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ABSTRACT 
 
S-AI-GPT, a conversational artificial intelligence system, is based on the principles of Sparse Artificial 

Intelligence (S-AI) developed by the author. S-AI-GPT provides a modular and bio-inspired solution to the 

structural limitations of monolithic GPT-based language models, particularly in terms of excessive 

resource consumption, low interpretability, and limited contextual adaptability. This proposal is part of a 

broader effort to design sustainable, explainable, and adaptive AI systems grounded in cognitive 

principles. 

 

The sparse activation of specialized GPT agents, coordinated by a central GPT-MetaAgent, and a 

cognitive framework modeled after the functional modularity of the human brain form the foundation of the 

system. These agents are activated only when relevant, based on task decomposition and contextual cues. 

Their orchestration is handled through an internal symbolic pipeline, designed for transparency and 
modular control. 

 

The rationale for the paradigm shift is explained in this article along with relevant literature reviews, the 

modular system architecture, and the agent-based decomposition and orchestration logic that form the 

basis of S-AI-GPT. Each component is introduced through a conceptual analysis, highlighting its function 

and integration within the overall architecture. By doing this, the article establishes the foundation for 

upcoming improvements that will be discussed in later articles and are based on artificial hormonal 

signaling and cognitive memory subsystems. This is the first paper in a three-part series, with subsequent 

work addressing personalization, affective regulation, and experimental validation. 
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1. INTRODUCTION: FROM GPT LIMITATIONS TO MODULAR INTELLIGENCE 
 
ChatGPT and other large language models (LLMs) have fundamentally altered the course of 

artificial intelligence. They are highly beneficial for dialogue generation and natural language 

processing. These monolithic architectures still have a number of significant shortcomings, 

though. No matter how difficult the task is, they activate the entire model, which is too expensive 
to compute, difficult to comprehend, difficult to decompose into smaller components, and 

difficult to maintain context over extended interactions. They also lack task-specific 

specialization, explicable reasoning pathways, and fine-grained emotional modulation. 
 

S-AI-GPT applies this concept to conversational AI by fusing modular parsimony with 

biologically inspired approaches to regulation via synthetic hormone signaling. Similar to how 
the human brain only activates the parts required for a specific task, the system only activates the 
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parts required for a given task. As a result, the reasoning process becomes more effective, 
adaptable, and simple to comprehend. 

 

To address these issues, the Sparse Artificial Intelligence (S-AI) [21] paradigm provides a cost-

effective and modular approach. This approach distributes cognitive tasks among a network of 
specialized agents, each of which is best suited for a particular task, like formatting, emotion, 

memory, or reasoning. Its foundations are agent-oriented orchestration, selective activation, and 

task decomposition. A central orchestrator called the GPT-MetaAgent ensures intelligent 
delegation, coherence, and adaptive control of the system's behavior. 

 

S-AI-GPT expands this paradigm to conversational AI by fusing modular parsimony with 
biologically inspired regulatory mechanisms, most notably artificial hormone signaling. The 

system only engages the relevant areas required for a given task, simulating the sparse and 

context-dependent activation observed in the human brain. The reasoning process is therefore 

generally more efficient, adaptable, and explicable. 
 

Recent advances in modular architectures [23], tool-augmented reasoning [18], and affective 

modulation [29], although significant, remain fragmented and lack the unified orchestration 
proposed in our work. 

 

2. METHODS 
 

2.1. Biological Foundations of S-AI-GPT 
 

2.1.1. Introduction: A Living Architecture 
 

S-AI-GPT goes one step further than classical modular AI by introducing a new kind of internal 

regulation — artificial hormonal signaling. Inspired by how living organisms respond to their 

environment, this mechanism allows the system to subtly adapt the tone, pacing, emotional depth, 
and style of its responses in a smooth and natural way.Unlike rule-based machines that simply 

follow instructions or activate components mechanically, hormonal signaling adds a soft, system-

wide modulation layer. It doesn’t give direct orders to agents. Instead, it gently shifts their 
behavior based on context, much like a biological organism reacting to mood, urgency, or focus. 

This allows S-AI-GPT to behave less like a rigid engine and more like an adaptive entity, capable 

of responding differently depending on how the user feels, what they need, and even how fast 

they expect an answer. 

 

2.1.2. Biological Inspiration and Justification 
 
In the human body, endocrine glands do not issue direct commands. Instead, they release 

hormones that influence how organs behave, depending on timing, concentration, and internal 

state. This kind of regulation is powerful because it is flexible, robust, and adaptive—three 
qualities that are essential for intelligence that needs to evolve over time. S-AI-GPT applies the 

same principle to artificial intelligence. It usesartificial hormonal signals to: 

 

• Adjust agent behavior based on cognitive-emotional context (e.g., urgency, empathy) 
• Introduce time-dependent modulation (such as decay or reinforcement) 

• Enable broad, indirect influence over multiple agents simultaneously 

• Avoid brittle, hard-coded decision chains by relying on dynamic hormonal levels 
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This architecture draws on ideas from neuroscience-inspired AI, where loosely coupled, bio-
inspired components are preferred for their ability to scale and adapt [7]. 

 

2.1.3. GPT-Gland Agents: Emission Modules for Hormonal Signals 
 
GPT-Gland Agents are specialized components responsible for producing and regulating artificial 

hormones within the system. Activated by the GPT-MetaAgent in response to contextual cues—

such as user emotion, conversational flow, or task urgency—each gland embodies one or more 
hormonal profiles. These profiles enable the following functions: 

 

 Emission of new hormonal signals into the GPT-HormonalEngine, 
 Adjustment or resetting of existing hormone levels, 

 System-wide modulation of multiple GPT-Specialized Agents. 

 

This mechanism supports soft, indirect orchestration, ensuring that agent behaviors are adaptively 
tuned rather than rigidly commanded. It enhances the system’s emotional sensitivity, continuity, 

and parsimony by allowing dynamic and non-invasive behavioral modulation. 
 

