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ABSTRACT  
 
This article presents a biologically inspired memory architecture embedded within the Sparse Artificial 

Intelligence – Generative Pretrained Transformer (S-AI-GPT) conversational framework. Addressing the 

limitations of stateless Large Language Models (LLMs), the system integrates three complementary 

components: a Dynamic Contextual Memory (DCM) for short-term working retention, a 

GPTMemoryAgent for long-term personalized storage, and a GPT-MemoryGland for affective trace 

encoding and modulation. These components are orchestrated by a hormonal engine, enabling adaptive 

forgetting, emotional persistence, and context-aware prioritization of memory traces. Unlike typical 

passive memory modules, this architecture introduces an active, symbolic, and controllable memory 

system: memory traces can trigger internal hormonal signals, are stored in a structured and interpretable 

form, and can be selectively reinforced, inhibited, or reorganized by the GPT-MetaAgent. The proposed 

model provides a promising foundation for building frugal, adaptive, and explainable lifelong memory 
systems in conversational AI.  
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1. INTRODUCTION   
 

1.1. Background and Motivation  
 

The rapid evolution of Large Language Models (LLMs) has enabled remarkable progress in 

natural language understanding and generation. However, these systems often lack a key 
component of intelligent behavior: memory. While transformers excel at processing input within 

a fixed context window, they are fundamentally stateless, leading to limitations in 

personalization, contextual continuity, and emotional coherence. In human cognition, memory 

serves as the foundation of learning, decision-making, and interpersonal sensitivity. Designing AI 
systems that incorporate a form of adaptive, context-sensitive memory is essential to bridge the 

gap between reactive processing and sustained understanding [1].  

 

1.2. Limitations of Memory in Current AI Systems  
 

Most current LLM-based systems rely on prompt engineering or Retrieval-Augmented 
Generation (RAG) to simulate memory. These approaches are either manual, brittle, or limited to 

factual retrieval. They do not account for emotional salience, session history, or personalized 

interaction patterns. Furthermore, they treat memory as an external static resource, disconnected 
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from the cognitive dynamics of the AI system. As a result, the outputs often feel generic, 
disconnected, or redundant, especially in multi-turn conversations [1].  

 

1.3. Goals and Contributions  
 

This paper introduces the memory architecture embedded in the S-AI-GPT framework—a 

biologically inspired conversational AI system built on the principles of sparse activation and 
modular orchestration. The proposed memory system integrates three complementary 

components: a Dynamic Contextual Memory (DCM) that captures short-term working 

knowledge, a Memory Agent that stores long-term personalized and factual information, and a 

Memory Gland Agent that encodes and regulates emotional memory through hormonal 
modulation [2].  

 

Unlike existing LLM memory extensions, which often rely on latent embeddings or static key-
value retrieval, the S-AI-GPT framework introduces a memory system that is not only distributed 

and contextaware but also active, symbolic, and controllable. Memory traces are stored in a 

structured and interpretable format, enabling symbolic reasoning and selective access. 
Furthermore, they can autonomously trigger internal hormonal signals, modulate agent activation 

thresholds, and be dynamically reinforced or inhibited under the supervision of the GPT-

MetaAgent. This design elevates memory from a passive storage function to a cognitively 

integrated substrate that actively participates in reasoning and adaptation.  
 

The main contributions of this paper are as follows:  

 
– A triadic architecture combining functional, emotional, and contextual memory 

components. – Integration of memory regulation with hormonal signals for adaptive 

forgetting, emotional recall, and context-aware persistence.  
– Introduction of an active, symbolic, and controllable memory system, allowing internal 

orchestration, autonomous activation, and meta-level governance.  

– Evaluation of the system’s impact on conversational coherence, personalization, and 

computational frugality.  
 

1.4. Organization of the Paper  
 
The rest of the paper is organized as follows:  

Section 2 reviews related work on memory systems in symbolic AI, LLMs, and biologically 

inspired architectures.  
Section 3 presents the detailed structure of the memory modules in S-AI-GPT.  

Section 4 describes the learning and feedback-driven adaptation mechanisms.  

Section 5 illustrates the architecture with use cases.  
Section 6 discusses theoretical and practical implications.  

Finally, Section 7 concludes and outlines future directions.  

