of types. A few of 

these models achieve similar accuracy ratings or slightly higher ratings but couldn't replicate the 

general, clear, uncomplicated decision logic that OWE-CVD provides. These results suggest that 
OWE-CVD is more suitable for integration into clinical workflows, where explainability is as 

important as predictive accuracy.  

 
Future work may focus on conducting validation of OWE-CVD against multi-institutional 

datasets and real-time datasets, in particular, datasets within electronic health record systems. 

Moreover, future prospective trials with clinical experts would support insight into usability and 

trustworthiness of the model prior to deployment. Overall, this study contributes to the 
development of clinically applicable, explainable AI for cardiovascular disease prediction and 

promotes a balanced, socially responsible approach to model deployment beyond technical 

performance. 
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