2.1.4. Types of Signals and Hormonal Profiles 
 

Each hormone is a named signal with a changing intensity between 0.0 and 1.0 that is used to 
change how agents act. Some of the characteristics are: the name of the signal (like "urgency," 

"empathy," or "depth"), how it fades over time (exponentially or linearly), how strong agents 

think it is, and the sensitivity threshold to ignore weak signals. This signaling mechanism, 

influenced by affective neuroscience, reflects the manner in which internal computational 
variables — such as intensity and decay — serve as intermediaries between mechanistic control 

and phenomenological states, as posited by Moutoussis & Dolan [11]. 

 

2.1.5. The Engine That Produces Hormones 

 

The GPT-HormonalEngine manages the overall hormonal context of the system. It performs 

three main tasks: (i) tracks currently active hormonal signals, (ii) applies natural decay over time 
to simulate dissipation, and (iii) provides all GPT agents with access to a shared hormonal state. 

This operates as a transient, fuzzy memory layer that enables consistent system behavior without 

enforcing centralized control. Agents adapt their actions in harmony while preserving autonomy.  

 

2.1.6. Hormonal Modulation in Action 

 
Prompt Example – “Can you use a funny analogy to explain blockchain, but keep it short?” 

 

Step-by-Step Execution 

 
• Decomposition Phase : 

 

 – AnalogyAgent: selects metaphor 
 – KnowledgeAgent: provides core facts 

 – HumorAgent: sets tone 

 – MinimalistAgent: ensures brevity 
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• Hormonal Injection : 
 

 – HumorGland: emits playfulness = 0.7 

 – StressGland: emits urgency = 0.6 

 
• Hormonal Context State : 

 

 { "playfulness": 0.7, "urgency": 0.6 } 
 

• Agent Modulation : 

 
 – HumorAgent: adds playful tone 

 – MinimalistAgent: favors shorter output 

 – AnalogyAgent: picks easy-to-grasp metaphor 

 
Final Output – “Blockchain is like a notebook shared by the whole class. No one can erase 

what’s written, and everyone sees who adds what.” 

 
Interpretation – This example illustrates how hormone-driven coordination enables the system 

to adjust tone and brevity without rewriting the prompt. Modulation arises contextually and 

dynamically, echoing curiosity-driven activation in affective robotics [17] 

 

2.1.7. Overview and Bio-Inspired Role of the Hormonal Layer 
 

What makes S-AI-GPT’s hormonal layer unique is that it borrows from biology — not from lines 
of code or rigid rule sets, but from how the human body regulates itself. Instead of issuing hard 

commands, it uses soft, delayed signals. It doesn't force agents to behave a certain way; it nudges 

them, influencing tone, pacing, cognitive focus, or emotional tone in ways that feel more intuitive 
than mechanical.This makes the system act less like a machine and more like an entity — one 

that adapts, reflects, and reacts subtly to its environment. You don’t need to rewrite prompts or 

manually change settings: the modulation happens from within, invisibly but meaningfully. 

 
S-AI-GPT achieves something rare here: it bridges three worlds that are usually kept apart: 

 

• Symbolic planning, 
• Neuro-symbolic orchestration, 

• And emergent emotional intelligence. 

 
The result is a flexible, modular architecture that doesn’t just scale technically — it scales 

humanely. It aligns with how people think, feel, and change. It keeps resource consumption low 

while keeping transparency high. You can trace back decisions, inspect signal histories, and 

understand why the system did what it did.More than a technical upgrade, this hormonal layer 
sets the foundation for future AI systems that are emotionally aware, self-regulating, and 

fundamentally more compatible with how humans work. 

 

2.2. General Architecture of the S-AI-GPT 
 

The S-AI-GPT system is built on a modular architecture that draws inspiration from distributed 
multi-agent systems as well as human brain principles (specialization, hormone regulation, and 

contextual memory). Every system component is made to function as a specialized agent with a 

distinct role that is only activated when necessary. This guarantees traceability, adaptive 
behavior, and sparsity. 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.4, July 2025 

43 

2.2.1. The GPT Model's Function in S-AI-GPT: A Supervised Generative Assistant Under 

the 20/80 Principle 

 

The function of the internal memory engine developed in the second article must be distinguished 

from that of the GPT model. Contextual persistence, artificial hormone-based affective 
regulation, and adaptive activation of specialized agents are all functions of the memory engine, 

an independent cognitive subsystem. It functions as an internal cognitive core that is self-

regulating and is based on activatable mini-structures that were influenced by biological engrams. 
The GPT model, on the other hand, lacks orchestration and memory. When symbolic agents 

reach their expressive limits, it provides free-form text generation. This is its sole linguistic 

purpose. 
This design adheres to the fundamental 20/80 sparsity principle, which is essential to S-AI-GPT: 

lightweight, symbolic, or specialized agents can handle 80% of user queries. The GPT model 

should be activated because only 20% of tasks call for the creation of complex, flexible, or free-

form language. In certain situations, if the symbolic layer is not enough, the GPT-MetaAgent 
may also call upon deep models other than GPT, such as speech, vision, or multimodal 

classifiers. This section, however, only addresses the GPT model's linguistic function within the 

system. 

 

2.2.2. Central Orchestration and Specialized GPT Agent Activation 

 

2.2.2.1. Central Orchestration by the GPT-MetaAgent 

 

The GPT-MetaAgent acts as the central orchestrator. It supervises the activation of GPT-

Specialized Agents, manages the global interaction context, adjusts hormonal profiles, and 
coordinates the final response. It makes decisions based on: 

 

• The user's prompt and task decomposition, 
• Hormonal signals and contextual stimuli, 

• The user’s profile, preferences, and interaction history. 

 

This orchestration allows S-AI-GPT to dynamically adapt to cognitive load, conversational style, 
and emotional context. 

 

2.2.2.2. Sparse Activation and GPT-Specialized Agents 
 

GPT-Specialized Agents (SAs) are grouped into functional families: reasoning, memory, 

emotion, style, logic, etc. All agents inherit from a shared interface (BaseAgent), which allows 
for dynamic and uniform activation. Each agent is autonomous, executes a specific task, and then 

returns its output to the GPT-MetaAgent. This enables modular response construction while 

maintaining low computational costs. Inactive agents consume no resources, adhering to the 

"sparse activation" principle. 