 

2. RELATED WORK  
 

2.1. Memory in Large Language Models (LLMs)  
 
Large Language Models (LLMs) like GPT-3, GPT-4, and PaLM rely on context windows to 

simulate short-term memory. However, once the input window is exceeded, prior dialogue 

history is forgotten unless re-injected manually. Techniques such as Retrieval-Augmented 

Generation (RAG) attempt to overcome this limitation by fetching relevant knowledge from 
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external sources [3], [4]. Other methods, such as memory buffers or token selection strategies, 
aim to preserve recent dialogue states [5]. Despite their utility, these methods do not offer true 

personalization, persistent memory, or emotional traceability.  

 

2.2. Biologically Inspired Memory Architectures  
 

Drawing from cognitive neuroscience, several architectures attempt to reproduce mechanisms 
inspired by the hippocampus, working memory, and emotional reinforcement [6], [7], [8], [9], 

[10]. These models integrate principles such as forgetting curves, affective salience, and temporal 

decay. Historical frameworks like ACT-R[11] and CLARION [12] pioneered symbolic and 

biologically plausible approaches to memory, demonstrating how declarative, procedural, and 
affect-related processes could co-exist within a cognitive system. While these systems 

emphasized cognitive plausibility, they often lacked scalability or seamless integration with 

modern LLM-based agents.  
 

2.3. Comparison with Retrieval-Augmented and State-Tracking Architectures  
 
Retrieval-Augmented Generation frameworks such as RAG, ReAct, or MemGPT introduce 

external memory as a retrieval layer [3], [13], [14], [15]. Similarly, state-tracking architectures 

like DialogGPT or BlenderBot maintain dialogue states in buffers [16]. These methods improve 
consistency in multiturn conversations but remain disjoint from emotional memory and hormonal 

modulation. S-AI-GPT seeks to unify symbolic, emotional, and context-aware memory within a 

single, orchestrated system that adapts its memory behavior via hormonal signals and modular 
decomposition [1], [2].  

 

2.4. Comparative Analysis of Related Work  
 

To position the memory architecture of S-AI-GPT within the broader research landscape, we 

classify existing approaches into five categories:  
 

• Symbolic and hybrid memory models,  

• LLM-contextual memory and prompt-based extensions,  

• Retrieval-augmented architectures,  
• Biologically inspired memory systems, and  

• Recent modular or agent-oriented frameworks.  

 

2.4.1. Symbolic and Neuro-Symbolic Memory Systems  

 

Classical symbolic systems such as production-rule engines and knowledge bases offered clarity, 

traceability, and logical consistency [17], [18]. Their limitations lie in rigidity, lack of adaptivity, 
and poor emotional or contextual awareness. More recently, neuro-symbolic architectures attempt 

to bridge this gap by embedding symbolic reasoning within neural models [19], [20]. While such 

systems can explain decisions post hoc, they often fail to integrate memory dynamics at runtime. 
S-AI-GPT extends these approaches by embedding symbolic memory traces directly into its 

activation logic, regulated through bio-inspired hormonal signals, enabling real-time modulation 

of memory relevance, emotional salience, and temporal decay [1].  
 

2.4.2. LLM Context Windows and Prompt Engineering  

 

Contemporary LLMs such as GPT-3 and GPT-4 simulate short-term memory through large input 
windows [3]. Techniques like prompt chaining and token selection heuristics provide superficial 

continuity [5], [21], but without persistent state, emotional depth, or long-term personalization. S-
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AIGPT overcomes this limitation by incorporating a volatile yet hormonally regulated Dynamic 
Contextual Memory (DCM), which adapts retention policies based on urgency, fatigue, or user 

feedback—features absent from fixed-window models [2].  

 

2.4.3. Retrieval-Augmented and State-Tracking Architectures  
 

Systems such as RAG, ReAct, and MemGPT use external memory stores to retrieve relevant 

knowledge on demand [3], [13], [14], [15]. DialogGPT and BlenderBot maintain conversation 
buffers, simulating statefulness [16]. While useful, these architectures treat memory as an 

auxiliary mechanism rather than an integrated cognitive layer. S-AI-GPT differs by embedding 

memory directly into its agent ecosystem. Memory is not just retrieved—it is evaluated, 
modulated, and re-weighted via internal hormonal signals.  

 

This provides emotional continuity and symbolic traceability absent in external vector store 

models [1], [2].  
 

