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ABSTRACT 
 

Accurate wound area estimation is essential for effective dermatological assessment and treatment 

monitoring. However, manual measurement is time-consuming and error-prone, highlighting the need for 

automated, reliable methods. This paper aims to develop and evaluate two complementary techniques for 

estimating the Region of Interest (ROI) in dermatological images: a novel deep learning approach using 

the Segment Anything Model (SAM) and a simple pixel-based thresholding method. SAM segments both the 
wound and a reference object automatically or through prompt-based queries, without requiring additional 

supervised classification. The pixel-based method offers a lightweight alternative for resource-limited 

settings. Both techniques generate binary masks and calculate real-world areas using a pixel-to-centimeter 

scale. Evaluation on 40 images shows that SAM outperforms the pixel-based method, achieving an average 

relative error of 4.63% versus 9.5% and ≤5% error in 62.5% of cases compared to 27.5%. The proposed 

methods are not limited to wound area estimation but can be extended to inflammation area detection in 

rheumatoid arthritis and ophthalmology, providing a scalable framework for ROI estimation in medical 

imaging. 
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1. INTRODUCTION 
 

Precise wound area estimation is critical for effective clinical assessment in dermatology, as it 
directly informs diagnosis, treatment planning, and the monitoring of healing progress. Accurate 

measurement enables clinicians to track changes over time, evaluate treatment effectiveness, and 

adapt interventions, particularly for chronic wounds, burns, and diabetic ulcers.  
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Traditional wound area estimation methods often rely on manual techniques, such as ruler-based 
measurements or tracing on transparent film. While these can be useful, they are prone to human 

error, time-consuming, and limited in precision, especially when dealing with irregular wound 

shapes or large patient volumes. Manual methods are also subject to inter-observer variability, 

reducing consistency in assessments. 
 

To overcome these limitations, image-based approaches have gained traction. Pixel-based 

techniques leverage digital image analysis to quantify wound areas using intensity thresholds and 
geometrical scaling, offering a more reproducible and objective alternative. In parallel, advances 

in deep learning, particularly models like the Segment Anything Model (SAM), allow for 

automated detection and segmentation of both reference objects and wound regions directly from 
images. These methods provide improved accuracy and robustness across varied imaging 

conditions and patient presentations. 

 

Together, these approaches offer flexible solutions that can streamline clinical workflows, reduce 
subjectivity, and improve the reliability of dermatological assessments. 

 

The objective of this study is to present two methods for the automatic estimation of wound area 
in dermatological images: one based on deep learning, and the other on pixel-based thresholding 

techniques. The deep learning approach employs the Segment Anything Model (SAM) to detect 

and segment both the reference object (used for real-world scaling) and the wound area. In 
contrast, the pixel-based method uses intensity-based thresholding to isolate regions of interest in 

simpler imaging conditions. 

 

Rather than comparing the two approaches, the study aims to demonstrate their complementary 
value in different clinical and technical contexts. The goal is to provide practical, accurate, and 

reproducible tools for wound area assessment, tools that can be adapted depending on resource 

availability, image quality, and application requirements. 
 

Additionally, the methods introduced in this study are designed to be applicable beyond wound 

care, for example, in rheumatoid arthritis, where detecting and quantifying inflamed regions in 

hand joints is essential for clinical evaluation. By enabling automated ROI segmentation and 
measurement, this work contributes to more objective, scalable, and efficient diagnostic 

workflows in dermatological imaging. Ultimately, it aims to improve patient care through 

enhanced diagnostic accuracy, streamlined clinical processes, and reduced reliance on manual 
measurements, thereby minimizing the risk of human error. 

 

2. RELATED WORKS 
 

Wound area estimation is a critical aspect of dermatological and clinical care, and numerous 
techniques have been proposed to improve accuracy, efficiency, and objectivity. Traditional 

manual measurement methods, such as ruler-based and planimetry techniques, though still 

commonly used in clinical practice, are limited by user subjectivity and inter-observer variability 
[1], [2]. While these methods offer simplicity, they are not well suited for complex wound shapes 

or large-scale clinical deployment. 

