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ABSTRACT  
 
High-quality data is essential for hospitals, public health agencies, and governments to improve services, 

train AI models, and boost efficiency. However, real data comes with challenges: strict privacy laws, high 

storage costs, legal constraints, and issues like bias or incompleteness. These can reduce the reliability of 

AI systems. As a result, artificial datasets are gaining importance. Synthetic and augmented data offer 

alternatives, yet their differences and potential are not fully understood. This paper examines how both 
types of data are generated and used, showcasing their characteristics through practical examples.   
 

Data generation techniques—such as Gaussian Mixture Models (GMM), Generative Adversarial Networks 

(GANs),  and Gibbs sampling—enable the creation of realistic, privacy-preserving patient records that 

mimic the statistical properties of real data. Data augmentation, commonly used in image and signal 

analysis, is increasingly applied to structured electronic health records (EHRs), laboratory values, and 

time-series data to enhance model robustness and generalizability.  
 
This paper explores mathematical foundations, methodological frameworks, and real-world applications of 
synthetic and augmented data in healthcare. We highlight how these techniques improve disease 

prediction, mitigate bias, and enable high-performance machine learning models, particularly in low-

resource or imbalanced clinical domains. By expanding the effective size and diversity of training datasets, 

synthetic and augmented data serve as critical enablers for equitable, scalable, and data-driven healthcare 

systems.  
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1. INTRODUCTION  
 

Data in healthcare refers to the collection, storage, analysis, and use of various types of 

information generated within the healthcare system. This data is essential for improving patient 
outcomes, supporting clinical decision-making, enhancing operational efficiency, and advancing 

research.  

 
Clinical Data includes electronic health records (EHRs), laboratory results, medical imaging, and 

prescription records. Patient-generated data is collected from wearables, mobile health 

applications, or patient surveys (e.g., step count, sleep patterns). Genomic data is derived from 

DNA sequencing, supporting personalized medicine and genetic research. Public health data 
encompasses disease surveillance data, vaccination records, and population-level health statistics. 

Uses of healthcare data focus on clinical decision support: AI-driven tools that assist clinicians 

with diagnosis and treatment recommendations, operational efficiency: Streamlining hospital 
workflows, optimizing staff scheduling, and managing resources effectively and research and 
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Innovation: Facilitating the development of new treatments and understanding disease 
mechanisms and progression. The collected artificial data plays the pivotal role in Population 

Health Management: Identifying and managing at-risk populations to prevent chronic disease and 

improve community health outcomes and in personalized medicine: Customizing treatment plans 

based on individual genetic, environmental, and lifestyle factors. 
 

The major challenges in healthcare data include privacy and security ensuring the protection of 

sensitive patient information in compliance with regulations such as HIPAA (Health Insurance 
Portability and Accountability) and data interoperability that   facilitates effective communication 

and data exchange between different health information systems. 

 
One of the major challenges is data 1uality that impacts the accuracy, completeness, consistency, 

and reliability of collected data while ethical concerns address issues of fairness, bias in AI 

algorithms, and responsible use of patient data.  

 
Technologies Involved in Healthcare Data Management can be listed as follows  

 

• Electronic Health Records (EHRs) 
• Health Information Exchanges (HIEs) 

• Artificial Intelligence and Machine Learning 

• Blockchain (for secure and transparent data sharing) 
• Big Data Analytics 

 

Real vs. Synthetic Healthcare Data  

Understanding the differences between real and artificial data is crucial for assessing their 
applications and benefits:  

 
Table 1.  Real and artificial data. 

 

Aspect  Real Data  Artificial Data  

Privacy & Security  Contains identifiable information; 

higher risk of breaches and 

regulation  

Artificially generated; no real 

personal data, reducing privacy 

concerns  

Availability  Often limited due to cost, time, and 

legal/ethical constraints  

It can be generated quickly, 

offering scalability and flexibility  

Accessibility  Restricted access to protect patient 
privacy  

Easier to share and use for 
development, testing, and training  

   
Real datasets may exhibit bias due to the methods used in their collection, which can result in 

underrepresentation of certain groups or skewed distributions. In contrast, artificial data can be 

deliberately engineered to reduce such biases and ensure a more equitable representation of 
diverse populations.  

