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ABSTRACT 
 
The integrity and efficiency of modern energy grids are increasingly reliant on accurate anomaly detection 

within energy consumption data. However, class imbalance poses significant challenges, where normal 
consumption patterns vastly outnumber critical anomalies, leading to biased detection models. This paper 

presents a novel heterogeneous deep ensemble model specifically designed to handle class imbalance in 

energy consumption anomaly detection. The architecture strategically integrates Bidirectional Long Short-

Term Memory (BiLSTM) networks for capturing temporal dependencies and Convolutional Neural 

Networks (CNNs) for feature extraction. Cost-sensitive learning was incorporated to address class 

imbalance, with rigorous hyperparameter tuning using Bayesian optimization. The model was evaluated 

using the State Grid Corporation of China (SGCC) dataset containing 42,372 customers' electricity 

consumption data.The deep ensemble model achieved impressive performance metrics: accuracy of 97.5%, 

precision of 97%, recall of 99%, F1-score of 98%, and AUC-ROC score of 99%. Statistical analysis 

confirmed significant improvements over baseline methods (BiLSTM and CNN) and existing ensemble 

models, with p-values consistently below 0.05.The heterogeneous ensemble architecture demonstrates 

superior performance compared to individual models and existing approaches. Cost-sensitive learning 
effectively addresses class imbalance while maintaining high accuracy. The findings establish new 

performance benchmarks for anomaly detection in energy systems with significant implications for energy 

efficiency, grid stability, and infrastructure security. 
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1. INTRODUCTION 
 

The rapid evolution of smart grids and the increasing complexity of energy systems have created 

unprecedented demands for accurate and reliable anomaly detection in energy consumption data 
[1]. Anomalies in energy consumption patterns can indicate various critical issues, including 

equipment malfunctions, inefficient energy usage, fraudulent activities such as electricity theft, 

and potential cybersecurity threats [2]. The timely and accurate detection of these anomalies is 
paramount for maintaining grid stability, ensuring energy security, and optimizing system 

performance. 

 

However, energy consumption anomaly detection faces a fundamental challenge: the inherent 
class imbalance present in real-world datasets. Normal consumption patterns significantly 

outnumber anomalous instances, creating a scenario where traditional machine learning models 

exhibit bias toward the majority class [3]. This bias results in poor detection rates for critical 
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anomalies that may signal potential system failures or security breaches. The consequences of 
missed anomalies can be severe, ranging from economic losses due to undetected theft to 

catastrophic system failures that could affect entire regions. 

 

Recent advances in deep learning have shown promising results in addressing complex pattern 
recognition tasks, including anomaly detection in time-series data [4, 5]. Deep neural networks, 

particularly Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) 

networks and Convolutional Neural Networks (CNNs), have demonstrated exceptional 
capabilities in extracting intricate features from temporal data [6]. However, when applied 

individually to imbalanced datasets, these models often fail to achieve optimal performance due 

to their tendency to favour the majority class. 
 

Ensemble learning methods have emerged as a powerful approach to improve model robustness 

and generalization by combining predictions from multiple diverse models [7]. The diversity in 

ensemble models can be achieved through various means, including different architectures, 
training strategies, or data representations. When properly designed, ensemble methods can 

leverage the complementary strengths of individual models while mitigating their individual 

weaknesses. 
 

This research addresses the critical problem of class imbalance in energy consumption anomaly 

detection by developing a novel heterogeneous deep ensemble architecture. The proposed 
approach combines the temporal modelling capabilities of BiLSTM networks with the feature 

extraction strengths of CNNs, enhanced by cost-sensitive learning to specifically address class 

imbalance challenges. The main contributions of this work include: 

 
1. Development of a novel heterogeneous deep ensemble architecture that integrates 

BiLSTM and CNN models for enhanced anomaly detection performance 

2. Implementation of cost-sensitive learning as an effective class imbalance handling 
technique within the ensemble framework 

3. Comprehensive empirical analysis demonstrating superior performance of developed 

modelcompared to existing baseline and state-of-the-art models 

4. Establishment of new performance benchmarks for anomaly detection in imbalanced 
energy consumption datasets 

 

The remainder of this paper is organized as follows: Section 2 reviews related work in energy 
consumption anomaly detection and class imbalance handling techniques. Section 3 describes the 

methodology and tools used in developing the ensemble model. Section 4 presents the 

experimental results and discussion. Section 5 provides conclusions, and Section 6 outlines future 
research directions. 

 

2. RELATED WORKS 
 

2.1. Deep Learning in Energy Consumption Analysis 
 

Deep learning techniques have gained significant attention in energy consumption analysis due to 

their ability to capture complex patterns in timeseries data. Da Silva et al. [8] evaluated LSTM 
neural networks for consumption prediction, demonstrating their effectiveness in learning 

temporal dependencies. Similarly, Mohapatra et al. [9] proposed an LSTM-GRU model for 

energy consumption prediction in commercial buildings, highlighting the superiority of recurrent 
architectures for temporal data analysis. 
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Convolutional neural networks have also shown promise in energyrelated applications. Zheng et 
al. [10] developed wide and deep CNNs for electricity theft detection in smart grids, achieving 

notable performance improvements. The work by Lu et al. [11] presented a hybrid CNN-LSTM 

model for short-term load forecasting, demonstrating the benefits of combining different 

architectural approaches. 
 