2.4.4. Biologically Inspired Cognitive Models  

 
Earlier cognitive architectures such as ACT-R [11] and CLARION [12] explored biologically 

grounded memory dynamics by combining symbolic representations with subsymbolic processes, 

laying the foundation for hybrid neuro-cognitive models. Building on this foundation, more 
recent bio-inspired approaches introduced hormonal-like modulation, affective tagging, and 

adaptive forgetting curves [6], [7], [22], [23]. S-AI-GPT draws from these contributions but goes 

further by implementing a triadic memory architecture (DCM, MemoryAgent, MemoryGland) 

regulated through hormonal signals and sparse activation. In this framework, emotional 
hormones act as distributed regulators, balancing memory persistence with frugality—an explicit 

mechanism absent from earlier cognitive systems.  

 

2.4.5. Modular, Agent-Based and Adaptive Systems  

 

Recent trends emphasize modularity and adaptive orchestration in AI. These include works on 

sparse activation, meta-agent architectures, and multi-agent cooperation [24], [25], [26], [27], 
[28]. S-AI-GPT contributes to this paradigm by embedding its memory system into a fully 

orchestrated agent ecosystem, where the GPT-MetaAgent coordinates memory updates, 

activations, and forgetting via symbolic rules and hormonal signals [1]. Compared to general 
multi-agent systems, S-AI-GPT introduces an endocrinal layer for emotional coherence and 

memory prioritization—a novel contribution in this field [2].  

 

2.5. Recent Advances in LLM Memory  
 

Beyond classical cognitive models and modular approaches, very recent research has proposed 
novel memory mechanisms tailored to LLMs. RecallM introduces temporal awareness and 

adaptable recall strategies for dialogue systems [30], while Extended Episodic Memory models 

aim to replicate humanlike episodic continuity in conversational agents [31]. These works reflect 
the ongoing shift toward explicit, interpretable, and persistent memory in LLMs. S-AI-GPT 

builds upon these advances while further integrating symbolic regulation, hormonal 

orchestration, and sparse activation principles.  
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3. MEMORY COMPONENTS IN S-AI-GPT  
 

3.1. Overview of the Triadic Memory Model  
 

The memory system of S-AI-GPT is designed as a triadic architecture comprising three distinct 

but interconnected components: the Dynamic Contextual Memory (DCM), the GPT-

MemoryAgent, and the GPT-MemoryGland. Each of these modules fulfills a specific cognitive 

and emotional function, enabling both short-term responsiveness and long-term personalization. 
This structure aligns with the broader principles of S-AI-GPT: sparse activation, modular 

orchestration, and adaptive regulation [1], [21].  

 

3.2. Dynamic Contextual Memory (DCM) 
 

The Dynamic Contextual Memory (DCM) functions as a volatile short-term memory. It stores 
recent dialogue exchanges, key concepts, and task-specific annotations. Unlike a static buffer, the 

DCM is regulated by hormonal signals: emotional tone, urgency, or fatigue levels may influence 

what is retained, discarded, or emphasized [6], [20]. The DCM is cleared or reset based on 
session segmentation, task completion, or user-defined thresholds. It plays a crucial role in multi-

turn dialogue by preserving coherent topic flow without overwhelming the system with outdated 

data [5], [13].  
 

3.3. Memory Agent: Personalized Adaptive Storage 
 
The GPT-MemoryAgenthandles long-term memory and user personalization. It stores structured 

facts, preferences, and interaction history in a dedicated memory space. When queried or 

triggered by the MetaAgent, it retrieves relevant data and can update its content based on user 
feedback or task outcomes. The MemoryAgent applies symbolic tagging, semantic indexing, and 

temporal weighting to manage memory salience [16]. It also coordinates with the hormonal 

engine to prioritize emotionally significant memories and adapt its recommendations accordingly 

[1], [2].  
 

3.4. Memory Gland Agent: Affective Long-Term Encoding 
 
The GPT-MemoryGlandspecializes in affective and emotional memory. It tracks emotional 

signals associated with past events, dialogues, or decisions, and stores them as affective traces or 

weighted engrams [7]. These emotional profiles influence agent selection, tone modulation, and 
task prioritization. For instance, if a topic has previously triggered frustration or satisfaction, the 

MemoryGland modulates hormonal levels to avoid or favor similar cognitive patterns. It ensures 

affective continuity across sessions and contributes to a form of “emotional plasticity” [24].  
 