 

2.2.3. The Decomposition Agent 

 

2.2.3.1. Reading Beyond the Prompt 

 

Rather than rushing to generate a reply, the Decomposition Agent pauses. It tries to understand 
what the user really wants: Is there worry behind the words? A tone that seeks reassurance? A 

need for exactness? It breaks things down carefully—capturing unspoken intent, identifying what 

sort of cognitive work is needed, and spotting any practical constraints that may guide the 

answer. 
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2.2.3.2. Breaking Down with Finesse 
 

This agent draws from different techniques to do its job. Sometimes, it's about recognizing a 

familiar pattern—like spotting that a question beginning with “What are the effects of…” is 

probably asking for causal insight. Other times, it leans on experience, thanks to models trained 
on real human examples, to grasp subtle intentions. It also uses a kind of internal compass: the 

20/80 rule. It knows that not everything needs deep reasoning—and it saves its energy for what 

matters most. The process isn't rigid. If a prompt feels ambiguous or unusual, the agent doesn't 
guess. It seeks help—reaching into memory, or consulting another agent. That’s what makes it 

flexible, and that’s what gives the whole system its depth. 

 

2.2.3.3. A Dialogue with the MetaAgent 

 

Once the agent has mapped out the pieces, it hands them over—not to a black box, but to the 

GPT-MetaAgent, the one that decides what happens next. The map it provides includes more 
than just subtasks; it carries nuance: what kind of tone might suit the user, which agent might be 

best suited to each role, and even how urgent or delicate the situation is. This isn’t a one-way 

exchange. If the MetaAgent senses that something’s off—maybe the response is weak or the tone 
doesn’t land—it can request changes. Together, these two agents form a loop, each adjusting to 

improve the whole. 

 

2.2.4. A Network That Breathes Together 

 

Each specialized agent in S-AI-GPT has its own voice, its own domain, its own rhythm. Some are 

analytical, others empathetic. Some organize, others remember. And all of them are designed to 
work side-by-side—not in isolation, but in coordination. 

 

For example: 
 

– MedicalAgent brings verified insight 

– EmpathyAgent adjusts tone 

– FormattingAgent structures outputs 
– MemoryAgent ensures continuity across exchanges 

 

These agents don’t live in fixed roles. They appear, interact, and dissolve as needed. The 
orchestration is dynamic—just like conversation itself. Further exploration of how this 

coordination unfolds will be the focus of the second article. 

 

2.2.5. Keeping the System Grounded 

 

No matter how intelligent a system is, it needs to stay grounded. That’s the role of the Security 

Agent. It watches—not to restrict, but to protect. It scans for anything unusual: strange patterns, 
repeated access attempts, behavior that doesn't match the flow. If something seems off, it acts. It 

raises alerts. It informs the GPT-MetaAgent. It can even impose temporary limits—closing 

access, isolating parts of the system—until things settle. But this agent doesn’t just respond. It 
thinks ahead. It broadcasts warnings in the form of hormonal cues—signals like “vigilance” or 

“caution”—subtle shifts that ripple through the system, nudging every agent to adjust its tone, its 

precision, its behavior. Security here isn’t a fence. It’s more like an immune system—alert, 
adaptive, always learning. 

 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.4, July 2025 

45 

2.2.6. Result Aggregator Agent : Combining Multiple Agents and Putting Them in Context 
 

In a modular architecture like S-AI-GPT, where multiple specialized agents can work on a single 

query at the same time, the result aggregation phase is crucial. The Result Aggregator Agent is an 

independent system agent supervised by the GPT-MetaAgent. 
 

Functional Role – Its main responsibilities include: 

 
• Gathering outputs from the activated specialized agents responding to a specific 

subproblem; 

• Checking the quality, coherence, and contextual relevance of each partial result; 
• Combining or selecting these responses to produce a final output that is clear, consistent, 

and meaningful. 

 

It acts as both an intelligent filter and a content synthesizer, capable of weighting, majority 
voting, semantic merging, or selecting a single-best answer based on memory or hormonal cues. 

Strategies for Aggregation – The Result Aggregator can adapt its aggregation strategy to fit the 

context or follow GPT-MetaAgent directives: 
 

• Dynamic weighting: weights based on confidence, hormonal signals, or memory 

relevance; 
• Majority or priority voting: preference for consensus or domain-prioritized agents; 

• Single-best selection: when diversity would harm clarity; 

• Symbolic/textual fusion: structured synthesis into summaries, lists, or tables. 

 
Working with Other System Agents – The Aggregator is overseen by the GPT-MetaAgent, which 

can dynamically alter its strategy (e.g., prioritize conciseness or diversity). The final result is sent 

to the Display Agent or Result Access Agent, depending on the intended endpoint. Hormonal 
cues may also be triggered to inform future executions or signal inter-agent disagreements. 

 

2.2.7. Hormonal Modulation and Gland Agents 

 
The use of GPT-Gland Agents in S-AI-GPT creates a new biological metaphor. These agents 

change how the system works by releasing artificial hormones that spread out at different times 

and change the thresholds for activating agents. Some important parts are: 
 

• Hormonal context profiles, which are based on emotional tone, urgency, or trust levels ; 

• Selective activation or inhibition of agents based on what the context needs ; 
• MetaAgent supervision, which controls hormone distribution by commanding gland 

agents without hard-coded logic. 

 

This layer of soft coordination makes the system more reactive, less computationally expensive, 
and more likely to show new patterns of behavior. 

 

2.2.8. Dynamic Contextual Memory (DCM): Working Memory That Changes Quickly and 

Is Controlled by Hormones 

 

The Dynamic Contextual Memory (DCM) is S-AI-GPT's main adaptive working memory. The 
DCM is a volatile and intelligent memory structure that changes in real time based on hormonal 

activity, emotional state, and orchestration decisions. This is different from static session memory 

or simple conversational buffers. 
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2.2.8.1. A Cognitive Filter That can be Changed in Size 
 

The DCM acts as a smart buffer between how users see things, how agents carry out tasks, and 

how responses are made. It keeps only the most important parts of the conversation (intent, 

emotion, content) and changes their level of detail based on the hormones that are active. For 
instance: 

 

• When stressed, the DCM cuts out unimportant parts ; 
• When focused, it makes important new data points clearer. 