 

Sectors such as healthcare and finance are bound by stringent data protection regulations like the 
European GDPR (General Data Protection Regulation) and American HIPAA. Artificial data 

offers a valuable solution by enabling compliance with these laws while maintaining the utility of 

the data for research, analysis, and development purposes.  

 
Real-world data often contains inconsistencies, missing values, or errors, all of which can 

undermine the quality of analysis. Artificial datasets, on the other hand, can be systematically 
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designed to uphold high standards of consistency, accuracy, and relevance for specific 
applications.  

 

Unfortunately, in the literature synthetics data is equated to augmented data. We will show that 

these kinds of data are well different.  
 

Deep learning techniques, particularly convolutional neural networks (CNNs), have 

revolutionized numerous computer vision tasks using large-scale, annotated datasets. However, 
acquiring such datasets in the medical field is particularly challenging. In [1], Mayan et. Al. 

introduced methods for generating synthetic medical images using Generative Adversarial 

Networks (GANs). These synthetic images were shown to enhance CNN performance in medical 
image classification. Traditional data augmentation alone achieved 78.6% sensitivity and 88.4% 

specificity, while incorporating synthetic augmentation improved these metrics to 85.7% and 

92.4%, respectively.   

 
De Melo [2] described the use of augmented data to significantly boost the accuracy of lung 

cancer detection.  

 
Shorten et al. [3], explored augmentation strategies for deep learning using a full data likelihood 

function analogous to weighted least squares regression. This approach allows for explicit 

uncertainty modeling at each neural network layer and supports diverse regularization schemes. It 
was applied across common activation functions like ReLU, leaky ReLU, and logit, offering a 

comprehensive framework for deep neural network training and inference. Y. Wang et al. [4] 

investigated the use of data augmentation in deep learning.  

 
The most basic and widely used data augmentation is based on geometric transformation 

techniques are affine transformations, which include operations such as rotation, shearing, 

translation, scaling (resizing without zooming or cropping), mirroring, reflection, and flipping. 
While zooming and cropping are common image scaling techniques, they are not classified as 

affine transformations. Rotations, reflections, and translations form a subset of affine 

transformations known as Euclidean transformations [5]. Despite their simplicity, these methods 

have been shown to be highly effective in a variety of computer vision tasks [6], [7]. Due to their 
ease of implementation and proven effectiveness, they are often employed as the initial step in 

data augmentation before applying more advanced techniques [8].  

 
Non-affine transformations enable the simulation of complex geometric distortions, which are 

often essential in specialized fields such as medical imaging [9] and document analysis. Unlike 

affine transformations, they can handle intricate and non-uniform deformations [10].  
 

A common form of non-affine transformation is the projective or perspective transformation, 

which maps points from an original image to a new reference frame, simulating different viewing 

angles or observer perspectives. These transformations are particularly valuable in applications 
like satellite imagery, UAV surveillance, and omnidirectional field-of-view (FoV) systems, where 

wide-angle distortions occur. Such augmentations help models trained on standard image datasets 

generalize better to geometrically distorted or deformed inputs [11],[12].  
 

Another key non-affine transformation is nonlinear deformation, which introduces variable 

transformation strength across different image regions. This approach increases the degrees of 
freedom beyond basic affine transformations, making it well-suited for simulating non-rigid 

deformations such as those caused by body movements or lens distortions. It’s especially useful 

for augmenting data where natural variability or hardware-induced artifacts affect appearance 

[13],[14],[15].  



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025 

96 

In this paper, we explore the generation of synthetic and augmented data, highlighting their 
significant differences. Synthetic data refers to artificially created datasets that can be used to 

supplement or even replace real-world data in machine learning and other computational 

applications. Its primary aim is to address issues related to data scarcity and to mitigate privacy 

and security concerns associated with the use of real data. Synthetic data can be generated 
through a variety of techniques, including simulations, generative models (e.g., GANs), or rule-

based data generation algorithms.  