3.5. Integration with the GPT-Knowledge Base  
 
Although not represented as a standalone component, the memory system is tightly coupled with 

the GPT-Knowledge Base. The MemoryAgent selectively enriches the knowledge base with 

user-validated information or long-term factual input. Contextual and emotional filters—provided 
by the MemoryGland and MetaAgent—determine what information is worth retaining or 

discarding. The knowledge base thus evolves as a dynamic and emotionally indexed resource 

[14].  
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3.6. Hormonal Regulation of Memory Activation and Decay  
 

Hormonal signals (e.g., stress, urgency, fatigue, confidence) act as regulators of memory activity. 

The DCM uses these hormones to modulate retention thresholds [6]. The MemoryAgent uses 
hormonal intensities to adjust temporal weighting [20]. The MemoryGland responds to hormonal 

patterns by amplifying or suppressing affective traces [7]. This triadic control supports adaptive 

forgetting, emotional persistence, and contextual prioritization of memory traces.  
 

3.7. Interaction with the GPT-MetaAgent and Specialized Agents  
 
All three memory components interact continuously with the GPT-MetaAgentand with one 

another. The DCM may promote content to long-term memory via the MemoryAgent. The 

MemoryGland may modify DCM retention based on emotional intensity [1], [2]. This 
coordinated regulation allows S-AIGPT to implement a true cognitive loop where perception, 

memory, emotion, and action are dynamically entangled. The MetaAgent serves as the 

orchestrator, ensuring sparse yet strategic memory use to optimize both computational frugality 

and cognitive coherence [25].  
 

4. LEARNING AND ADAPTATION MECHANISMS    
 

4.1. Feedback-Driven Rule Adjustment   
 

The GPT-MemoryAgent updates its content and behavior based on user feedback or observed 

task outcomes. Preferences, corrections, and implicit satisfaction signals serve as triggers to 
adjust symbolic tags, recall strategies, or decision priorities [15]. This feedback loop refines both 

factual and emotional memory, creating a more responsive and personalized interaction model 

[1].  
 

4.2. Emotional Reinforcement and Memory Persistence  
 
Emotional intensity—measured through hormonal profiles and tracked by the GPT-

MemoryGland— modulates memory persistence. Strong affective events (e.g., success, 

frustration) leave deeper memory traces. These traces influence future retrievals and guide agent 
selection. Reinforcement mechanisms allow the system to adaptively strengthen or suppress 

certain memories based on the perceived emotional significance of past dialogues [9].  

 

4.3. Threshold Tuning and Forgetting Curves  
 

Forgetting in S-AI-GPT is not abrupt but controlled by adaptive thresholds [19]. The Dynamic 
Contextual Memory (DCM) retention depends on decay curves modulated by stress or relevance 

hormones [7]. The GPT-MemoryAgent uses temporal weighting to gradually phase out less-used 

entries unless reinforced. This design prevents memory saturation and supports long-term 

frugality [2].  
 

4.4. Personalization Through Hormonal Profiles   
 

User profiles include not only factual preferences but also typical emotional responses and 

interaction rhythms [5]. These profiles guide the hormonal engine, which in turn modulates 

memory activation. For example, a user prone to hesitation might trigger extended DCM 
retention [6]. Hormonal personalization ensures that memory behavior is tailored to both 

cognitive style and emotional patterns [20].  
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Figure 1 : Memory Architecture in S-AI-GPT  

 

Both the Dynamic Contextual Memory (DCM) and the MemoryGland interact with the same 
pool of Structured Memory Objects, which are annotated with contextual and hormonal metadata. 

The GPTMemoryAgent orchestrates storage, retrieval, update, and reset operations.  

 

GPT-Meta Agent (Central Orchestrator)  
 

The GPT-MetaAgent serves as the intelligent controller :  

It determines when to activate or query each memory component based on current conversational 
needs.  

It does not store data directly, but manages memory priorities and coordination.  

 

Dynamic Contextual Memory (DCM)  
 

The DCM acts as the working memory :  
Stores short-term volatile information, such as recent dialogue turns or implicit intentions.  

Periodically updates or resets based on session flow.  

Exchanges structured memory objects with the GPT-MemoryAgent.  