 

2.2.8.2. A Regulated Structure, Not an Agent 
 

The Dynamic Contextual Memory (DCM) is not regarded as an agent in the strict sense ; instead, 

it functions as a transversal cognitive module that sustains and facilitates adaptive short-term 

memory throughout the system. When contextual information is needed, both system agents (like 
the MemoryAgent or the MetaAgent) and domain-specific agents ask for it and update it.The 

DCM can be wrapped in a callable object that has agent-like methods (like process() and 

receive_trace()), which makes it easier to use. However, the MetaAgent does not control the 
DCM as an independent agent and it does not have its own lifecycle. 

 

This difference helps keep the architecture clear between active agents and shared cognitive 
resources, while supporting gated, regulated information flow mechanisms inspired by early 

recurrent memory architectures [5].The DCM is not an independent agent ; it does not make 

choices on its own. There are three parts that control and shape it : 

 
• the Memory Gland, which changes its content in real time ; 

• the Memory Agent, which keeps an eye on its strategies for remembering or forgetting ; 

• the GPT-MetaAgent, which uses its state for smart orchestration. 

 

2.2.8.3. Cognitive Persistence and Emotional Consistency 
 

The DCM lets S-AI-GPT : 
• Keep a consistent conversation context over time ; 

• Give answers that match the user's tone and emotional history ; 

• Use controlled forgetting to keep from getting too much information. 
The DCM is therefore very important for making memory management in the system context-

aware, affect-sensitive, and computationally efficient, echoing the principles of adaptive 

reinforcement observed in neural agents trained through delayed reward mechanisms [9]. 
 

2.2.9. Memory Gland – Affect Modulation of Active Memory 

 

The Memory Gland Agent is one of the most innovative parts of S-AI-GPT. It is a simulated 
gland that is based on biology and is used to change working memory based on emotions and 

context. The Memory Gland is not like traditional cognitive agents because it doesn't interpret 

content. Instead, it changes how the Dynamic Contextual Memory (DCM) works based on 
hormonal signals that are sent out when someone is feeling emotional or needs to think quickly. 

 
2.2.9.1. Emotional Control over How Memories Are Made 
 

When the hormonal engine sends a signal to the Memory Gland (like stress, focus, or fatigue), it 

changes the contents of the DCM in real time. For example, it removes peripheral details when 
you're stressed, amplifies important information when you're very focused, and shortens the 
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memory window when you're tired.This makes sure that only information that is useful in the 
context and emotionally relevant is kept, which helps both cognitive frugality and contextual 

alignment. 

 
2.2.9.2. Feedback on Proactive Orchestration 

 

In addition to reactive modulation, the Memory Gland can proactively suggest hormonal changes 
to the GPT-MetaAgent based on past emotions. For example, it might suggest raising oxytocin 

levels after stress has been detected several times. It works like an affective memory sensor, 

helping the system change how it acts based on hidden emotional states. 

 

2.2.9.3. Working Together with the MetaAgent and the DCM 

 

The Memory Gland, the Dynamic Contextual Memory, and the GPT-MetaAgent make up a 
regulatory triangle: the gland modulates, the MetaAgent orchestrates, and the DCM filters. This 

closed loop makes it possible to orchestrate emotions in a sensitive way and makes sure that the 

user stays aligned with the conversation in a way that is adaptive and coherent. 

 

2.2.10. Knowledge Base Agent: Structured Knowledge Access and Inter-Agent Synergy 

 

2.2.10.1. Introduction 
 

In the S-AI-GPT architecture, the Knowledge Base Agent (KBA) is a core system agent 

responsible for managing structured, evolutive, and distributed knowledge. It serves as the 
semantic backbone of the system, ensuring that all agents operate on coherent and accessible 

conceptual grounds. 

 
Unlike traditional static databases, the KBA functions as a dynamic intelligent agent with: 

 

• Symbolic reasoning capabilities, 

• Contextual adaptability, and 
• Hormonal reactivity based on the current system state. 

 

It is tightly coupled with memory and orchestration layers, enabling semantic enrichment, shared 
grounding, and real-time contextual knowledge access. 

 
2.2.10.2. Functional Role 
 

The KBA fulfills three core missions: 

 
• Knowledge Retrieval: Answering queries from the Decomposition Agent, MetaAgent, 

and Specialized Agents by retrieving symbolic knowledge, factual assertions, or 

inference rules. 

• Knowledge Update: Incorporating new symbolic statements, structured facts, or learned 
rules, which may be produced by agents during execution, orchestration, or learning 

phases. 

• Inter-agent Grounding: Ensuring semantic alignment between agents relying on 
different conceptual schemas or terminologies, allowing coherent cooperation across 

specialized domains. These roles make the KBA a shared epistemic environment, 

maintaining a stable and intelligible knowledge layer for all interacting agents. 
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2.2.10.3. Hormonal Modulation and Access Prioritization 
 

The KBA is fully integrated into the hormonal signaling loop of S-AI-GPT. It receives 

modulatory inputs from: 

 
• The MetaAgent, to shift focus based on strategic planning, system phase, or orchestration 

refinement ; 

• Gland Agents, to bias or prioritize retrieval based on urgency, emotional tone, or 

uncertainty. 
• These signals influence: 

• The type of knowledge retrieved (e.g., heuristic vs. deep logical rule) ; 

• The depth of inference allowed ; 
• The confidence thresholds for symbolic reasoning. 

 

Example: In a high-stress scenario, the KBA may prioritize fast, low-depth heuristics over 
complex inference chains. This enables adaptive semantic modulation, mirroring emotional 

prioritization in biological systems. 

 

2.2.10.4. Integration with Other Agents 
 

The Knowledge Base Agent interacts seamlessly with various components: 

 

• The Decomposition Agent uses it to match semantic decomposition templates or domain 
rules. 

• The MetaAgent queries the KBA for orchestration memories, agent-performance 

mappings, and symbolic planning templates. 
• Specialized Agents use it for validation, enrichment, or correction of their outputs. 

• The Display Agent accesses it to generate justifications or answer transparency-related 

queries (Explainable AI). 

• The Memory Agent collaborates with the KBA to ensure temporal consistency and 
knowledge persistence across sessions. 