 
In contrast, data augmentation is a technique used to enhance the size and variability of an 

existing dataset, particularly in the context of deep learning. It involves applying a range of 

transformations— such as rotation, scaling, flipping, or noise injection—to original data samples, 
thereby creating new, diverse training examples that help improve model generalization and 

robustness.  

 

2. DATA AUGMENTATION   
 

2.1. Gaussian Augmentation  
 

The greatest advantage of data augmentation is that it only requires the original training data, 
making it a cost-effective approach to increasing the size and diversity of the training data. Data 

augmentation is a powerful technique for mitigating overfitting—a prevalent challenge in deep 

learning where models become overly tailored to the training data and fail to generalize to unseen 
inputs. By generating additional, varied training samples, data augmentation encourages the 

model to learn broader data patterns, thereby enhancing its generalization capabilities and overall 

performance on new data.  
 

Class imbalance, where certain classes have significantly fewer examples than others, can lead to 

biased model predictions. Data augmentation provides an effective strategy to counter this issue 

by generating synthetic examples for underrepresented classes, promoting a more balanced 
training process and improving classification accuracy across all classes.  

 

By introducing a wider range of variations in the training dataset, data augmentation increases the 
diversity of data the model encounters during training. This expanded exposure helps the model 

become more robust to variations in input and prevents overfitting to specific patterns or artifacts 

within the original dataset.  

 
Gaussian augmentation is a probabilistic model used in statistics and machine learning to 

represent a distribution of data as a combination of multiple Gaussian (normal) distributions.    

Mathematically, a Gaussian Mixture Model is defined as:  
 

𝒑(𝑥) = ∑𝑁𝑘=1 𝜋𝑘(𝑥𝑘𝜇, 𝛴𝑘)                                         (1)  

 
In the case of binary problems, the Gaussian distributions can be expressed as:  

 

 
 

In these formulas:   
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which is the multivariate normal distribution with mean μ  and covariance matrix Σ. K is the 

number of  Gaussian  components  and  𝝅𝒌 is  a coefficient  for k-

Gaussian  distribution: 

 

 
 

2.2. Gibbs Augmentation  
 

Gibbs data augmentation like Gaussian augmentation aims to:  

 

• Increase training data diversity.  
• Reduce overfitting by enforcing invariance or equivariance in models.  

• Improve generalization by simulating variations the model may encounter. Let us denote d 

as an original data set (input) and y is a label:  
 

𝒙 ∈ 𝝌  ,  𝒚 ∈ 𝜴 
 
The original data can be presented as a distribution of pairs:  

 

(𝒙, 𝒚)~𝑷(𝒙, 𝒚), 

 
where P is a distribution. The augmented data set can be expressed as:  

 

𝒙̃ = 𝑻(𝒙) 
 

where T is transformation operator. If T is a probability distribution over possible 

transformations, the augmented data would be:  

 

(𝒙 ̃, 𝒚) = 𝑷𝑻(𝒙, 𝒚) 

 

A new distribution 𝑷𝑻(𝒙, 𝒚) is constructed such that:  
 

𝑷𝑻(𝒙, 𝒚) = ∫ 𝜹(𝒙 − 𝑻(𝒙̃))𝑷(𝒙 ̃, 𝒚) ⅆ𝑻                          (5) 

 

where δ is the Dirac delta function and T is sampled from a distribution over allowable 
transformation. De Melo [4]  showed that Gibbs statistics can be an optimal choice for calculating 

the augmented data. This is because Gaussian statistics minimizes the information integral, 

though it can be used in many applications. The mathematics of data augmentation using Gibbs 
distributions can be formalized through probabilistic modeling, where the original data point d 

and its label y are part of a joint distribution, and augmented samples are generated in a way that 

preserves this distribution.  A Gibbs distribution is defined as:  

 

 
 

E(x,y): Energy function (often related to loss or negative log-likelihood) β: controls sharpness 
Z: Partition function (normalization constant)  
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The augmented samples can be derived from the conditional probability (to ensure 
correspondence of augmented samples and labels y):  

 

 
 
In this expression,   

 

𝒁(𝒚) = ∫ 𝒆𝒙𝒑(−𝜷𝑬(𝒙, 𝒚) ⅆ𝒙                                        (8) 

 
Data augmentation involves applying transformations to existing real-world data to create new, 

slightly modified versions. This technique is commonly used in fields like computer vision, 

natural language processing, and audio processing.  
 