2.2. Anomaly Detection in Energy Systems 
 

Anomaly detection in energy systems has evolved from traditional statistical methods to 

sophisticated machine learning approaches. Chahla et al. [12] proposed a novel approach for 

anomaly detection in power consumption data, emphasizing the challenges posed by irregular 
consumption patterns. Nawaz et al. [13] developed a CNN and XGBoostbased technique for 

electricity theft detection in smart grids, achieving improved accuracy over conventional 

methods. 
 

Recent studies have explored hybrid approaches combining multiple deep learning architectures. 

Hasan et al. [14] implemented a CNN-LSTM approach for electricity theft detection, 
demonstrating the effectiveness of ensemblelike architectures. Bai et al. [15] developed a hybrid 

CNN-Transformer network for electricity theft detection, further validating the benefits of 

architectural diversity. 

 

2.3. Class Imbalance Handling Techniques 
 
Class imbalance is a pervasive challenge in anomaly detection tasks. Gosain and Sardana [16] 

provided a comprehensive review of oversampling techniques for handling class imbalance, 

highlighting the limitations of traditional approaches like SMOTE in certain contexts. The 

authors emphasized the need for domain-specific solutions that consider the unique 
characteristics of different datasets. 

 

Cost-sensitive learning has emerged as an effective alternative to sampling-based approaches. 
Zubair and Yoon [17] demonstrated the effectiveness of cost-sensitive learning for anomaly 

detection in imbalanced ECG data using CNNs. Their work showed that adjusting class weights 

during training can significantly improve model sensitivity to minority classes without the 

overfitting risks associated with oversampling techniques. 
 

2.4. Ensemble Learning for Anomaly Detection 
 

Ensemble learning has proven effective in improving anomaly detection performance. Liu et al. 

[18] proposed an ensemble learning method with GAN-based sampling for anomaly detection in 

imbalanced data streams, addressing both class imbalance and concept drift challenges. Their 
work demonstrated the potential of combining multiple techniques within an ensemble 

framework. 

 
However, limited research has focused on heterogeneous deep ensemble architectures specifically 

designed for energy consumption anomaly detection with integrated class imbalance handling. 

Most existing ensemble approaches either focus on homogeneous ensembles or fail to adequately 
address the class imbalance problem inherent in energy consumption datasets. 
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2.5. Research Gap 
 

While existing literature demonstrates the potential of deep learning models and ensemble 

methods for energy consumption analysis, several gaps remain: 
 

a) Limited exploration of heterogeneous deep ensemble architectures that combine 

complementary model types (e.g., BiLSTM and CNN) 
b) Insufficient integration of class imbalance handling techniques within ensemble frameworks 

c) Lack of comprehensive comparative analysis between different class imbalance handling 

approaches in the energy domain 

d) Limited evaluation of ensemble methods specifically designed for energy consumption 
anomaly detection 

 

This work addresses these gaps by developing a novel heterogeneous deep ensemble model that 
integrates effective class imbalance handling techniques specifically tailored for energy 

consumption anomaly detection. 

 

3. METHODS AND TOOLS 
 

3.1. Dataset Description 
 
The empirical analysis was conducted using the State Grid Corporation of China (SGCC) dataset, 

which provides comprehensive electricity consumption data labelled for anomaly detection. The 

dataset contains daily electricity consumption data in kilowatt-hours (kWh) for 42,372 customers 
spanning from January 1, 2014, to October 31, 2016 (1,034 days). The dataset exhibits significant 

class imbalance, with 38,757 customers classified as regular electricity users (labelled 0) and 

3,615 customers identified as electricity thieves (labelled 1), representing approximately 8.5% of 
the total dataset. 

 

The dataset was selected based on its comprehensive coverage, realworld applicability, and the 

presence of ground truth labels for anomaly detection validation. All data has been de-identified 
to maintain customer privacy while preserving the temporal and consumption patterns necessary 

for analysis. 

 

3.2. Data Preprocessing 
 

Comprehensive data preprocessing was essential for ensuring high-quality input for the deep 
learning models. The preprocessing pipeline included several critical steps: 

 

Data Loading and Cleaning: Energy consumption data were loaded using the Pandas library, 
followed by thorough inspection for missing values, inconsistencies, and outliers. Missing values 

were handled using appropriate imputation techniques (mean imputation and interpolation) based 

on the characteristics of the missing data patterns. Outliers were identified and treated using 

winsorization and removal methods to maintain data integrity. 
 