 

The KBA thus acts as a semantic interoperability layer, harmonized through memory and 
hormonal signaling. 

 

2.2.10.5. Internal Architecture 
 

The KBA is built upon a hybrid and extensible architecture composed of: 

 

• Symbolic knowledge graphs (RDF/OWL/SPARQL), enabling structured knowledge 
representation ; 

• Rule bases (Prolog-style or logic-based), allowing forward/backward chaining ; 

• Annotated factual stores, for storing raw and contextualized knowledge units ; 

• A reasoning and query engine, supporting pattern matching and symbolic inference ; 
• A temporal interface, synchronized with the Memory Agent and Gland Agents to 

maintain coherent system-wide knowledge evolution. 

 
The architecture supports incremental updates, asynchronous rule injection, and cross-agent 

knowledge pushing. 
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2.2.10.6. Conclusion 
 

The Knowledge Base Agent is much more than a passive storage component. It embodies a 

context-aware, hormonally-regulated semantic core that supports: 

 
• Modular cooperation, 

• Symbolic reasoning, 

• Adaptive orchestration, and 

• Long-term knowledge evolution. 
 

It forms, along with memory and orchestration mechanisms, the triadic backbone of cognitive 

intelligence within the S-AI-GPT framework, offering scalability, explainability, and biological 
plausibility in multi-agent conversational AI.This modular design enables agent autonomy while 

maintaining contextual coherence — a limitation noted in earlier monolithic or planner-centric 

approaches [13], [19], [23]. 

 

3. RESULT AND DISCUSSION 
 

3.1. Positioning S-AI-GPT in the Current Landscape 
 

This section provides a thorough comparative review of existing approaches to firmly position 

the S-AI-GPT architecture within the current artificial intelligence landscape. We have 

intentionally centralized all pertinent contributions concerning modularity, orchestration, sparsity, 
memory, emotional regulation, and ethical supervision within a single cohesive framework, in 

contrast to numerous studies that emphasize isolated comparisons. This editorial choice shows 

how S-AI-GPT is cross-disciplinary. It doesn't just suggest a small improvement; it also tries to 
bring together and combine a group of problems that have usually been dealt with separately in 

the literature. Complementary articles that talk about technical implementation and real-world 

use cases will refer back to this basic analysis without repeating everything in it. 

 

3.2. Related Work 
 

3.2.1. AutoGPT – A Language Model that Tries to Think for Itself 

 

When it was released in 2023, AutoGPT surprised many [14]. Built on top of GPT-4, it 

demonstrated that a language model could go beyond reactive prompting. It was capable of 
setting its own goals, breaking them into subtasks, and executing them iteratively, as if 

attempting to reason autonomously. Given a broad instruction—such as “book a flight”—the 

system would initiate a self-directed loop: generating subgoals, calling external tools, and 
adapting its plan along the way, all with minimal human oversight, illustrating a first attempt at 

automated agent generation later formalized in frameworks such as AutoAgents [4].This looped 

autonomy marked a conceptual leap. But it came with significant trade-offs. AutoGPT’s planning 
remains largely stochastic and fragile. Its memory is shallow and forgetful. Agents it spawns are 

ephemeral—without continuity, identity, or shared context. There’s no central oversight, no 

system-wide reasoning, and no internal coordination. The result is often chaotic: actions repeat, 

diverge, or stall in loops with no clear way out. This apparent autonomy often results in 
disoriented or incoherent behavior. 
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Comparison with S-AI-GPT 
  

S-AI-GPT takes a different path altogether. Instead of pushing one monolithic model to do 

everything, it constructs a structured ecosystem of persistent, specialized agents, each with a 

distinct role and purpose, coordinated by a central GPT-MetaAgent. The entire system is inspired 
by biological principles—particularly hormonal signaling and modular regulation—resulting in 

an architecture that is not only adaptive but traceable, explainable, and efficient.Centralized 

orchestration: The GPT-MetaAgent acts like a conductor, evaluating the user’s intent, the 
contextual state, and internal “signals” to activate only the relevant agents. This coordination 

replaces the chaotic loops of AutoGPT with purpose-driven delegation. 

 
Semantic decomposition: A dedicated Decomposition Agent breaks down complex queries using 

symbolic and neuro-symbolic heuristics, including the 20/80 rule. 

 

Hormonal modulation: A Hormonal Engine and Gland Agents simulate urgency, fatigue, or 
attention, influencing agent behavior dynamically. 

 

Dual-layered memory: A long-term Memory Agent and a Dynamic Contextual Memory ensure 
session continuity and adaptive recall. 

 

Security and supervision: A Security Agent monitors behavior and enforces ethical boundaries, 
unlike AutoGPT’s open loop. 

 

Specialized modularity: Only necessary domain-specific agents are activated, optimizing 

reasoning and resource use. 
 

Transparency and efficiency: Sparse activation with full traceability and explainability, 

eliminating the black-box effect. 

 

3.2.2. Toolformer – Self-Taught Tool-Augmented Language Models 

 

Toolformer [16], introduced by Schick et al. (2023), is a big step forward in letting language 
models use external tools by themselves. Instead of being fine-tuned on data labeled by humans, 

Toolformer adds its own API calls to the training data. These API calls—like using a calculator, a 

search engine, a QA system, or a translation tool—are learned by the model during training. The 
idea is simple : if adding a tool call reduces token prediction error, then the model keeps it. This 

helps the model learn when and how to use tools, without outside help. Toolformer becomes 

smarter, without getting bigger or needing expensive prompt tuning. It works especially well on 
zero-shot tasks like arithmetic and factual lookup, even beating bigger models that don’t use 

tools. 

 

Comparison with S-AI-GPT 
 

Toolformer and S-AI-GPT both embrace modularity, but through different mechanisms: 

 
Modularity: Toolformer sees tools as external APIs it can call when needed. S-AI-GPT builds 

internal agents like MathAgent and TextAnalysisAgent, each with their own memory, logic, and 

context. These agents aren’t always running; they’re activated when useful. 
 

Orchestration and Adaptivity: Toolformer just uses the tool calls it discovered during training. It 

doesn’t track what the tools are doing while they run. S-AI-GPT uses a GPT-MetaAgent that 
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decides in real time which agent to activate, based on the task, user profile, and hormone signals. 
This makes it more flexible and easier to follow. 

