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ABSTRACT 
 

Electronic Health Records (EHRs) encompass patients’ diagnoses, hospitalizations, and medication 

histories, offering a wealth of data. Although EHR-based research, particularly in decision prediction, has 

made significant strides, challenges remain due to the inherently sparse and irregular nature of EHR data, 

which limits their direct application in time-series analysis. 

 

Physicians treating individuals with chronic illnesses must anticipate the progression of their patients' 

conditions, as accurate forecasts enable more informed and timely treatment decisions. The strength of 

prediction lies in prevention—intervening early is often more effective than attempting to reverse damage 
later. In this study, we present a data-driven model designed to deliver accurate and efficient predictions of 

disease trajectories using electronic health records (EHRs) from Veterans Affairs hospitals.  

 

Prediction of disease progression represents a fundamental challenge. EHRs contain vast volumes of 

frequently updated, high-dimensional, and irregularly spaced data in various formats, including numerical, 

textual, image, and video data. To address this complexity, we propose a new approach for predicting the 

progression of diabetes. This method has the potential to improve early intervention, prevent further health 

deterioration, and ultimately extend patients' lives. 

 

The method is based on the PM GenAI, a novel approach that significantly improves classification and 

regression results. The method is compared to traditional techniques such as ARIMA, LTMS, and RF 
showing significant improvement in disease progression evaluation. The method is demonstrated on 

diabetes data.  

 

1. INTRODUCTION 
 

Electronic Health Records (EHRs) contain comprehensive documentation of patient status, 
making them a valuable source for tracking health information and enabling data-driven clinical 

decision-making. Unlike data collected from clinical trials or targeted biomedical studies, EHR 

data are not curated to address specific research hypotheses. Instead, they are primarily designed 

for patient monitoring, which introduces several complexities. 
 

EHR data often exhibit challenging characteristics: they are typically uncurated (not deliberately 

organized or filtered), low in quality (rarely subjected to systematic audits), high-dimensional 
(containing thousands of distinct medical events), sparse (with many missing or zero values), 

heterogeneous (collected from diverse sources), temporal (recorded over time), incomplete, large-

scale, and multimodal (capturing various data types such as images, notes, and lab results). 

 
These complexities present obstacles for using raw EHR data directly in predictive modeling— an 

area of machine learning focused on building statistical models to forecast clinical outcomes. To 
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overcome this, a critical step involves transforming raw EHR data into meaningful, machine 
readable representations. 

 

Representation learning, a key technique in machine learning, automates the extraction of useful 

features from raw data. In the context of EHRs, patient representation learning refers to 
developing structures, mathematical representations of patient data that can be effectively used by 

predictive models. These representations draw on multiple EHR modalities (e.g., clinical notes, 

lab results, medications) and must be structured in a way that facilitates accurate diagnosis, 
disease phenotyping, and outcome prediction. 

 

The most relevant information in an Electronic Health Record (EHR) about a patient depends on 
the clinical context (e.g., routine visit, emergency, chronic disease management). However, the 

core essential elements typically include: 

 

Patient Demographics 
Full name, date of birth, sex 

Contact information 

Insurance details 

Emergency contact 

Active Medical Conditions 
Chronic diseases (e.g., diabetes, hypertension, 

asthma) 

Acute illnesses (e.g., infections, injuries) 

Status and history of each condition 

Current Medications 

Drug names, dosages, routes, frequency 

Start/end dates 

All medications including over the counter or 

supplements 

Allergies and Adverse Reactions 

Known drug, food, or environmental allergies 

Description of the reaction (e.g., rash, 

anaphylaxis)  

Vital Signs and Measurements 

Blood pressure, heart rate, respiratory rate 

Temperature, oxygen saturation 

Weight, height, BMI 

Lab Results and Diagnostic TestsBlood tests 

(e.g., glucose, cholesterol, hemoglobin A1C) 

Imaging reports (X-ray, CT, MRI) 

Pathology and microbiology results 

Trends over time 

Past Medical and Surgical History 

Major illnesses, hospitalizations 

Surgeries for dates 

Family history of chronic or genetic conditions 

 

Immunizations 

Vaccination status (e.g., flu, COVID-19, 

hepatitis  

B) 

Dates and types of vaccines 

Clinical Notes 
Physician, nurse, and specialist documentation 

Assessment, diagnosis, and care plans 

Lifestyle and Behavioral Information 
Smoking and alcohol use 

Physical activity level 

Progress and discharge notes 

 