3. DATA AUGMENTATION FOR LABELED AND UNLABELED DATA  
 

Data augmentations can be used to model the distribution of the training data and generate 

synthetic samples. The basic process is:  
 

Fit a Gaussian or Gibbs model to the real data.  

Sample new data points x′ from the learned distribution p(x).  
Use synthetic samples x′ to augment the dataset. 

 

This is especially useful in low-data regimes or imbalanced datasets, and appears in techniques 

like: Probability-based oversampling, Data augmentation for generative modeling and Anomaly 
detection via probabilistic likelihoods.  

 

Let us consider a few examples: Figure 1a shows the original data with 3 clusters. Figure 1b 
shows the original plus augmented data (red dots). Figure 2a shows the second cluster with 

augmented data (green) with low threshold, while Figure 2b shows the second cluster with 

augmented data (green) with high threshold.  
 

Figure 3 shows the data augmentation for unlabeled data: a) no threshold and b) threshold > 90%.   

 

 
 

a)                                                                          b) 

Figure 1 (a) original data display of 3 clusters. b) Original plus augmented data 
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a)                                                                         b)  

 

Figure 2 (a) Second cluster with low threshold. b) Second cluster with higher threshold. 

 

 
 

(a)                                                          (b) 

 
Figure 3 (a) Data augmentation of unlabeled data. b) Data augmentation of unlabeled data with threshold 

>90%. 
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Figure 4 (a) Data augmentation of heart pulse. b) Data augmentation for systolic pressure, c) Data 

augmentation for oxygen saturation. 

 

4. SYNTHETIC DATA GENERATION  
 

4.1. Augmented vs. Synthetic Data Generation  
 

Synthetic data generation involves creating entirely new data samples that don’t originate from 
real data but are generated using models or simulations designed to replicate real-world 

distributions. The objective of synthetic data generation is to supplement or replace real data 

when it's scarce, expensive, or sensitive (e.g., in healthcare, finance, or autonomous vehicle 
training). Figure 5 shows the histograms of original data (green) and augmented (red). The 

augmented data algorithm captures well the pattern of the original data set.  
 

 
 

Figure 5: Histograms of original data (green) and augmented (red). The augmented data 

algorithm captures well the pattern of the original data set. 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025 

101 

 
 

Figure 6: Histograms of original data (green) and synthetic (blue). The augmented data algorithm does not 

capture well the pattern of the original data set. 

 
Augmented data was generated using the PM GenAI algorithm [4] that divides the data set in 

batches and then uses a combination of multiple mini batches to mitigate overfitting. It learns the 

structure of the original data possibly multiple clusters or distributions. Each sample is drawn 

from one of the mini batches, using learned weights. It shows More flexible and powerful. It 
captures multimodal patterns and structures in data being more representative of the complexity 

of the original distribution.  

 
Synthetic data was generated based on a single Gaussian distribution. Uses only the meaning and 

standard deviation of the original data. It assumes the data follows a unimodal normal distribution 

while ignoring any clustering or multiple modes in the original data. Usually (as it is seen in 
Figure 6, fails to capture complex structures or multiple peaks in data. 

Table 1 summarizes the difference between synthetic and augmented data.  
 

Augmented data  Synthetic data  

Data augmentation is a technique used to expand 

and diversify the training dataset for deep learning 

models by applying various transformations to the 

original data. These transformations generate new, 

modified versions of existing samples, helping the 

model generalize more effectively and reducing the 

risk of overfitting. Common augmentation methods 

for image data include flipping, rotation, scaling, 

and adding noise. In addition to improving 

generalization, data augmentation can help address 

class imbalance by creating more examples of 

underrepresented classes. A major benefit of this 
approach is that it enhances the dataset without the  

need for collecting new data, making it a cost- 

efficient solution 

Synthetic data refers to data that is artificially 

created rather than collected from real-world 

events. It is used to address challenges such as 

data privacy, security, and limited access to real 

data. By leveraging techniques like simulations, 

generative models, and algorithmic data 

generation, synthetic data can serve as a substitute 

or complement to real datasets in machine 

learning and other domains. Its usefulness 

depends heavily on how accurately it reflects the 

patterns and characteristics of real-world data. 