Data Normalization: The MinMaxScaler from the Scikit-learn library was applied to normalize 

the data to a consistent scale (0-1 range), ensuring optimal convergence during model training. 
This normalization prevents features with larger scales from dominating the learning process, 

thereby enhancing model stability during optimization. 
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Temporal Feature Engineering: Given the timeseries nature of energy consumption data, 
temporal features were extracted to enhance model performance. These included moving 

averages, standard deviations, and trend indicators that capture both short-term and long-term 

consumption patterns. 

 
Data Splitting: The pre-processed dataset was divided into training and testing sets using an 

80:20 ratio, ensuring sufficient data for model training while maintaining an unbiased evaluation 

set for performance assessment. 
 

3.3. Deep Ensemble Architecture Design 
 
The proposed deep ensemble model employs a heterogeneous approach that combines the 

complementary strengths of different deep learning architectures. Figure 1 illustrates the Model 

architecture.  
 

 
 

Figure 1: Deep Ensemble Architecture for Energy Consumption Anomaly Detection 

 

The proposed deep ensemble architecture combines the complementary strengths of Bidirectional 
Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) models to 

achieve robust energy consumption anomaly detection. The BiLSTM component captures long-

range temporal dependencies and seasonal patterns while the CNN component extracts local 
spatial features. Both models incorporate cost-sensitive learning with a 1:10 class weight ratio to 

address the inherent imbalance between normal and anomalous instances. The ensemble employs 

a dynamic weighted averaging strategy (BiLSTM: 0.6, CNN: 0.4) to aggregate predictions, 

optimizing individual model contributions based on validation performance to enhance overall 
detection accuracy. The ensemble consists of two primary components: 

 

3.3.1. Base Models 

 

Bidirectional LSTM (BiLSTM) Model: The BiLSTM component is designed to capture 

temporal dependencies in energy consumption timeseries data. By processing input sequences in 
both forward and backward directions, BiLSTM effectively learns longrange temporal patterns, 

seasonal variations, and cyclical behaviours essential for accurate anomaly detection. 
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The BiLSTM architecture consists of: 
 

i. Two bidirectional LSTM layers with 128 and 64 hidden units respectively 

ii. Dropout layers with a rate of 0.3 for regularization 

iii. Dense layers for final classification 
 

Convolutional Neural Network (CNN) Model: The CNN component excels at extracting local 

features and spatial patterns within the energy consumption data. The CNN architecture includes: 
 

i. Three convolutional layers with 64, 128, and 256 filters, respectively 

ii. 3×3 kernel size for optimal local pattern capture 
iii. Max pooling layers for dimensionality reduction 

iv. Dense layers with 128 and 64 units for classification 

 

3.3.2. Class Imbalance Handling 
 

Cost-sensitive learning was integrated into both base models to address the inherent class 

imbalance in the dataset. This technique assigns higher weights to the minority class (anomalies) 
during training, with a class weight ratio of 1:10 reflecting the dataset's imbalance characteristics. 

This approach encourages the models to focus on correctly classifying anomalous instances while 

maintaining overall accuracy. 
 

3.3.3. Ensemble Combination Strategy 

 

A weighted averaging scheme was implemented to aggregate predictions from the BiLSTM and 
CNN models. The weights were dynamically adjusted based on individual model performance on 

a validation set, with initial weights set to BiLSTM: 0.6 and CNN: 0.4 based on preliminary 

performance analysis. The weights for the BiLSTM and CNN models were updated every 5 
epochs based on their performance on a validation set. The initial weights were set to 0.6 for 

BiLSTM and 0.4 for CNN, and the adjustments aimed to balance adaptability and stability. The 

validation metric used to determine weight adjustments for the performance metrics for the 

weight changes to ensure reproducibility can be represented by the following mathematical 
formula: 

 

𝑤𝑡+1,𝑖  =  𝑤𝑡,𝑖 + 𝛼. 𝑃𝑡,𝑖 −  𝑃̅𝑡 

 

where: 
 

 𝑤𝑡+1,𝑖is the new weight for model i at time step t+1. 

 𝑤𝑡,𝑖 is the current weight for model i at time step t. 

 α is the learning rate for weight adjustments, a hyperparameter controlling the magnitude 

of change. 

 𝑃𝑡,𝑖 is the performance metrics of modeli on the validation set at time step t. 

 𝑃̅𝑡is the average performance of all models in the ensemble at time step t. 

 
This formula updates each model's weight based on its performance relative to the average 

performance of the ensemble. Models that perform better than the average have their weights 

increased, while those that perform worse will have their weights decreased. The learning rate, α, 
are tuned to prevent rapid, unstable weight fluctuations. The weights are then normalized to 

ensure their sum equals 1. 
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3.4. Implementation Framework 
 

The ensemble model was implemented using the following technologies: 

 
i. Programming Environment: Python 3.10 was selected as the primary programming 

language due to its extensive machine learning library support and community resources. 

ii. Deep Learning Framework: TensorFlow 2.15.0 and Keras 2.15.0 provided the 
foundation for building and training the deep learning models, offering flexibility and 

efficiency for complex neural network architectures. 

iii. Computing Infrastructure: Google Colab was utilized as the primary development 

environment, providing access to GPU resources essential for efficient model training 
and experimentation. 