Diet and nutrition 

Sleep habits 

Encounter and Visit History 
Dates and reasons for past visits 

Diagnoses and treatments provided 

Emergency room or inpatient stays 

 

Risk Factors and Social Determinants 
Occupational risks 

Housing or food insecurity 

Mental health indicators 

Substance use 

 

Health systems in many developed countries are under mounting strain due to aging populations, 

the growing burden of chronic diseases, and rising per capita healthcare costs. To address these 

challenges, policymakers are shifting from a reactive care model—focused on treating illnesses as 
they occur—to a proactive approach that emphasizes early intervention to prevent negative health 

outcomes. Population Health Management (PHM) has emerged as a strategy to realize this shift, 
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aiming to achieve the “triple aim”: improving overall population health, enhancing the patient 
experience, and reducing healthcare costs (Berwick et al., 2008). 

 

A core component of PHM is the effective use of data—particularly in identifying individuals at 

risk of future health complications, such as the onset of chronic disease (World Health 
Organization, 2023). Early identification allows healthcare systems to intervene and support 

atrisk patients, helping them maintain better health and reducing long-term healthcare utilization 

(Main et al., 2022). Advances in Deep Learning (DL) offer promising support for this effort, 
providing the ability to analyze vast healthcare datasets, uncover early indicators of disease, and 

predict future health trajectories within populations. 

 
P. de Melo, (2025), demonstrated a new algorithm called PM GenAI (Principal Model Generative 

Artificial Intelligence)  that combined with DL significantly increased the accuracy of diagnostics 

of diabetes reaching up to 97% of accuracy and sensitivity. 

 
Deep learning (DL) holds significant promise in transforming the management of chronic 

conditions, particularly in populations affected by diseases such as Type 2 Diabetes Mellitus and 

Chronic Obstructive Pulmonary Disease (COPD). The incidence of chronic illnesses is steadily 
increasing across industrialized nations, with over one-third of EU citizens now reporting at least 

one chronic condition (Eurostat, 2023).  

 
This growing prevalence is accompanied by escalating healthcare costs (Holman, 2020). For 

instance, chronic diseases account for up to 80% of healthcare expenditures in the EU and 86% in 

the USA, with projections indicating continued cost increases in the years ahead (Holman, 2020). 

Since these conditions are driven by both modifiable and non-modifiable risk factors, early 
prediction and identification can enable individuals and healthcare providers to implement 

preventive strategies, potentially delaying onset, improving clinical outcomes, and reducing the 

economic burden. 
 

This study explores a new technology based on data augmentation and deep learning (DL) 

approaches in forecasting the future onset of long-term chronic conditions (LTCs) and other 

critical adverse health outcomes using Electronic Health Records (EHR). The widespread 
adoption of EHR systems, driven bydigital transformation efforts in healthcare, has made EHR 

data increasingly available. However, these datasets present inherent challenges, namely sparsity 

and high dimensionality.  
 

Sparsity: Many patients have data only for a small subset of possible features (e.g., not all lab 

tests are ordered for everyone). High dimensionality: EHRs include numerous possible codes for 
diagnoses, medications, procedures, and lab tests. Implication: This makes feature selection and 

model training more computationally challenging and prone to overfitting.  

 

Historically, predictive models for disease diagnosis have relied heavily on domain expertise for 
manual feature engineering—a process that is resource-intensive and time-consuming. This 

dependence has made clinicians' time a bottleneck in model development, particularly 

considering growing shortages of qualified healthcare professionals in many regions. 
 

In EHRs, health care is represented through structured vocabularies like ICD-10, SNOMED, 

NDC, and LOINC. prompting researchers to borrow techniques from Natural Language 
Processing (NLP). Notably, word embeddings and recurrent neural networks (RNNs)including 

Gated Recurrent Units (GRUs) and Long Short-Term Memory networks (LSTMs)have been 

adapted to model patient histories as sequences of events (Pham et al., 2016). 
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More recently,  Med-BERT  applied the popular BERT architecture which was evaluated on the 
prediction of diabetic heart failure (Rasmy et al.,2021). BEHRT used an adapted BERT model to 

create a multilabel classifier able to predict diagnoses in the next 6–12 months from previous 

diagnosis history (Li et al.,2020). Hi-BEHRT offered an updated version of BEHRT with an 

improved pre-training strategy capable of modeling longer patient histories, and increased the 
data scope to include medications, procedures, GP tests, drinking and smoking status as well as 

binned measurements for BMI and blood pressure (Li et al.,2022).  