 
To overcome these limitations, pixel-based and image processing methods have gained 

prominence. Techniques using reference objects with known dimensions enable wound area 

estimation based on the pixel ratio, enhancing reproducibility and consistency [3]. However, such 

approaches remain sensitive to lighting, image resolution, and wound boundary contrast. 
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With advances in artificial intelligence (AI), deep learning-based techniques have revolutionized 
medical image analysis, offering robust capabilities for automatic detection and segmentation of 

regions of interest (ROIs). Convolutional neural networks (CNNs) have shown remarkable 

accuracy in identifying wound boundaries and measuring wound size [4], [5]. Several recent 

studies have explored the development of deep learning architectures for wound analysis, 
including segmentation models, attention mechanisms, and hybrid systems. For instance, Carrión 

et al. demonstrated the use of deep learning algorithms to automate wound detection and monitor 

healing [6], [7]. Similarly, Chairat et al. proposed a detect-and-segment architecture for accurate 
ROI identification [8], while Chang et al. developed superpixel-based CNN models to enhance 

segmentation accuracy in pressure ulcers [9]. Foltynski and Ladyzynski further evaluated the 

performance of AI-based digital wound area measurements [10]. Chino et al. explored the 
segmentation of skin ulcers using deep convolutional networks, emphasizing the importance of 

architectural design in clinical accuracy [11]. 

 

The use of smartphone-based and 3D imaging methods has also been explored for mobile and 
low-resource applications. Liu et al. proposed a smartphone image-based 3D transformation 

approach for wound area measurement [12], while Ferreira et al. validated mobile device 

capabilities in this context [13]. Other innovations include integration with LiDAR technology 
[14] and evaluation of AI-based measurement accuracy compared to clinical standards [15]. 

 

Recent studies have applied the Segment Anything Model (SAM) to improve generalizability 
across different wound types and imaging scenarios. SAM's zero-shot capabilities allow it to 

segment without prior task-specific training, making it highly versatile [16]. Additionally, public 

platforms such as Labellerr have implemented SAM and other advanced models to improve 

annotation quality in wound datasets [17]. 
 

Thermal imaging and machine learning are also gaining traction for broader clinical ROI 

detection beyond dermatology. Morales-Ivorra et al. and Snekhalatha et al. demonstrated that 
thermographic data, analyzed through machine learning, can be used to assess inflammation in 

rheumatoid arthritis [18], [19]. Wilson et al. presented a comprehensive review of recent thermal 

imaging applications supported by machine learning, highlighting innovations relevant to 

diagnostics in inflammatory and oncologic conditions [20]. Similarly, studies have applied 
thermal imaging with CNNs for breast cancer detection [21], [22], pneumonia monitoring [23], 

and eye inflammation evaluation [24]. Qu et al. showed that low-cost thermal imaging combined 

with machine learning enables non-invasive diagnosis in pulmonary conditions [23]. A survey by 
Wang et al. outlines the growing applications of AI in rheumatoid arthritis diagnostics [25], and 

Morales-Ivorra et al. later validated machine learning-based thermographic indices through a 

longitudinal study [26]. 
 

Emerging platforms such as Deepwound [27], mobile applications for localization [28], and 

hybrid segmentation approaches [29] further demonstrate the variety and accessibility of modern 

wound analysis tools. Nejati et al. explored fine-grained wound tissue classification with deep 
networks [30], contributing to tissue-level analytics. The integration of depth and ambient 

intelligence systems for patient care, including dementia and ophthalmic applications, reflects the 

expanding potential of intelligent imaging across medical disciplines [31]. 
 

Collectively, these advances demonstrate a clear trend toward automation, reproducibility, and 

adaptability in wound and ROI analysis. This study builds on this foundation by introducing two 
complementary approaches: a pixel-based method for lightweight applications and a SAM-based 

deep learning framework for scalable and accurate segmentation, bridging gaps in resource 

accessibility and clinical generalization. While these approaches show great promise, challenges 

remain. Many deep learning solutions depend heavily on large annotated datasets and complex 
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model training, which limit their scalability and deployment in clinical settings, especially in low-
resource environments. Furthermore, most models are trained on narrow datasets, affecting their 

ability to generalize across wound types, skin tones, and imaging conditions. 