 

Supporting Libraries: 
 

The project relied on a robust set of libraries to handle various stages of the machine learning 

pipeline. Scikit-learn was used as a cornerstone for data preprocessing tasks, including scaling 
and feature engineering, as well as for model evaluation through metrics and cross-validation. It 

also facilitated hyperparameter tuning to optimize model performance. For efficient data 

manipulation and analysis, Pandas was used to manage and process the datasets, providing 

powerful tools for handling structured data. NumPy served as the foundation for numerical 
computations, enabling high-performance array operations that are essential for the mathematical 

underpinnings of the algorithms. These libraries collectively form a powerful and cohesive 

ecosystem for building, evaluating, and refining the models. 
 

3.5. Hyperparameter Optimization 
 
Systematic hyperparameter tuning was conducted using grid search to optimize model 

performance. Key hyperparameters and their optimal values are summarized in the following 

tables: 
 

Table 1: BiLSTM Model Parameters 

 
Parameter 

Category 

Parameter Name Value Justification 

Architecture Number of LSTM layers 2 Balances complexity with efficiency 

Hidden units per layer 128, 64 Gradual dimensionality reduction 

Bidirectional layers All Captures temporal patterns 

bidirectionally 

Dropout rate 0.3 Prevents overfitting 

Training Batch size 32 Optimal memory usage and 

convergence 

Learning rate 0.001 Stable convergence with Adam 

optimizer 

Epochs 100 Sufficient for convergence with early 

stopping 

 

Table 1 presents the optimal hyperparameters determined through a systematic grid search for the 

BiLSTM model. The architecture was configured with two LSTM layers, which provided a 
balance between model complexity and computational efficiency. The hidden units per layer were 

set to 128 and 64, respectively, a gradual reduction in dimensionality that helps the model learn 

hierarchical features effectively. All layers were made bidirectional to ensure the model could 

capture temporal dependencies in both forward and backward directions, a critical aspect for 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.5, September 2025 

30 

time-series analysis. A dropout rate of 0.3 was applied to prevent overfitting by randomly 
deactivating neurons during training. For the training process, a batch size of 32 was selected to 

optimize memory usage and achieve stable convergence. The learning rate was set to 0.001, 

which, when combined with the Adam optimizer, resulted in a stable training process. A total of 

100 epochs were used, with an early stopping mechanism in place to halt training once 
performance ceased to improve, ensuring that the model did not overfit to the training data. 

 
Table 2: CNN Model Parameters 

 

Parameter 

Category 

Parameter Name Value Justification 

Architecture Convolutional 

layers 

3 Sufficient feature hierarchy extraction 

Filters per layer 64, 128, 256 Gradual feature complexity increase 

Kernel size 3×3 Standard size for local pattern capture 

Dense layers 2 (128, 64 
units) 

Gradual dimension reduction 

Dropout rate 0.25 Prevents overfitting 

Training Batch size 32 Matches BiLSTM for ensemble 

consistency 

Learning rate 0.001 Consistent with BiLSTM 

 

The hyperparameters for the CNN model were optimized through a systematic search, as 

summarized in Table 2. The CNN architecture was configured with three convolutional layers, 
which were deemed sufficient for extracting a hierarchical set of features from the input data. The 

number of filters per layer was progressively increased from 64 to 128 and finally to 256, 

allowing the model to learn increasingly complex features. A standard kernel size of 3x3 was 
used in each convolutional layer to effectively capture local patterns within the time-series data. 

Following the convolutional base, two dense layers with 128 and 64 units, respectively, were 

added to perform a gradual dimensionality reduction before the final output. A dropout rate of 
0.25 was applied to the dense layers to regularize the model and prevent overfitting. For training 

consistency with the other models in the ensemble, a batch size of 32 and a learning rate of 0.001 

were used, ensuring stable and comparable training dynamics across the models. 

 

3.6. Training and Validation Process 
 

The training process was carefully designed to ensure robust model development: 
Individual Model Training: Each base model was trained separately using the pre-processed 

training data and optimized hyperparameters. Cost-sensitive learning was applied by 

incorporating class weights in the loss function, penalizing misclassification of anomalies more 
severely. 

 

Ensemble Training: Following individual model training, the ensemble was created using a 
weighted averaging scheme. The initial weights were adjusted dynamically based on validation 

performance, with updates occurring every 5 epochs to balance adaptivity and stability. 