 
ExBEHRT also extended the feature scope of BEHRT, similarly including observation values for 

BMI and smoking status as well as procedures, laboratory types, age, race, and gender ( Rupp et 

al.,2023). Wornow et al. (2023) have pointed out however that more needs to be done to prove the 
practical utility of these foundation models for electronic medical records (FEMRs) to health 

systems. They emphasize the importance of articulating how such models could fit into clinical 

workflows, demonstrating their ability to improve predictive performance in contexts where less 

labeled data is available, and suggesting ways in which they could simplify model deployment. 
 

This paper builds upon the previous research (de Melo, 2024) and proposes an effective 

methodology by which data can be taken from EHRs and used for disease prediction. It should be 
underscored that  PHM practitioners are typically engaged with a broader range of determinants 

of health than other areas of clinical practice; for example, race, gender, economic deprivation, 

mental health, unmet social care needs and housing status (Buck et al.,2018). These determinants 
may be captured by many organizations including social and community care providers, local 

government and third sector organizations, but these may not be standardized in the same way as 

medical vocabularies and there is likely to be considerable local variation.  

 
The main contributions of this research can be summarized as follows: 

 

1. Developing an effective approach enables incorporating an augmented data set  and novel 
features associated with wider determinants of health. 

2. Demonstrating the effectiveness of pre-trained code embeddings to enhance predictive 

performance for key PHM outcomes where limited data is available, both within and 

across sub-populations. 
3. Investigating whether the new algorithm named PREDMOD (Predictive Modeling with 

Augmented Data and Deep Learning) enables clinicians to invoke features from EHRs 

and conduct the predictive studies of disease progression with determining “critical” 
points of the progression.     

 

Although the existing predictive model mainly focuses on the prediction of single diseases, rather 
than considering the complex mechanisms of patients from a holistic review it can be extended to 

comprehensive representations of patient EHR data.  Advances in patient representation learning 

techniques will be essential for powering patient-level EHR analyses. Future work will still be 

devoted to leveraging the richness and potential of available EHR data through multivariate 
analysis as an extension of PREDMOD. 

 

2. DATA EXTRACTION FROM EHR 
 
Data extraction from Electronic Health Records (EHRs) involves retrieving structured or 

unstructured information about a patient’s medical history, treatments, lab results, vital signs, 

medications, and other clinical events. Here's an overview of how data is typically extracted from 

EHRs, including common sources, formats, and methods: 
 

EHRs store a wide range of information. Common categories include: 

https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B37
https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B37
https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B24
https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B24
https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B23
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https://pmc.ncbi.nlm.nih.gov/articles/PMC10800619/#B41
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Data Type Examples 

Demographics Age, sex, ethnicity, address 

Vitals Blood pressure, heart rate, glucose levels 

Diagnoses ICD-10 codes, diagnosis descriptions 

Medications Drug name, dose, frequency 

Labs Glucose, HbA1c, cholesterol levels 

Procedures CPT codes, surgical history 

Clinical Notes Free-text physician notes 

Allergies Allergy type, reaction severity 

Imaging Reports Radiology/CT/MRI results 

Encounters Admission/discharge, visit summaries 

 
EHR data may be stored in: 

 

• Relational databases (SQL) – e.g., Epic Clarity, Cerner Millennium 

• FHIR APIs (Fast Healthcare Interoperability Resources) – standards-based access to 
EHRs 

• HL7 feeds – older messaging standard for health data exchange 

• CSV/Excel exports – flat files used for smaller-scale analysis 
• Clinical Data Warehouses (CDWs) – consolidated data sources used by hospitals 

 

There are the following tools to extract and process EHR data: 
 

Tool/Library  Purpose  

pandas Load and analyze CSV/Excel data 

sqlalchemy / pyodbc Connect to SQL-based EHRs 

requests Interact with FHIR APIs 

fhirclient (SMART on FHIR) Access FHIR resources 

spaCy / scispaCy NLP on unstructured clinical notes 

 

The data set was extracted using FHIR/API and represents diabetes recordings averaged over a 
week time. 
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3. DATA PROCESSING 
 

3.1. Linear Regression  
 

Linear regression is a statistical method used to model the relationship between a dependent 
variable y and one or more independent variables x. It assumes that this relationship is linear, 

meaning: 

 

 
 

y: Dependent variable (what we want to predict)x: Independent variable (predictor) 

𝛽0: Intercept (value of y when x=0) 

𝛽1: Slope (how much y changes for a one-unit increase in x) 

𝜀: Error term (captures noise or randomness) 
 

Original data for glucose measured in 100 weeks and retrieved from the patient’s EHR (Figure 1) 

while Figures 2 and 3 depict the results of linear regression applied to the original data. Linear 

regression shows a trend that was deduced from the data interval (0,100) 
 

 
 

Figure 1: Original Glucose data set: The data were taken daily and averaged over the week. 