 

Task Decomposition: Toolformer handles everything inside a single model, choosing tools one 

token at a time. S-AI-GPT separates the planning from the execution. A Decomposition Agent 
figures out subtasks, which makes the process more modular and parallel. 

 

Memory and Context: Toolformer relies on short context windows. S-AI-GPT includes a 
Memory Agent and a Dynamic Contextual Memory (DCM), so it can remember past preferences 

and stay consistent over time. 

 
Interpretability and Control: Toolformer adds API calls into the token stream, but doesn’t manage 

them explicitly. S-AI-GPT tracks everything—agent activations, hormone signals, decisions—so 

users can understand what happened and why. 

 
Security and Robustness: Toolformer doesn’t check if the tools are being used safely. S-AI-GPT 

includes a Security Agent that makes sure no bad decisions are made, and that the system stays 

within safe boundaries. 
 

Early experiments on sparse gating mechanisms, such as Mixture-of-Experts (MoE) 

architectures, laid the groundwork for scalable activation control, although they lacked explicit 
symbolic coordination [18]. 

 

3.2.3. HuggingGPT – Model-Orchestrated Multimodal Reasoning with External Expert 

Systems 

 

3.2.3.1. Framework Overview and Operational Pipeline 
 
HuggingGPT [18], introduced by Shen et al. (2023), presents a novel orchestration-centric 

framework that leverages a large language model (LLM)—specifically ChatGPT—as a central 

planner to coordinate the use of diverse specialized AI models hosted within the Hugging Face 

ecosystem. Rather than solving user queries internally, the LLM assumes the role of a task 
planner and system orchestrator, responsible for decomposing complex instructions, selecting 

external models, delegating execution via APIs, and integrating the results into coherent outputs. 

 
The system operates through a four-stage processing pipeline: 

 

• Task Planning – The LLM parses the user's input, infers intent, and decomposes the 
query into elementary subtasks. 

• Model Selection – It identifies the most suitable expert models (e.g., for vision, speech, 

translation) from Hugging Face’s model repository. 

• Task Execution – It invokes these models via standardized API calls to process each 
subcomponent. 

• Response Generation – It aggregates intermediate results into a unified, contextually 

relevant response. 

 

Comparative Evaluation with S-AI-GPT: While both HuggingGPT and S-AI-GPT adopt a 

modular approach to task resolution through delegation, they diverge across critical architectural, 

operational, and cognitive dimensions: 

 
• Architectural Modularity: HuggingGPT operates via external modularity, outsourcing 

task execution to third-party expert models accessed through API interfaces. In contrast, 
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S-AI-GPT is based on internal modularity, embedding domain-specific agents (e.g., 
ImageAgent, SpeechAgent) directly within the system’s architecture. These agents are 

orchestrated by the GPT-MetaAgent, allowing shared memory, hormonal influence, and 

tight integration of agent state and context. 

• Task Structuring Paradigm: HuggingGPT employs an LLM-based planner to parse and 
organize user intent. S-AI-GPT introduces a dedicated Decomposition Agent, structurally 

decoupled from the main orchestrator, enabling reusable, explainable, and domain-aware 

subtask formalization. 
• Memory and Contextual Persistence: HuggingGPT does not maintain a persistent 

memory trace across sessions. By contrast, S-AI-GPT integrates a Memory Agent 

alongside a Dynamic Contextual Memory (DCM), supporting incremental 
personalization, temporal coherence, and adaptive context reconstruction. 

• Adaptivity and Hormonal Modulation: In HuggingGPT, once external models are 

selected, execution is static and reactive. In S-AI-GPT, the behavior of internal agents is 

modulated in real time by a Hormonal Engine and Gland Agents, allowing dynamic 
adaptation to emotional tone, ambiguity, stress signals, or task complexity. 

• Security and Ethical Control: HuggingGPT lacks an internal mechanism for runtime 

verification or behavior filtering. S-AI-GPT embeds a Security Agent that enforces safety 
policies, detects anomalies, and prevents potentially harmful or unethical outcomes 

during execution. 

 

3.3. Analytical Discussion 
 

3.3.1. What the Hormonal Signaling Layer does 
 

Artificial hormones add a new, fuzzy layer of rules to S-AI-GPT. They give : 

 
• Adaptive tone and tempo without prompt engineering ; 

• Asynchronous, soft modulation of behavior ; 

• Indirect impact over agent dynamics ; 

• Global conversational continuity (for example, persistent mood) ; 
• Dynamic cost optimization (for example, suppressing deep agents when not needed). 

 

3.3.2. Bio-Inspired Emotional Regulation and Its Comparison with Conventional 

Approaches 

 

Along with the benefits of the hormone layer, it is helpful to compare the S-AI-GPT method to 

more traditional models of emotional intelligence in AI. Most traditional ways to measure 
emotional intelligence (EI) focus on being able to perceive and hear how others feel (for 

example, through face recognition, audio analysis, and semantic processing) and employ 

preprogrammed reactions to make communication between people and computers better. These 

systems are often built as separate functional modules that are connected to a core architecture 
from the outside. They don't have deep integration with memory, contextual dynamics, or 

computing efficiency. 

 
S-AI-GPT, on the other hand, provides an approach to govern emotions that is highly integrated, 

modular, and based on biology. This is based on: 

 
• A Memory Gland Agent, which changes active memory based on hormonal signals (like 

stress, attention, and cognitive load); 
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• An artificial hormonal signaling mechanism, which mimics slow and diffuse diffusion 
like the biological endocrine system, allowing for smooth and continuous changes in 

agent behavior; 

•  A distributed hormonal orchestration, in which decision-making, memory processes, and 

agent activation are influenced by an evolving hormonal profile, without relying on 
explicit emotion recognition. 

 

This architecture provides emotional regulation a built-in, flexible, and cost-effective way to 
control emotions that is closely linked to how the multi-agent system functions, rather than just 

an added feature. This layer of design includes elements for emotive modulation that are akin to 

early notions in affective computing [12], which said that robots need emotion-like mechanisms 
to be flexible and aware of their surroundings. 