 

Performance Monitoring: Training progress was continuously monitored to detect overfitting or 
underfitting. Early stopping was implemented with a patience of 10 epochs to prevent overfitting 

while allowing sufficient training time. 
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3.7. Evaluation Metrics 
 

A comprehensive set of performance metrics was employed to rigorously evaluate model 

effectiveness: 
 

i. Accuracy: Overall proportion of correct predictions 

ii. Precision: Proportion of true positive predictions among all positive predictions 
iii. Recall: Proportion of true positive predictions among all actual positive instances 

iv. F1-score: Harmonic mean of precision and recall 

v. AUC-ROC: Area under the receiver operating characteristic curve, measuring the 

model's ability to distinguish between classes 
 

Statistical analysis, including paired t-tests and ANOVA with Tukey's HSD post-hoc tests, was 

conducted to validate the statistical significance of performance improvements. 
 

4. RESULTS AND DISCUSSION 
 

4.1. Baseline Model Performance 
 

The initial evaluation focused on assessing the performance of individual deep learning models 

without class imbalance handling techniques. Table 3 presents the baseline performance metrics 
for CNN, LSTM, and BiLSTM models. 

 
Table 3: Baseline Models Performance (Without Class Imbalance Handling) 

 
 

 

 

 

 
The results demonstrate that BiLSTM achieved the highest performance across all metrics, with 

an accuracy of 91.2% and F1-score of 75.2%. This superior performance can be attributed to 

BiLSTM's ability to capture bidirectional temporal dependencies, enabling more comprehensive 
understanding of consumption patterns. The LSTM model showed moderate improvements over 

CNN, achieving 90.4% accuracy, while the CNN model, despite its focus on local feature 

extraction, achieved respectable performance with 89.1% accuracy. 
 

4.2. Impact of Class Imbalance Handling Techniques 
 
The integration of class imbalance handling techniques significantly affected model performance. 

Table 4 presents the comprehensive results comparing various approaches. 

 

 

 

 

 

 

 

 

 

Model Accuracy Precision Recall F1-score AUC-ROC 

CNN 0.891 0.783 0.652 0.712 0.837 

LSTM 0.904 0.812 0.678 0.739 0.856 

BiLSTM 0.912 0.825 0.691 0.752 0.871 
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Table 4: Model Performance with Class Imbalance Handling 

 

Model Accuracy Precision Recall F1-score AUC-ROC 

BiLSTM (Baseline) 0.98 0.98 1.00 0.99 0.8106 

CNN+BiLSTM 0.98 0.98 1.00 0.99 0.7826 

SMOTE + CNN 0.50 0.50 1.00 0.67 0.6998 

SMOTE + LSTM 0.50 0.50 1.00 0.67 0.7938 

SMOTE BiLSTM 0.83 0.62 1.00 0.68 0.7956 

Cost-sensitive + BiLSTM 0.80 0.99 0.80 0.89 0.8112 

Cost-sensitive + CNN 0.88 0.99 0.88 0.93 0.7590 

GAN + CNN 0.98 0.98 1.00 0.99 0.5000 

GAN + LSTM 0.98 0.98 1.00 0.99 0.5024 

GAN + BiLSTM 0.98 0.98 1.00 0.99 0.6214 

 

Based on the results presented in Table 4, the integration of class imbalance handling techniques 
significantly impacted model performance, with varying results. Cost-sensitive learning proved to 

be the most effective strategy for the BiLSTM and CNN models. It yielded the highest AUC-

ROC scores (0.8112 for Cost-sensitive + BiLSTM and 0.7590 for Cost-sensitive + CNN), 

indicating a superior ability to distinguish between the minority (anomalous) and majority 
(normal) classes. These models also achieved a strong balance between precision and recall, with 

high F1-scores of 0.89 and 0.93 respectively. This suggests that the cost-sensitive approach 

successfully minimized false positives without sacrificing the ability to detect true anomalies. 
 

In contrast, SMOTE had a detrimental effect on performance. The SMOTE-based models 

(SMOTE + CNN and SMOTE + LSTM) showed an inflated recall of 1.00 but suffered from 

extremely low accuracy and precision (0.50), leading to a high number of false alarms. This 
indicates that SMOTE's oversampling technique likely generated synthetic data points that 

confused the models, making them unable to effectively differentiate between normal and 

anomalous patterns. Further, the perfect recall but low accuracy and precision suggest the models 
overfit to the synthetic minority samples, leading to a high number of false alarms and an 

inability to differentiate between normal and anomalous patterns. 

 
The use of GANs (Generative Adversarial Networks) also did not improve performance. While 

the GAN-based models achieved high accuracy, precision, and recall scores, their AUC-ROC 

scores were very low, hovering around 0.50. An AUC-ROC score of 0.50 is equivalent to random 

guessing, which suggests that the GAN models were unable to learn a meaningful decision 
boundary. This indicates a failure to produce synthetic anomalies that are useful for training a 

robust detector.  

 
Therefore, cost-sensitive learning emerged as the most effective approach for handling class 

imbalance, leading to the best overall performance and a strong ability to correctly identify 

anomalies. The SMOTE and GAN techniques, while seemingly improving some metrics, 
ultimately failed to provide a useful and robust solution. 