 

 
 

Figure 2: Linear regression algorithm applied to original data. 
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Figure 3: Linear regression algorithm applied to original data (Continuous function). 

 

3.2. ARIMA- Based Prediction 
 

ARIMA (Autoregressive Integrated Moving Average) is a powerful statistical model used for 

time series forecasting. It combines three key ideas: 
The name ARIMA(p, d, q) refers to: 

 

1.AR (Autoregressive, p): Uses the past values (lags) of the series to predict the future. 
 

 
 

 I (Integrated, d): Represents the number of differences needed to make the time series stationary 

(i.e., constant mean and variance over time). If d=1, it means we use the first difference: 
 

 
 

2.MA (Moving Average, q): 
 

Uses past forecast errors in a regression-like model. 

 

 
 

Putting it all together: 
 

 
 

Where  𝑡
′  is the differenced series (depending on d). 

 

Time series data with trend, seasonality, or noise, when forecasting future values, works best 

when data is stationary (non-stationary series are different) 
 

Model Selection (How to choose p, d, q): ADF Test or KPSS Test: Check stationarity and 

determine d, ACF (Autocorrelation Function): Helps identify q, PACF (Partial ACF): Helps 
identify p, Use AIC/BIC for model comparison.  Figure 4 is the ARIMA prediction. It takes the 

data at the final point (week 100) and extrapolates  this value to week 200.  
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Figure 4: Result of ARIMA algorithm prediction. 

 

3.3. Random Forest prediction 
 
Random Forest is an ensemble machine learning algorithm that combines the predictions of 

multiple decision trees to improve accuracy and robustness. It is widely used for both 

classification and regression tasks. 
 

A decision tree is a model that splits data into branches to make predictions. It's prone to 

overfitting (too closely modeling the training data), especially when deep. Random Forest uses 

the idea of ensemble learning — combining multiple models to produce a better result. 
 

It builds many decision trees and averages their predictions (for regression) or uses majority 

voting (for classification). 
 

 Random Forest trains each tree on a random sample (with replacement) of the training data. This 

reduces variance and prevents overfitting. At each split in a tree, only a random subset of features 
is considered. This introduces diversity among trees and makes the model less correlated. The 

outputs of all trees are combined: Classification and regression. Key parameters are number of 

trees in the forest, maximum depth of each tree, number of features to consider when looking for 

the best split, whether bootstrap samples are used. Figure 5 shows an important element of RF, 
bootstrapping.  Figure 4 depicts the original data (in black) and 3 bootstrap samplings. 

 

 
 

Figure 5: Original dataset and three bootstrap samples. 
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RF advantages include High accuracy, handles non-linear relationships, works well with 
highdimensional data, reducing overfitting through averaging, and handles missing values and 

categorical features. RF is used to predict disease progression from EHR data. Figure 6 depicts 

the result of RF prediction.  It is similar to ARIMA (a horizontal line taken as the last sample of 

the original data. 
 

 
 

Figure 6:  Result of  RF  algorithm prediction. 
 

Random Forests are non-parametric and rely heavily on observed patterns. They don’t extrapolate 
— they just replicate what they’ve seen. After week 100, no new behavior is learned, so the 

model "freezes" predictions at the nearest known values. 

 

3.4. LSTM Prediction 
 

Long Short-Term Memory networks (LSTM) are a specialized type of recurrent neural network 
(RNN) designed to retain information over long sequences, effectively allowing important data to 

persist throughout time steps. Unlike traditional RNNs, which struggle with learning longterm 

dependencies due to the vanishing gradient problem, LSTMs are specifically engineered to 
overcome this limitation. 

 

Originally introduced by Hochreiter and Schmidhuber, LSTMs address the shortcomings of 

conventional RNNs and earlier machine learning models. They use a unique memory cell 
architecture that enables them to maintain information over extended sequences without losing 

relevance or stability. 

 
To illustrate, consider watching a video or reading a book—you naturally retain previous scenes 

or chapters to understand the current context. RNNs mimic this behavior by using past inputs to 

influence current processing. However, standard RNNs tend to "forget" over time. LSTMs solve 
this by preserving long-term dependencies more effectively. 