 

3. METHODOLOGY 
 

3.1. Pixel-Based Method for Automated ROI Estimation 
 

3.1.1. Principle of Wound Area Size calculation using pixels 

 

The principle of area calculation using pixels is based on the ratio of the number of pixels 

representing two surfaces: the object (whose area we want to calculate) and a reference surface 
with a known area. This concept is commonly used in digital image processing and geometric 

calculations in 2D images. 

 
Defining areas as pixel counts: In a digital image, each surface is represented by a number of 

pixels. The pixel count can be obtained through an image processing technique, such as 

segmentation or thresholding. 

 
 The number of pixels representing the object (the area to be determined) is denoted as 

 

 The number of pixels representing the reference area is denoted as  

 

Known reference area: The actual area of the reference figure is known and is denoted as .  

 

This serves as a scale for calculating the area of the object  

 

Ratio of pixel counts: The ratio of the pixel count of the object to the pixel count of the reference 

area can be used to determine the ratio of the actual areas. The ratio of the areas is proportional to 
the ratio of the pixel counts since the pixel size is the same for both areas. 

 

                                                                                                (1)  

 

Calculating the object's area: To determine the object's area Aobj, the formula is rearranged: 

 

                                                                                   (2)  

 

Here, the actual area of the reference figure  is multiplied by the ratio of pixel counts to 

calculate the object's area. 
 

It is assumed that: 

 

 Both areas (reference and object) must lie in the same plane of the image, and the pixel 

sizes must be identical. 

 The image resolution and the pixel-to-area ratio must remain constant for an accurate 

calculation. 
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This method of determining area is particularly useful when direct physical measurement of the 
object's area is not feasible, but the pixel count can be easily extracted from image data. 

 

 

 

3.1.2. Strategy for Enhancing Accuracy in ROI Area Size Estimation 

 

Discussion of shape-based errors in pixel estimation: 
 

 Square vs. circle pixel approximations and their effects. 

 
In the context of area calculation using pixels, the accuracy of measurements depends on the 

shape being represented. For a square, the pixel count precisely matches the square's area, 

resulting in no error (Fig. 1). However, real errors may arise due to challenges in edge detection. 

For a circle, the situation is different. Due to the rounded shape, some pixels along the edges of 
the circle may be only partially or excessively counted, leading to measurement errors. This error 

occurs because a circle is being represented by square pixels, creating an approximation problem. 

When attempting to depict a circular shape using square pixels, the mismatch between the shape 
and the pixel grid introduces a degree of inaccuracy in the area estimation (Fig.1). 

 

 
 

Fig.1: Pixel-Based Representation of Objects and Reference Markers for Area Estimation,  Error in pixel 

numbers due to shape 

 
Error propagation due to reference area inaccuracies. 

 

Case 1. Error in the reference area measurement  and its impact on the object area: 

 

When an error  is present in the reference area , the erroneous reference area becomes 

. This alters the calculated object area  to: 

 

                                                                       (3) 

 
This shows that any error in the reference area directly propagates to the calculated object area in 

proportion to the ratio of the pixel counts. 
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The difference between the actual object area  and the erroneously calculated object area 

represents the error in the object area, denoted as . By substituting the corresponding 

expressions, we get: 
 

                                                                                 (4) 

                               
 

                                                                                          (5) 

 

This means that the error in the object area  is proportional to the error   in the reference 

area and the ratio of pixel counts. A larger error in the reference area will result in a 

correspondingly larger error in the calculated object area. 
 

The larger the object is in comparison to the reference area, the more significantly a small error in 

the reference area will affect the calculated object area. Therefore, it is especially important to 

ensure precise measurements of the reference area, particularly when dealing with large objects 
relative to the reference, in order to minimize errors. 