 

3.3.3. Comparative Positioning with Modular and Multi-Agent Architectures 

 
Before contrasting S-AI-GPT with monolithic or hybrid models, it is important to analyze its 

positioning among modular and agent-based AI architectures. 

 
Several comparison axes help structure this evaluation : 

 

 Level of orchestration : centralized (orchestrated by a master agent) versus emergent 
(based on local agent interactions) ; 

 Agent autonomy: rigid pipelines with predefined flows versus dynamically instantiated 

agents based on context ; 

 Context integration: rule-based triggers versus biologically inspired signaling 
mechanisms (e.g., hormonal modulation) ; 

 Feedback capabilities: static systems versus reflexive architectures that adapt through 

feedback loops. 

 

S-AI-GPT innovates by extending existing multi-agent paradigms, through the introduction 

of: 

 
 A semantic decomposition pipeline decoupled from the generative core ; 

 A hormonal regulation layer for soft, asynchronous behavior modulation ; 

 A self-regulating orchestration core (MetaAgent) capable of selecting and coordinating 
agents contextually. 

 

This approach builds upon foundational works on complexity reduction using distributed 
representations and latent abstractions [8], which showed that deep, layered, and low-dimensional 

architectures enable more scalable, modular, and interpretable systems. 

 

3.3.4. Typology of Conversational Architectures and Positioning of S-AI-GPT 

 

3.3.4.1. Monolithic LLM Architectures 

 
Monolithic architectures rely on a single, very large autoregressive transformer model that 

handles all cognitive functions: understanding, reasoning, generation, and working memory. 

Examples include ChatGPT (OpenAI), Claude (Anthropic), and Gemini (Google DeepMind) 
[20]. 

 

While these systems perform well on general conversational tasks, their architecture suffers from 

several limitations : 
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• No internal modularity ; 
• Low explainability of decisions due to full model activation ; 

• High computational cost with no selective activation ; 

• Limited contextual or personalized adaptation. 

 
They operate as textual black boxes, generating answers based on prompt history without an 

interpretable decision flow [20] [2]. 

 

3.3.4.2. Hybrid Architectures (LLM + Tools or API) 

 
Hybrid architectures aim to address monolithic rigidity by combining a central LLM with 
external tools, API calls, symbolic rules, or plug-ins. Examples include Copilot (Microsoft), 

Google Assistant with Gemini, and dynamic interaction patterns like ReAct or Toolformer [16]. 

These models offer limited modularity, with the LLM controlling tool invocation.While this 
improves task automation, orchestration remains centralized, and modules lack autonomy or 

context-aware activation. More recent proposals, such as HuggingGPT [19], extend this paradigm 

by coordinating specialized APIs through a GPT controller but still rely on monolithic core 
planning. Technical explanations of Mixture-of-Experts (MoE) mechanisms also fall into this 

category when they are controlled by a central model rather than a distributed agent-based 

strategy [16], [19],[23].  

 

3.3.4.3. Modular Agent-Based Architectures 

 

Several recent architectures have explored agent-based approaches, where distinct specialized 
modules collaborate to accomplish complex tasks. Notable examples include: 

 

 AutoGPT [14], which dynamically spawns agents to address evolving subgoals in a 
recursive task loop ; 

 BabyAGI, which simulates a lightweight planning loop with limited memory persistence 

; 

 And more general multi-agent collaboration frameworks, as discussed in [22], which 
distribute subtasks among cooperating agents, sometimes augmented with memory or 

explicit planning mechanisms. 

 
While promising in principle, these systems often suffer from several structural limitations: 

 

 Lack of robust orchestration: coordination is typically emergent or loosely defined, 

relying on dialogue among agents rather than a centralized strategy ; 
 Cognitive fragility: persistence across tasks is weak, making long-term coherence 

difficult to sustain ; 

 Limited adaptivity: few systems integrate real-time behavioral modulation, and most 
depend on fixed heuristics or stochastic planning loops. 

 

In real-world, dynamic environments—especially in conversational settings—these limitations 
often lead to degraded performance, insufficient adaptability, and weak explainability [14], [22]. 

 

3.3.4.4. Unique Positioning of S-AI-GPT 

 
S-AI-GPT introduces a fundamentally new paradigm, distinct from traditional modular or agent-

based architectures, through its bio-inspired and parsimony-driven design philosophy. Rooted in 

the Sparse Artificial Intelligence (S-AI) framework [21] initially proposed by Said Slaoui, S-AI-
GPT extends this vision to conversational intelligence. Its distinguishing components include: 
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 A dedicated Decomposition Agent, enabling semantic segmentation of complex user 
inputs into manageable subtasks ; 

 A GPT-MetaAgent, acting as a centralized orchestrator with full traceability and 

adaptive control ; 

 A suite of Specialized GPT Agents, each focused on a specific domain (e.g., medical, 
legal, emotional) ; 

 An artificial hormonal signaling system, inspired by endocrine regulation, for smooth 

and context-sensitive agent activation ; 
 A network of Gland Agents, modulating task execution based on emotional, temporal, or 

cognitive states ; 

 And an integrated memory infrastructure combining long-term memory and real-time 
contextual adaptation. 

 

Unlike conventional modular AI frameworks which primarily compartmentalize model 

capabilities, S-AI-GPT embeds dynamic orchestration into the very fabric of agent interactions 
through hormonal modulation.This leads to a parsimonious, explainable, and scalable 

architecture, optimized for human-centric dialogues and sustainable AI operation. Rather than 

being a simplified version of a GPT model, S-AI-GPT embodies a conceptual transformation—
from monolithic prediction engines to adaptive, orchestrated cognitive ecosystems [6], [15], [21]. 

 

3.3.5. Global Orchestration and Feedback Loops 
 

3.3.5.1. Introduction 

 
The S-AI-GPT architecture relies on central orchestration handled by the MetaAgent, enhanced 

by distributed feedback mechanisms involving memory, gland agents, hormonal signals, and 

aggregated results. This section describes how all agents interact through a continuous cycle of 
perception – decision – modulation – learning – adaptation. 
 