 

LSTM models can be implemented in Python using libraries such as Keras, making them 

accessible for a wide range of deep learning applications including time series forecasting, natural 
language processing, and speech recognition.  
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Figure 7: LSTM algorithm prediction 
 

We can see that  LSTM (Figure 7)  produce  predictions as almost horizontal lines. The models 

fail to generalize and simply repeat a mean value or flat linear trend for all future steps.  This 
happens when there is no sufficient data samples. 

 

4. DATA AUGMENTATION AND PREDICTION 
 

4.1. Gaussian Augmentation and Prediction 
 

One of the key advantages of data augmentation is that it relies solely on the existing training 
data, making it a cost-efficient method to expand both the size and diversity of the dataset. It is a 

powerful strategy to address overfitting, a common issue in deep learning where models perform 

well on training data but poorly on new, unseen data. By generating additional, varied samples, 
data augmentation helps models learn more generalizable patterns, thereby improving 

performance and robustness. 

 

Another major benefit lies in addressing class imbalance, where some categories have 
significantly fewer examples than others, leading to biased predictions. Data augmentation helps 

mitigate this by creating synthetic instances for underrepresented classes, resulting in a more 

balanced dataset and better overall classification accuracy. 
 

By exposing the model to a broader array of data variations, augmentation strengthens its ability 

to handle real-world input variability and reduces its sensitivity to noise or artifacts present in the 

original training set. 
 

One popular technique for synthetic data generation is Gaussian augmentation, which is based on 

the Gaussian Mixture Model (GMM). This probabilistic model represents a complex data 
distribution as a combination of several Gaussian (normal) distributions, capturing multiple 

modes and patterns within the dataset. 

 
Mathematically, a GMM is expressed as: 
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where: 

 
𝜋𝑖 are the mixture weights, 

𝜇𝑖 and 𝛴𝑖 are the mean and covariance of the ith Gaussian component, 

K is the number of components in the mixture. 
 

This flexible model is widely used for generating realistic synthetic data that reflects the statistical 

properties of the original dataset. Figure 8 illustrates the original and predicted data. 
 

 
 

Figure 8: Predicted data after week 100 using augmented data 

 

 
 

Figure 9:  CWT scalogram depicts the critical zone  (considerable rise of glucose after 150 weeks) 

 

A Continuous Wavelet Transform (CWT) scalogram(Figure 9 and Figure 11) is a visual 

representation of how the frequency content of a signal changes over time. It is especially useful 
for non-stationary time series data like physiological signals (e.g., glucose levels), where 

frequency characteristics may vary across time. 

 

What the CWT Scalogram Shows: 
 

Time (X-axis): Represents the temporal evolution of the signal, shows when certain patterns or 

events occur. 
 

Scale or Frequency (Y-axis): The "scale" is inversely related to frequency. For high scale → low 

frequency (longer-term trends). Low scale → high frequency (short-term fluctuations). This axis 
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tells  at what scale or frequency components are present. Color Intensity (Z-axis, represented by 
color) represents the magnitude (or energy) of the wavelet coefficients at each time and scale. 

 

Brighter or more intense colors indicate stronger presence of that frequency component at that 

point in time. For example, a red area at time 175 and scale 30 might suggest a significant high 
frequency event at that time (jump of the glucose value). 

 

4.2. Gibbs Augmentation and Prediction 
 

Gibbs Sampling-based Data Augmentation for Time Series involves generating new synthetic 

data points that statistically follow the distribution of the original time series. While traditional 
Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method used in Bayesian inference, we 

can adapt its principles to time series augmentation by iteratively sampling each point conditioned 

on the previous one. A Gibbs distribution is defined as: 
 

 
 
E(x,y): Energy function (often related to loss or negative log-likelihood), β: controls sharpness, Z: 

Partition function (normalization constant). The augmented samples can be derived from the 

conditional probability (to ensure correspondence of augmented samples and labels y).  For 
unlabeled data such as time series, we use the following procedure: Let 

 

 
If we want to sample from the joint distribution P(𝑥

1,⋯𝑥𝑀), Gibbs sampling updates each variable 
one at a time: 

 

 
 

In the time series context, each  𝑡can   be sampled from a conditional distribution: 
 

 
 

This captures temporal dependencies, like in an autoregressive model. 
 