 

Case 2. Errors in the pixel counts of object and reference areas:  
 

 Scenario 1: Error  only in the pixel counts Covering the Object Area   

 

                                                              (6) 

 

The calculated area of the object then becomes: 

 

                                                          (7)  

 

The relative error in the object area due to the error in the pixel count of the object area 

is: 
 

                                          (8) 

 

The larger this  error in the pixel counts covering the object is, the greater the error 

in the object area will be. 

 

 Scenario 2: Error  only in the pixel counts Covering the Reference Area  

 

                                                              (9) 

 
The calculated area of the object then becomes: 

 

                                                        (10) 
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The relative error in the object area due to the error in the pixel count of the reference 
area is: 

 

     (11)  

 

The larger this  error in the number of pixels covering the reference is, the greater 

the error in the object area will be. 

 

 Scenario 3: Errors   and  in the pixel counts covering both Object Area  

and Reference Area  

 

 and   

The calculated area of the object then becomes: 
 

                                                        (12)  

 

The relative error in the object area due to the error in the pixel count of both areas is: 
 

                      (13) 

 

o Variant 1: The error in the number of pixels covering the object area is greater 

than in the reference area. 
 

If > , the error in the calculated object area is primarily dominated by the 

errors in the object pixel count. 

 
o Variant 2: The error in the number of pixels covering the reference area is greater 

than in the object area. 

 

If  > , the error in the reference area has a greater impact on the object 

area, and the calculated area is typically underestimated. 

 

o Variant 3: Equal error in both. 

 

If = , the errors partially cancel each other out, and the resulting error in 

the object area will be smaller. 

 

In cases where the object is significantly larger than the reference area, it is imperative that the 
reference area is measured with the highest possible accuracy to minimize associated errors. 

Alternatively, selecting a slightly larger reference area may also be beneficial. It is essential that 

the reference area is not disproportionately small in relation to the object. 

 
If errors arise in the pixel counts covering both the reference and the object areas, it is advisable 

for these errors to be equal for both surfaces. Achieving this balance is crucial for minimizing the 

overall error in the calculation of the object area. This implies, when dealing with objects 
exhibiting round shapes, which may result in larger errors in pixel counts, the reference should 
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also be designed with a round shape, such as a circle. Conversely, for objects with angular shapes 
that tend to produce smaller pixel deviations, a square reference area is recommended as the most 

appropriate choice (Fig.2). 

 

 

 
 

Fig. 2: Selection of Reference Shape According to the Object (ROI) Shape for Accurate Area Estimation 

 

3.2. Deep Learning Approach Using SAM for Automated ROI Estimation  
 

This study employs the Segment Anything Model (SAM), a pretrained and prompt-driven deep 
learning framework, for automatic segmentation of both the reference object (a blue 1 cm² 

marker) and the wound area in clinical dermatological images. SAM is particularly suited for 

medical image segmentation tasks due to its flexibility, zero-shot generalization, and prompt-

based mask generation. 
 

Model Architecture Overview: 

 
SAM is based on a Vision Transformer (ViT) backbone, which transforms the input image into 

high-dimensional embeddings. These embeddings are passed to a lightweight mask decoder 

conditioned on user prompts such as bounding boxes or point annotations. The model generates 
binary segmentation masks without requiring task-specific fine-tuning. 

 

Workflow and Implementation: 

 
The SAM-based wound assessment pipeline consists of the following stages: 

 

1. Image Input and Preprocessing: 
 

o Images are loaded and converted to RGB. 

o A 1 cm² blue-colored square marker is visually present in the image to enable 

scale calibration. 
 

2. Model Initialization: 

 
o The ViT-H variant of SAM is loaded using PyTorch and executed on GPU (or 

CPU if unavailable). 

o CUDA memory is managed explicitly to avoid allocation errors. 
 