3.3.5.2. Role of the MetaAgent in Global Orchestration 

 
The GPT-MetaAgent serves as the main conductor of the system. It manages the selection and 

activation of specialized agents based on the task, modulation via gland agents, aggregation of 

results via the Aggregator Agent, and synchronization with memory components (via Memory 
Agents). It functions as a strategic supervisor, capable of interrupting or redirecting the task 

depending on user input, emotional context, or memory state. 

 

3.3.5.3. Internal Feedback Loop 
 

Several internal feedback loops underpin the system's adaptability: 

 

• Hormonal Feedback: hormones emitted by Gland Agents modulate agent priorities, 
thresholds, and emotional tone. 

• Memory Feedback: modules like DCM, Memory Agent, and Memory Gland adjust 

outputs based on prior dialog history and context. 
• Cognitive Feedback: post-aggregation, a feedback signal is sent to the MetaAgent to 

refine orchestration strategies for future iterations. 

• User Feedback: implicit or explicit user reactions (e.g., corrections, emotional tone) are 
encoded into memory or hormones. 
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3.3.5.4. Cascade Modulation and Multi-Layer Interaction 
 

The responses generated by S-AI-GPT do not follow a traditional linear flow, but rather a non-

sequential modulated cascade involving multiple loops and adaptive layers: 

 
• The Decomposition Agent segments the task into subproblems; 

• The GPT-MetaAgent dynamically activates the relevant specialized agents; 

• The Gland Agents modulate internal dynamics through hormonal signals; 
• The Result Aggregator merges the partial outputs; 

• The Display Agent adapts the format and presentation style; 

• The memory system and Knowledge Base Agent (KBA) are updated asynchronously; 
• The GPT-MetaAgent adjusts its strategies based on observed outcomes. 

 

This cycle constitutes a reflexive, multi-loop architecture that far surpasses the rigid and 

sequential pipelines of traditional LLMs. 

 

Temporal and Hormonal Synchronization 

 
A fundamental innovation of S-AI-GPT lies in its multi-level synchronization mechanisms, 

including: 

 
• Temporal synchronization: agents share a phase marker (initiation, execution, 

feedback); 

• Hormonal synchronization: hormones circulate in two distinct cycles — fast (reactive) 

and slow (affective); 
• Strategic synchronization: agent goals, priorities, and preferences evolve dynamically 

based on context and memory. 

 

3.3.5.5. Output Management : Display and RAM Agents 

 

At the end of the orchestration process, two agents play a crucial role in the controlled and ethical 

delivery of results : 

 

• The Display Agent is responsible for the stylistic and structured presentation of the 

final responses. It adjusts the form, tone, and visual layout based on the user profile (e.g., 
list format, bullet points, empathetic or technical tone). 

• The Result Access Agent manages the external exposure of results. It ensures: 

 
– Traceability of responses; 

– Ethical filtering (e.g., medical or legal disclaimers); 

– Alignment with user access rights or system constraints. 

 
It may hide, delay, or dynamically contextualize parts of the output, relying on memory or 

hormonal signals. Together, these two agents close the system loop, ensuring that the delivery of 

content is intelligible, responsible, and contextually appropriate. 

 

4. CONCLUSION AND PERSPECTIVES 
 

4.1. Paradigm Shift Toward Modular, Adaptive, snd Interpretable AI 

 
The ideas in this first article set the stage for S-AI-GPT to take a number of different strategic 

development paths. In the near future, the system could become a cognitive companion that can 
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change based on how each user feels, what they want, and how they talk. This vision depends on 
the gradual addition of user feedback loops, the ability to change activation profiles on the fly, 

and the ability for orchestration and real-world use to evolve together. S-AI-GPT's modular 

design also makes it good for use in embedded environments (edge computing) because it is 

lightweight and can be turned on and off as needed. This makes it possible to use smart home 
systems, medical assistants on board, and adaptive interfaces for self-driving cars in the real 

world. 

 

4.2. Future Directions 
 

A natural evolution of the system will also include the dynamic creation of specialized agents that 
can grow the ecosystem in response to new needs without having to retrain the whole model. 

Lastly, a major strategic goal is to build a dedicated internal generative engine that is specifically 

made to meet S-AI-GPT's language needs. This part, which is light and easy to control, would 
make the system fully autonomous, easier to understand, and more compatible with the 20/80 

parsimony principle that underlies the architecture. This article outlines the main architectural 

framework of S-AI-GPT, which includes modular orchestration, semantic decomposition, 
hormonal signaling, and multi-agent coordination. However, it only introduces a few important 

parts in a general way or at a high level. 

 

4.3. Roadmap for Upcoming Articles 
 

To ensure clarity and continuity, the second article will focus extensively on the internal 
mechanisms and adaptive logic of key components. It will explore in depth: 

 

 The Decomposition Agent, beyond its orchestration role, including its semantic parsing 

capabilities, rule-based adaptability, and dynamic subproblem granularity management; 
 The structure, taxonomy, and learning strategies of GPT Specialized Agents, 

encompassing both business-oriented and domain-specific agents built on mini-neural 

architectures; 
 The GPT Gland Agents, which operate under an endocrine-inspired framework of 

contextual hormonal profiles and adaptive regulation loops; 

 And above all, the entire memory architecture, including the Memory Agent, the 

Memory Gland, and the Dynamic Contextual Memory (DCM)—all of which are 
essential to personalization, learning, and cognitive persistence. 

 

This article will demonstrate how the interplay between hormonal signaling and memory 
dynamics fosters a coherent, adaptive, and emotionally responsive conversational system. These 

developments are the core focus of Article II, which emphasizes functional autonomy, emotional 

plasticity, and long-term evolutionwithin S-AI-GPT.At the same time, the third article will 
provide a comprehensive overview of implementation strategies, evaluation procedures, and 

deployment scenarios in real-world contexts. It will consolidate: 

 

 Detailed code structures and modular implementation patterns, 
 Experimental test cases validating performance and scalability, 

 Deployment strategies aligned with user profiles, system constraints, and ethical 

considerations. 
 

Together, these three articles establish S-AI-GPT as a reference framework for designing 

modular, resource-efficient, explainable, customizable, and durable conversational AI—aligned 
with human expectations, technical limitations, and interpretability standards. 
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