 
                               

Figure 10:  Gibbs prediction of  the original data 
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Figure 11:  CWT scalogram depicts the critical zone (considerable rise of glucose at 150 week mark) 

 

The algorithm divides the data into test and training. In the training data set it defines the trend 

and statistics: Mean vector (μ), the center of the distribution, covariance matrix (Σ): the shape, 
spread, and orientation. The PDF of a Gaussian component is: 

 

The covariance matrix is: 
 

 
 
In this expression: 

 

 
 

The trend is recovered from:  
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Figure 12: Original (red) and Gaussian augmented data (test data in the interval 50-100) 

 

 
 

Figure 13: Original (red) and Gibbs augmented data (test data in the interval 50-100) 

 

Type of augmentation KS p-value 

In Gaussian augmentation KS p-value: 0.9667 

In  Gibbs augmentation,           KS p-value: 0.8693 

 

Both approaches are acceptable, but Gaussian augmentation is slightly better. 
 

 
 

Figure 14: Original (blue) and predicted  data (test data in the interval 100-200)  
 

5. CONCLUSION 
 
This paper presents a comprehensive overview of methodologies, applications, and implications 

of using Electronic Health Records (EHR) for detecting and modeling disease progression. With 
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the increasing adoption of EHR systems, the opportunity to utilize longitudinal patient data for 
early detection, monitoring, and prediction of disease trajectories has expanded significantly. We 

discuss computational approaches, data preprocessing, modeling techniques, and ethical 

considerations associated with this area of healthcare analytics. 

 
Chronic diseases, such as diabetes require sustained monitoring and timely interventions. 

Traditional clinical models rely on episodic observations, limiting early and accurate detection of 

progression. EHR systems offer a rich, continuous data source encompassing clinical notes, 
laboratory results, medication records, imaging, and demographic information. Leveraging this 

data with machine learning and statistical modeling can yield valuable insights into disease 

progression pathways. The paper explores how EHR data can be used to identify early signs of 
disease progression, reviews computational methods for modeling disease trajectories,  examines 

challenges in data quality, interoperability, and privacy. 

 

EHR data includes structured (e.g., lab results, diagnosis codes) and unstructured (e.g., clinical 
notes) data collected over time. Standard sources include HL7, FHIR, and OMOP-based data 

warehouses.  Preprocessing includes Standardizing units and terminologies (e.g., LOINC, 

SNOMED CT), structuring data into patient timelines, using imputation techniques or excluding 
incomplete records and ensuring compliance with HIPAA and GDPR regulations. 

 

Modeling Approaches include: Random forests, linear and polynomial regression, Neural 
Networks, Deep Learning and Sequence Models: LSTM and Transformer-based models for time-

series EHR data. 

 

Applications focus on: Diabetes Progression including  glucose readings to predict progression 
from pre-diabetes to type 2 diabetes, EHR data is used to model deterioration patterns, identifying 

early signs such as elevated BNP levels or declining ejection fraction, natural language processing 

(NLP) techniques applied to pathology reports and progress notes to detect recurrence risk of 
cancer recurrence. 

 

Challenges and limitations in disease progressing include: Data quality ( EHRs often contain 

errors, redundancies, or incomplete records, interoperability (data silos and inconsistent formats 
hinder integration, bias and fairness (algorithms may reflect biases present in historical data), 

privacy (strict governance is necessary to protect patient data). 

Detecting and modeling disease progression using EHR data represents a powerful advancement 
in precision medicine. When implemented responsibly, it can enhance clinical decision-making, 

improve patient outcomes, and reduce healthcare costs. Continued research, cross-disciplinary 

partnerships, and policy support are essential to fully realize its potential. 
 

There is a common attitude towards the disease progression evaluation from EHRs is that these 

predictions are inaccurate and risky. They aim to estimate values beyond the observed range of a 

dataset by extending patterns found within the data. Disease progression evaluation based on 
modern data science is a powerful but inherently uncertain technique. Its effectiveness depends on 

the quality of the data, appropriateness of the model, and proximity of the extrapolated region to 

observed data. When used responsibly and with proper uncertainty quantification, it can be a 
valuable tool for informed forecasting and strategic planning. 

In this paper, we discuss a new approach based on the  

 

6. RECOMMENDATIONS 
 

• Invest in interoperable, standardized EHR systems. 

• Foster collaborations between clinicians, data scientists, and ethicists. 
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• Encourage open datasets and model benchmarking initiatives. 
• Establish regulatory frameworks for AI-assisted diagnosis. 
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