3. Automatic Ruler Segmentation: 

 

o SAM’s SamAutomaticMaskGenerator is used to generate masks for all detected 
regions in the image. 
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o Each mask is evaluated to identify a dominantly blue region, presumed to be the 
reference marker, using HSV color filtering. 

o The pixel area of this region is used to derive the real-world pixel-to-centimeter 

ratio. 

 
4. Wound Segmentation via Manual Bounding Box Prompt: 

 

o A user-provided bounding box (defined in pixel coordinates) is passed to 
SamPredictor, which generates a precise mask for the wound area. 

o The mask is post-processed to ensure it fits strictly within the bounding box. 

 
5. Area Calculation: 

 

o The number of pixels in the wound mask is calculated. 

o Using the previously computed reference scale, the wound area is converted into 
real-world surface area in cm²: 

 

                                                                                              (14)       

 
o The final result is presented as a labeled mask overlaid on the original image. 

 

6. Visualization and Output: 
 

o Segmented areas (wound and reference marker) are highlighted in white on a 

dimmed background. 

o Annotations are displayed with corresponding area measurements. 
o The final image is visualized using matplotlib and saved for documentation. 

 

Key Advantages: 
 

 Zero-shot segmentation: SAM does not require retraining on medical datasets, making it 

suitable for clinical environments where labeled data is scarce. 

 Prompt flexibility: Supports bounding boxes, points, or fully automatic segmentation. 
 Generalization: Effectively segments irregular, variable wound structures without prior 

domain adaptation. 

 
This structure provides a robust, prompt-based deep learning architecture that supports 

automated, scalable, and interpretable wound area estimation with minimal manual input. 
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Fig. 3: Workflow Using SAM for Automated ROI Segmentation and Area Estimation 

 

 Input: Dermatological image containing a wound and a reference object (Fig. 3) 

 SAM Processing: 
a. Prompt-based or automatic segmentation of reference object 

b. Prompt-based or automatic segmentation of wound area 

 Scale Calculation: Real-world dimensions of the reference object define cm²/pixel 

 Area Estimation: Number of pixels in the wound mask is converted to cm² 

 Output: Real-world wound area estimation 

 

While architectures like U-Net require specific training on labeled wound datasets, SAM avoids 
this need by leveraging Vision Transformers (ViTs) as its backbone, along with a Mask Decoder 

that generates segmentation masks based on image embeddings and user prompts (points, boxes, 

or automatic queries). 
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This makes SAM highly effective in clinical imaging, where manual annotation is costly, and 
visual variability is high. 

 

4. EXPERIMENTAL SETUP  
 

4.1. Experimental Design 
 

The experiments were structured in two main phases to evaluate the performance of the proposed 
ROI area estimation methods using both synthetic and real-world data: 

 

Step 1: Validation with Known Shapes 
 

The first set of experiments was conducted using test figures (printed shapes) of known, pre-

measured surface areas. Each image also included a reference marker of 1 cm², placed on the 

same plane as the shape. These artificial setups allowed precise evaluation of the estimation 
accuracy, as the true areas were known, enabling direct computation of the relative error between 

the assessed and true areas. 

 
Step 2: Application on Real Wounds 

 

The second set of experiments was performed on images of actual patient wounds, captured in 
clinical settings. For consistency, a 1 cm × 1 cm blue square marker was affixed near the wound 

in each image. To minimize perspective distortion, the camera was held parallel to the wound 

surface during image acquisition. The system estimated not only the surface area of the wound, 

but also its length and width based on the bounding box of the segmented ROI. 
 

4.2. Image Preprocessing 
 

For the SAM-based segmentation, no preprocessing was required. The model processed the raw 

images directly using automatic prompts. 

 
For the pixel-based method, image quality and wound boundary clarity were more critical. Since 

real wounds often lacked clear color contrast, an interactive boundary selection tool was used to 

quickly mark the ROI edges. This enhanced segmentation accuracy without requiring full manual 
annotation. 

 

SAM-Based Method: The Segment Anything Model (SAM) was used to automatically segment 
both the wound and the 1 cm² reference marker. The number of pixels in the reference mask 

established the pixel-to-cm² scale. This scale was applied to convert the pixel count of the 

segmented wound area into real-world area units. Length and width were derived from the 

bounding box enclosing the wound mask. 
 