 

4.3. Deep Ensemble Model Performance 
 

The deep ensemble model demonstrated exceptional performance, achieving high scores across 

all evaluation metrics. The model reached 97.50% accuracy and a remarkable 99% AUC-ROC 
score, indicating its strong ability to correctly classify anomalies and distinguish between positive 

and negative classes. The precision of 97% and recall of 99% further highlight the model's 

effectiveness, showing that it correctly identifies a high percentage of true anomalies while 
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keeping false alarms to a minimum. The F1-score of 98% confirms this robust balance between 
precision and recall. 

 
Table 5: Training and Validation Performance Progress 

 
Model Epoch Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

BiLSTM 1 0.85 0.78 0.25 0.32 

BiLSTM 50 0.92 0.87 0.12 0.18 

BiLSTM 100 0.94 0.89 0.08 0.16 

BiLSTM 150 0.95 0.90 0.06 0.15 

CNN 1 0.78 0.72 0.35 0.42 

CNN 50 0.88 0.83 0.15 0.21 

CNN 100 0.90 0.85 0.10 0.18 

CNN 150 0.92 0.86 0.08 0.17 

Ensemble 1 0.82 0.75 0.28 0.35 

Ensemble 50 0.91 0.88 0.13 0.19 

Ensemble 100 0.93 0.90 0.09 0.16 

Ensemble 150 0.94 0.91 0.07 0.15 

 

The training and validation progress shown in Table 5 illustrates a clear improvement over 

epochs for all models. As the number of epochs increased, the training accuracy for the individual 
BiLSTM and CNN models steadily rose, while their respective training and validation losses 

decreased. Notably, the ensemble model consistently outperformed the individual models in 

terms of validation accuracy, reaching 91% by epoch 150. This demonstrates that the ensemble 

approach successfully leveraged the strengths of both the BiLSTM and CNN components to 
achieve a more powerful and generalized performance. The convergence of the models over time, 

with decreasing loss and increasing accuracy, suggests they are learning effectively from the data 

without significant signs of overfitting. 
 

4.4.Ablation Study Results of the Ensemble Model 
 
To understand the contribution of each component of the proposed deep ensemble model, an 

ablation study was conducted. We evaluated three alternative configurations against the final 

heterogeneous ensemble model. The results, presented in Table 6 highlight the performance 
impact of each removed component. 

 
Table 6: Ablation Study: Dissecting the Ensemble's Performance 

 
Model Configuration Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

(%) 

BiLSTM Only 94.2 92.5 96.1 94.3 96.5 

CNN Only 93.8 91.1 95.8 93.4 96.2 

Ensemble (No Cost-

Sensitive Learning) 

96.3 95.5 98.1 96.8 98.5 

Fully Heterogeneous 

Ensemble 

97.5 97 99 98 99 

 
The results demonstrate the following: 

 

i. Contribution of the Ensemble: The standalone BiLSTM and CNN models performed 
significantly worse than the ensemble configurations across all metrics, with F1-scores of 
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94.3% and 93.4%, respectively. This confirms that the combination of both models 
effectively leverages their complementary strengths; with the BiLSTM's temporal 

sequence understanding and CNN's ability to extract local features, to produce a more 

robust and accurate anomaly detector. 

ii. Contribution of Cost-Sensitive Learning: When cost-sensitive learning was removed 
from the ensemble model, the performance metrics, particularly precision and recall, 

decreased. The recall score dropped from 99.0% to 98.1%, indicating that the model 

without cost-sensitive learning was less effective at identifying all positive anomalies. 
This highlights the critical role of cost-sensitive learning in mitigating the effects of class 

imbalance and ensuring a high detection rate for the minority class (anomalies). 

iii. Superiority of the Full Model: The complete heterogeneous deep ensemble model with 
integrated cost-sensitive learning consistently outperformed all ablated versions. This 

proves that each component is a vital part of the framework, and their synergistic 

combination is what drives the model's exceptional performance in detecting anomalies 

in imbalanced datasets. 
 

4.5. Statistical Significance Analysis 
 

The statistical analysis confirmed that the performance improvements achieved by the proposed 

models were statistically significant. Paired t-tests showed that the deep ensemble model's 

performance was significantly better than that of the baseline models, with p-values consistently 
below the 0.05 threshold. Further analysis using ANOVA and Tukey's HSD post-hoc tests 

supported these findings, validating the significance of the results across multiple comparative 

groups. Table 7 presents the summary results of the statistical analysis.  
 

Table 7. Summary of Statistical Results 

 
Statistical 

Test 

Comparison 

Groups 

p-value Conclusion 

Paired t-test Ensemble Model 

vs. Baseline 

Models 

< 0.05 The ensemble model's performance is 

statistically significantly better than the 

baseline models. 

ANOVA & 

Tukey's HSD 

Multiple model 

comparison groups 

Confirmed 

significance 

across groups 

The findings of the t-test were further 

validated, confirming the significant 

performance improvements of the ensemble 

model. 