Synthetic data is particularly valuable in fields 
like medical imaging and autonomous driving, 

where obtaining real data can be difficult or 

impractical. Additionally, it can be used to enrich 

existing datasets by introducing diverse examples 

with varied attributes. 
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Figure 7: Generation of the ECG synthetic data.  

 

Figure 7 shows a synthetic data set for ECG time series. Although synthetic data and data 
augmentation both aim to expand and diversify training datasets, they differ fundamentally in 

how they achieve this. Synthetic data is created entirely from scratch using simulations, 

generative models, or algorithms, whereas data augmentation modifies existing data to produce 

new examples.  Figure 8 shows synthetic data for normal heart (a) and the ECG corresponding to 
heart abnormality (b). 

 

 
 

Figure 8: Generation of the normal and abnormal ECG synthetic data. 

 
Synthetic data offers added advantages, such as improved privacy, enhanced security, and the 

ability to address data scarcity. However, if not carefully designed, it can introduce bias or lack 

realism. In contrast, data augmentation is constrained by the quality and variety of the original 
dataset. When used together, these approaches can complement each other and enhance the 

performance of deep learning models.   
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(a)                                                                    (b) 

 

Figure 9: Synthetic model for normal liver (a) and with tumor (b). 
 

Figure 9 (a and b) depicts normal liver and liver with tumor, while Figure 10 (a and b) shows the 

synthetic model for normal and tumor present in liver. Figure 11 shows a synthetic image of a 
normal prostate (a), with a lesion (b), and the lesion mask (c).  

 

 
 

a)                                                                         b) 

 
Figure 10: Gaussian synthetic model for normal liver (a) and with tumor (b). 
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a)                                          b)                                                           c) 

 
Figure 11: a) Normal tissue, b) Occurrence of tumor, c) Binary tumor mask. 

 

Let us examine how synthetic data impacts the original data set.  Figure 12 shows the data set and 

the probability of distribution of elements.  
 

 
 

a) 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.3, May 2025 

105 

 
 

b) 

 
Figure 12: a) A combination of original, augmented, and synthetic data b) Probability distribution of 

synthetic data and augmented data showing higher accuracy in augmented data. 

 

4.2. Comparison of Gaussian and Gibbs Statistics  
 
We will investigate an important feature of Gibbs and Gaussian statistics. [16] and [17] 

demonstrated the use of Gaussian statistics in health care application.   

 

 
 

a)                                             b)                                                       c) 

 
Figure 13: a) Gaussian statistics used in data augmentation, b) Gibbs statistics in data augmentation, c) 

 

Probability distribution of augmented data with the threshold 0.5  
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Figure 14: a) Gaussian statistics used in data augmentation, b) Gibbs statistics in data augmentation, c) 

Probability distribution of augmented data with the threshold 0.9 

 
Figure 13-14 shows that the Gaussian augmentation directly maximizes the likelihood of data 

distribution.  The Gaussian augmentation uses the Expectation-Maximization (EM) algorithm to 

find parameters (means, covariances, and weights) that maximize the likelihood of the data. This 

means it's actively optimizing the model to make the data points fit the Gaussian components as 
well as possible. The result is often sharper, more confident probability assignments (i.e., 

probabilities closer to 1).  

 
Gibbs sampling is a sampling-based technique from Bayesian statistics. Gaussian augmentation  

samples from a posterior distribution over cluster assignments, not optimized to maximize 

individual point likelihoods and Figure 13-14 demonstrate this feature. The process is noisier and 
more diffuse, especially in short runs (e.g., 50 iterations), which leads to lower or more uncertain 

probability estimates.  