Pixel-Based Method: The grayscale or color image was processed using intensity thresholding 

where feasible. In cases with poor contrast, a rapid manual boundary selection was performed to 
isolate the wound area. The number of pixels in the wound mask was converted to cm² using the 

same scale derived from the reference marker. 

 

4.3. Evaluation Metrics 
 

Relative Error (%) for synthetic shapes: 
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                           (15) 

 

 

5. RESULTS 
 

5.1. Step 1: Validation with Known Shapes, Pixel-based 
 

 
 

Fig. 4: Object1- ROI Estimation, Object (left) and Reference marker (right: 1 x 1 cm) 

 

 
 

Figure 5. Object2- ROI Estimation, Object (left) and Reference marker (right: 1 x 1 cm) 

 

 
 

Figure 6. Object3- ROI Estimation, Object (left) and Reference marker (right: 1 x 1 cm) 

 

 
 

Figure 7. Object4- ROI Estimation, Object (left) and Reference marker (right: 1 x 1 cm) 
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5.2. Step 2: Comparison of Pixel-based and SAM Approaches for Known Shapes  

 

 
 

Figure 8.   Assessed ROI area (pixel-based, true area and SAM) in cm² 

 

 
 

Figure 9.   Relative Errors of Assessed ROI area (pixel-based vs SAM) in % 

 

5.3. Step 3: Application on Real Wounds, Pixel-based and Deep-Learning SAM 

Approaches 
 

 
 

Figure 10. Wound1-Area assessment, pixel-based (left) and deep learning model SAM (right) 
 

 
 

Figure 11. Wound2 -Area assessment, pixel-based (left) and deep learning model SAM (right) 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.4, July 2025 

14 

 
 

Figure 12. Wound3-Area assessment, pixel-based (left) and deep learning model SAM (right) 

    

6. DISCUSSION 
 

The findings of this study confirm the effectiveness of automated Region of Interest (ROI) area 

estimation for dermatological imaging, particularly in wound assessment. By presenting two 

distinct yet complementary methods: a deep learning-based approach using the Segment 
Anything Model (SAM) and a pixel-based thresholding method. This work addresses the need for 

both high-performance AI-driven solutions and lightweight, accessible alternatives suitable for 

resource-constrained environments. 
 

Figures 4–7 illustrate how the experimental phases were conducted to compare the pixel-based 

and SAM-based approaches. In the first phase, validation was performed using geometric shapes 

with precisely known areas, each placed adjacent to a 1 cm² reference marker. 
 

Results shown in Figures 8 and 9 provide a comparative evaluation of the two methods across 40 

synthetic samples. The SAM-based approach consistently outperformed the pixel-based method 
in terms of both accuracy and robustness. Quantitatively, the average relative error for the pixel-

based method was 9.5%, while the SAM-based approach achieved a significantly lower average 

error of 4.63%, indicating a nearly 50% reduction in estimation error. This improvement is not 
only statistically significant but also clinically meaningful for precise wound size tracking in 

treatment planning and monitoring. 

 

Further analysis revealed that 25 out of 40 SAM-segmented cases had errors ≤5%, compared to 
only 11 in the pixel-based method. This highlights SAM’s improved consistency, especially in 

challenging visual conditions such as irregular wound shapes or variable lighting. While the 

pixel-based method showed acceptable performance (error <4%) in simpler, well-contrasted 
cases, it exhibited errors exceeding 15–20% in more complex scenarios, primarily due to 

sensitivity to color variation, noise, and inconsistent boundary detection. In contrast, SAM 

maintained relatively low errors across diverse cases, benefiting from its transformer-based 
generalization capabilities. 

 

In the second phase, the pixel-based method was applied to real patient images and successfully 

estimated wound areas in three cases. Standardized imaging conditions, such as a parallel camera 
angle and use of blue 1×1 cm markers, ensured accurate scaling. The method also provided useful 

length and width metrics essential for clinical monitoring (Figures 10–12, left). 