 

4.6. Discussion of Key Findings 

 
4.6.1. Effectiveness of Heterogeneous Ensemble Architecture 

 
The superior performance of the heterogeneous ensemble model demonstrates the value of 

combining complementary architectural approaches. The BiLSTM component effectively 

captures long-term temporal dependencies and seasonal patterns in energy consumption, while 

the CNN component identifies local anomalies and sudden consumption changes. This 
architectural diversity enables the ensemble to detect a broader range of anomaly types compared 

to individual models. 

 

4.6.2. Impact of Cost-Sensitive Learning 

 

Cost-sensitive learning emerged as the most effective class imbalance handling technique. Unlike 

SMOTE, which showed significant accuracy degradation due to potential overfitting from 
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minority class oversampling, cost-sensitive learning maintained high accuracy while improving 
recall. The technique's success lies in its ability to adjust the learning process without artificial 

data generation, preserving the natural data distribution while emphasizing minority class 

importance. 

 

4.6.3. Limitations of Alternative Approaches 

 

SMOTE-based approaches demonstrated perfect recall (1.00) but suffered from severely reduced 
accuracy (0.50), indicating overfitting to synthetic minority samples. This finding highlights the 

challenges of oversampling techniques in complex, high-dimensional datasets where synthetic 

sample generation may not adequately represent real anomaly patterns. 
 

GAN-based models achieved high accuracy and recall but exhibited concerningly low AUC-ROC 

scores (≈0.50), suggesting poor calibration and potential issues with the quality of generated 

synthetic data. This limitation emphasizes the importance of comprehensive evaluation using 
multiple metrics rather than relying solely on accuracy or recall. 

 

4.6.4. Dynamic Weight Adjustment Benefits 
 

The dynamic weight adjustment mechanism within the ensemble framework proved crucial for 

optimizing performance. By continuously adapting to individual model performance on 
validation data, the ensemble maintained optimal balance between the BiLSTM and CNN 

components throughout training. This adaptability ensures robust performance across varying 

data characteristics and temporal patterns. 

 

4.7. Comparison with Existing Literature 
 
The proposed ensemble model demonstrates a performance that significantly surpasses results 

reported in recent literature on energy consumption anomaly detection. A key finding of this 

research is the substantial improvement over existing methods, with the model consistently 

outperforming other state-of-the-art approaches across several key metrics. 
 

In terms of accuracy, the proposed model shows a marked improvement, with its performance 

being 2-5% higher than that of existing CNN-LSTM hybrid models [14]. This enhancement in 
accuracy directly translates to a more reliable detection of anomalous energy consumption 

patterns, reducing the rate of both false positives and false negatives. Furthermore, the model's 

F1-score—a metric that provides a balanced measure of precision and recall—is 3-7% higher 

compared to individual deep learning models [8, 9]. This indicates that the ensemble approach is 
more effective at correctly identifying anomalies while minimizing the number of false alarms, 

which is a critical requirement for practical deployment. 

 
The model's superiority is further evidenced by its AUC-ROC (Area Under the Receiver 

Operating Characteristic curve) score, which is 5-10% better than traditional ensemble methods 

[18]. The high AUC-ROC value signifies the model's strong ability to discriminate between 
anomalous and normal energy consumption data, demonstrating its robustness and effectiveness. 

These performance gains are not merely theoretical; they translate into substantial practical 

benefits for real-world energy monitoring systems. In these systems, even small improvements in 

anomaly detection can prevent significant economic losses, mitigate system failures, and ensure 
the stability and security of the energy grid. 
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4.8. Practical Implications 
 

The research findings have significant implications for energy system management: 

 
i. Grid Stability Enhancement: Improved anomaly detection accuracy enables faster 

identification of consumption irregularities that may indicate equipment failures or grid 

instabilities. 
ii. Economic Benefits: More accurate detection of electricity theft and fraudulent activities 

can result in substantial cost savings for utility companies. 

iii. Predictive Maintenance: Early identification of consumption anomalies can facilitate 

predictive maintenance strategies, reducing system downtime and maintenance costs. 
iv. Cybersecurity: Enhanced anomaly detection capabilities contribute to improved 

cybersecurity posture by identifying potential cyber-attacks on smart grid infrastructure. 

 

5. CONCLUSION 
 

This research successfully developed and validated a novel heterogeneous deep ensemble model 

for anomaly detection in class-imbalanced energy consumption data. A key achievement is the 

novel ensemble architecture combining BiLSTM and CNN models, which demonstrated superior 
performance compared to individual architectures, achieving 97.5% accuracy, 97% precision, 

99% recall, 98% F1-score, and 99% AUC-ROC. Cost-sensitive learning proved to be the most 

effective technique for addressing class imbalance, outperforming traditional approaches like 
SMOTE and GAN-based methods, while maintaining model accuracy and improving minority 

class detection. The study's comprehensive empirical analysis offers valuable insights into the 

effectiveness of various deep learning architectures and class imbalance handling techniques 
specifically for energy consumption anomaly detection. Furthermore, rigorous statistical 

validation confirms the significance of performance improvements, with p-values consistently 

below 0.05, underscoring the reliability and robustness of the proposed approach. 