 

Gibbs augmentation computes posterior probabilities from sampled parameters without 
guaranteeing global maximum likelihood, which may lead to underconfident (i.e., lower) values.  

 

While Gaussian augmentation fits covariances carefully for each component, Gibbs sampler, 
covariance updates are simplified (especially when points per cluster are small), which can reduce 

the accuracy of the likelihood computation. 

 

5. CONCLUSION  
 
The revolution of artificial data is in full swing, and its impact on society and industries will be 

monumental. As we move further into the digital age, artificial data will not only offer practical 

solutions to immediate problems such as privacy, regulatory compliance, and enhancing artificial 
intelligence but also has the potential to transform how we perceive, manage, and use data. In this 

paper, we reflected on the future of artificial data, the difference between synthetic and 

augmented data and the choice of various statistics (Gaussian and Gibbs).   

 
Although the concept of artificial data has existed for several years, its widespread adoption and 

current relevance are experiencing exponential growth. In the future, artificial data will become 

even more integrated into daily business operations, scientific research, and the development of 
innovative technologies. From generating data to train artificial intelligence models to simulating 
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complex scenarios in sectors like healthcare, finance, and automotive, the versatility of synthetic 
data will enable a revolution in how industries approach their most urgent challenges.   

 

A key aspect of the future of synthetic data will be its ability to ensure privacy. Data protection 

regulations, such as the General Data Protection Regulation (GDPR) in Europe and other global 
regulations, will continue to drive the demand for solutions that minimize the risk of exposure to 

personal data. Synthetic data offers an ideal solution, allowing organizations to work with 

realistic data without compromising user privacy. Furthermore, the ability of synthetic data to 
improve the quality of AI models will be crucial.   

 

Today, many AI models require large volumes of labeled data to train effectively. Synthetic data 
can generate these volumes without the need to collect real-world data, thus enabling access to 

high-quality information in sectors where real data may be limited or expensive to obtain. Over 

time, the combination of real and synthetic data will result in more robust and accurate AI 

models. The impact of synthetic data on technological innovation will also be profound. In areas 
like autonomous driving, synthetic data creation allows the simulation of real-world scenarios to 

train vehicles without safety risks. This type of application in the automotive sector is just one 

example of how synthetic data can reduce development costs and accelerate the progress of new 
technologies.  

 

The Global Impact of Synthetic Data On a global level, synthetic data has the potential to 
democratize access to valuable information and enable significant breakthroughs in research, 

development, and public policy. For example, in the field of healthcare,  

 

Follow Thought Leaders and Experts: As the field of synthetic data continues to evolve, it is 
crucial to stay informed about the contributions of experts and thought leaders. Following AI 

researchers and industry professionals on platforms like Twitter, LinkedIn, and Medium will 

provide deeper insights into emerging trends, best practices, and the potential implications of 
synthetic data. Some of the most influential names in AI and data science regularly share their 

discoveries and experiences, which is an excellent learning resource.   

 

Synthetic data and data augmentation are two different approaches to address the challenge of 
limited data in deep learning. Synthetic data can be used as an alternative to real-world data, 

while data augmentation can be used to increase the size and diversity of the training data. Both 

methods can play an important role in the development of effective deep learning models, and the 
choice of approach will depend on the specific requirements and constraints of the problem at 

hand. In general, a combination of both synthetic data and data augmentation can provide the best 

results in deep learning applications. By generating additional, diverse, and representative data, 
these techniques can help deep learning models to learn more effectively and generalize better to 

new, unseen data.  

 

The journey towards understanding and implementing synthetic data is just the beginning. As we 
move forward in technology, synthetic data will continue to play a crucial role in solving complex 

problems and creating innovative solutions that will improve all aspects of our lives. From 

protecting privacy to enhancing AI models and fostering scientific research, synthetic data has the 
power to transform entire industries. It is crucial that we continue to explore, learn, and 

collaborate to understand how synthetic data can be used ethically and effectively. The future is 

full of opportunities, and those who invest in studying this technology will be better positioned to 
take advantage of the breakthroughs to come.  
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