 
In the third phase, the same task was repeated using the SAM-based model. Without retraining or 

domain-specific fine-tuning, SAM accurately segmented both the reference and wound regions, 
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confirming its capacity as a generalizable, high-precision tool for wound area estimation with 
minimal manual intervention (Figures 10–12, right). 

 

A key strength of the proposed system is the use of consistent square reference markers, which 

enables reliable pixel-to-centimeter conversion. This simplicity improves adaptability and 
removes the need for complex calibration or proprietary tools. Although uniform markers were 

used, SAM’s flexibility allows it to handle wounds of varying shapes and irregular contours 

without requiring geometry-specific references. 
Importantly, the proposed framework is not limited to wound care. The same methodology can be 

extended to other diagnostic domains such as rheumatoid arthritis, where accurate measurement 

of inflamed joint regions could support disease monitoring and treatment evaluation. 
Limitations and Challenges: 

 

Despite the positive results, several limitations must be considered: 

 
 Resolution Sensitivity: The accuracy of pixel-based estimation depends on image 

resolution. Lower resolution may obscure fine details, especially in small or intricate 

wounds. Future work could explore resolution-agnostic enhancements such as super-
resolution preprocessing or multi-scale modeling. 

 Challenging Wound Boundaries: For wounds with indistinct or irregular edges, the SAM 

model performs well, but extreme variability may still pose difficulties. Additional 
refinement using attention-guided masking or edge-aware segmentation could further 

improve accuracy. 

 Reference Object Placement: Although controlled during this study, real-world 

placement of the reference marker could vary, affecting the scale calculation. Future 
work may explore automated reference detection or markerless scale estimation 

approaches. 

 Generalizability Across Populations: While the study included both synthetic and real 
data, broader validation across diverse skin tones, lighting conditions, and wound types is 

necessary to ensure fairness and clinical reliability. 

 

7. CONCLUSION AND FUTURE WORK 
 
Summary of Contributions 

 

This study introduced and evaluated two complementary methods for automated wound area 
estimation in dermatological images: a deep learning-based approach using the Segment 

Anything Model (SAM) and a classical pixel-based thresholding technique. Both methods relied 

on a reference marker of known dimensions (1×1 cm) to convert segmented regions from pixels 

to real-world area measurements (in cm²). 
 

Three experimental phases were conducted: 

 
1. Phase 1 validated both methods using 40 images containing artificial shapes with known 

true areas. The SAM-based method achieved a significantly lower average relative error 

of 4.63%, compared to 9.5% for the pixel-based method. Additionally, SAM produced 
errors ≤5% in 25 out of 40 cases, versus only 11 cases for the pixel-based approach. 

These results confirm the higher accuracy, consistency, and robustness of the SAM 

approach, particularly in complex or variable imaging conditions. 

2. Phase 2 applied the pixel-based method to images of real patient wounds, successfully 
estimating wound area, length, and width in three clinical cases. The method benefited 
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from consistent imaging protocols, including the use of blue 1×1 cm markers and parallel 
camera orientation. 

3. Phase 3 tested the SAM-based method on the same clinical images. Without any task-

specific retraining or fine-tuning, SAM accurately segmented both the reference and 

wound regions, confirming its generalization capability and clinical applicability. 
 

Together, these contributions show that accurate, scalable wound area estimation is achievable 

with minimal equipment and varying levels of computational complexity. The approach has 
broader potential applications in other areas of medical imaging, including inflammation 

assessment in rheumatoid arthritis. 

 
Future Research Directions: 

 

Future work could involve integrating both methods into a hybrid framework that dynamically 

selects the optimal technique based on image quality and computational resources. Additionally, 
expanding this system to other medical imaging tasks, such as inflammation detection in 

rheumatoid arthritis or uveitis analysis in ophthalmology could validate its broader utility. 

Enhancing user interfaces and embedding clinical feedback mechanisms will also be critical for 
real-world deployment. 
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