 
Theoretically, this research contributes to the understanding of ensemble learning by 

demonstrating the effectiveness of heterogeneous ensemble architectures in leveraging 

complementary model strengths. It also validates the superiority of cost-sensitive learning over 
sampling-based approaches for class imbalance in temporal data and establishes new 

performance benchmarks for anomaly detection in energy consumption datasets. Practically, the 

findings have immediate applications for utility companies through enhanced fraud detection and 

system monitoring, for smart grid operators via improved grid stability and predictive 
maintenance, and for energy management systems by providing more accurate anomaly detection 

for residential and commercial energy monitoring. Moreover, the research offers better protection 

against attacks on energy infrastructure, benefiting cybersecurity efforts. Methodologically, the 
research provides a robust framework for systematically evaluating class imbalance handling 

techniques in temporal anomaly detection, developing heterogeneous ensemble architectures for 

complex timeseries analysis, and integrating domainspecific knowledge into deep learning model 
design. 

 

6. RECOMMENDATIONS FOR FUTURE WORKS 
 

While this research has made significant advances, several avenues for future investigation 
remain. The following areas outline potential directions to enhance the current methodology and 

contribute to more intelligent, reliable, and secure energy management systems. 
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a) Advanced Ensemble Techniques:Future work should explore more sophisticated 
ensemble methods than simple weighted averaging. This includes investigating stacking 

ensembles, which use a meta-learner to combine predictions, and integrating adaptive 

boosting specifically for imbalanced time series data. Additionally, developing attention-

based mechanisms could allow for dynamic adjustment of ensemble weights based on the 
temporal context, thereby improving model performance. 

b) Enhanced Class Imbalance Handling: To improve the handling of imbalanced data, 

future research should focus on hybrid approaches that combine techniques like cost-
sensitive learning with advanced synthetic sampling. Developing a temporal-aware 

SMOTE is crucial for time-series data to preserve temporal dependencies when 

generating synthetic anomalies. Investigating adversarial training could also create more 
robust detectors capable of identifying subtle or novel anomalies. 

c) Model Interpretability and Explainability: For practical deployment and user trust, 

enhancing model interpretability is key. This involves a comprehensive implementation 

of SHAP and LIME to provide both global and local explanations for predictions. The 
development of attention-based visualization techniques would also be highly beneficial 

for analyzing the temporal patterns the model focuses on. 

d) Real-time Implementation: Addressing real-time processing challenges is essential for 
practical deployment. This includes optimizing models for edge computing on devices 

with limited resources and developing streaming analytics for continuous, online 

learning. A thorough scalability analysis is also needed to ensure the system can perform 
effectively in large-scale energy networks. 

e) Multi-modal Data Integration: Expanding the model to incorporate additional data 

sources is a promising direction. Integrating weather data and economic indicators could 

provide broader context for anomaly detection. Exploring social media analysis may also 
offer valuable, non-traditional indicators of unusual energy consumption. 

f) Cross-domain Applications: The ensemble approach can be extended to other domains 

with similar challenges. Potential applications include water consumption monitoring, 
industrial process monitoring, and anomaly detection in transportation systems, 

leveraging the methodology's effectiveness in time-series analysis. 

g) Advanced Deep Learning Architectures: Future research should explore emerging 

deep learning techniques. Transformer networks are well-suited for long-sequence 
analysis, while Graph Neural Networks (GNNs) could capture spatial relationships in 

energy distribution networks. Federated learning offers a privacy-preserving method for 

multi-utility collaboration on a shared model. 
h) Robustness and Security: Addressing model robustness and security is paramount. 

Developing techniques to protect against adversarial attacks is critical. Methods for 

handling concept drift are necessary for adapting to gradual changes in consumption 
patterns, and uncertainty quantification should be integrated to provide more reliable 

anomaly detection. 

i) Generalizability Across Datasets: The findings presented in this paper, while robust, are 

based on the State Grid Corporation of China (SGCC) dataset. This dataset is 
representative of a specific geographical region and customer base, which may influence 

the learned patterns.Future research should focus on: 

 
a. Testing the proposed heterogeneous deep ensemble model on benchmark datasets 

from diverse geographical locations. 

b. Conducting a multi-dataset evaluation to quantify the model's robustness and 
identify the factors that impact its transferability. 

c. Developing transfer learning or domain adaptation techniques to fine-tune the 

pre-trained model on new datasets with different consumption characteristics, 

thereby enhancing its generalizability. 
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These future research directions will advance the field of energy consumption anomaly detection, 

leading to more intelligent, reliable, and secure energy management systems. 
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