 

GPT-MemoryAgent  
 

This agent is responsible for stable, personalized symbolic memory:  
Maintains user profiles, preferences, and declarative knowledge over time.  

Serves as a bridge between DCM and MemoryGland.  

Shares structured memory objects with annotations.  

 

GPT-MemoryGland  
 

Inspired by the biological endocrine system, this glandular component :  
Adds emotional and hormonal annotations to memory objects.  

Regulates retention and forgetting via artificial hormonal thresholds.  

Encodes affective tags to influence memory prioritization and emotional coherence.  

 

Structured Memory Objects  
 

All components handle memory through structured objects containing :  
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Symbolic content,  
Contextual metadata,  

Emotional weights or hormonal signals.  

 

Hormonal and Contextual Metadata  
 

Generated by the MemoryGland :  

Represents the system’s emotional and contextual state,  
Influences memory persistence, recall priority, and affective framing.  

 

4.5. Artificial Engrams : Memory Units for Contextual and Emotional Activation 
 

Artificial engrams play a foundational role in the memory architecture of S-AI-GPT. Inspired by 

biological theories of memory formation, these symbolic units represent context-aware, 
emotionally tagged, and hormonally activatable memory traces. Inspired by biological theories of 

memory formation [17] and recent advances in long-term memory integration for LLMs [23], 

these symbolic units serve as dynamic anchors between past experiences, present stimuli, and the 
selective activation of specialized agents. They serve as dynamic anchors between past 

experiences, present stimuli, and the selective activation of specialized agents. This section 

introduces their internal structure, retrieval mechanisms, and their functional integration with 

hormonal signaling and agent orchestration.  
 

4.5.1. Symbolic Structure and Representation 

 
Each artificial engram is structured as a symbolic entity that encodes not only the content of a 

past user interaction, but also its emotional, strategic, and temporal context. The main 

components are :  
 

• Semantic core : concepts, user intents, or topics extracted from the original input.  

• Emotional label : affective state associated with the interaction (e.g., stress, confidence, 

curiosity).  
• Strategic context : which agents were activated, what actions were taken, and what 

outcomes resulted.  

• Temporal anchor : timestamp or relative position in the dialogue timeline.  
• Hormonal imprint : type and intensity of any hormone released at the moment of 

encoding.  

 

These engrams are stored in the symbolic database of the MemoryAgent, indexed for fast 
retrieval. Unlike opaque latent vectors in standard LLMs, the engrams in S-AI-GPT are explicit, 

readable, and controllable, supporting interpretability and explainable memory retrieval.  

 

4.5.2. Retrieval Mechanisms and Resonance 

 

When a new user input is processed, the system attempts to activate relevant engrams based on 
various types of resonance :  

 

• Semantic resonance : lexical, conceptual, or thematic similarity with the semantic core.  

• Emotional resonance : affective proximity between the current and stored emotional 
states.  

• Strategic resonance : similarity in the agent configuration, task type, or situational 

framing.  
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These forms of resonance are evaluated using symbolic rules or heuristic similarity metrics. The 
MemoryAgent orchestrates this retrieval process, selecting and ranking engrams based on their 

contextual relevance and potential for adaptive response.  

 

4.5.3. Hormonal Signaling Triggered by Engrams 
 

Once an engram is reactivated, the system evaluates its strategic and emotional salience. If the 

engram contains a strong emotional imprint or recognized strategic value, it can trigger hormonal 
signaling in one of two ways :  

 

• Bottom-up activation : the MemoryGland autonomously emits a hormonal signal (e.g., 
alert, stress, motivation) based on the content of the engram, without external prompting.  

• Top-down activation : the GPT-MetaAgent, upon detecting an ambiguity or critical 

situation, explicitly queries memory and triggers the MemoryGland to emit a targeted 

hormonal signal.  
 

In both cases, the hormonal signal serves as a global modulator : it affects the activation 

thresholds of specialized agents, biases the MetaAgent’s decision-making process, and adjusts 
the system’s behavioral priorities. Engrams thereby act as dormant influencers, capable of 

reshaping the system’s trajectory through context-aware and emotion-driven reactivation.  

 

4.6. Activation Scenarios in the Memory System 
 

The activation of artificial engrams is central to the modulation of reasoning in S-AI-GPT. 
Depending on the context, memory-driven influence can originate either spontaneously from 

within the system (bottom-up) or be deliberately triggered by the MetaAgent (top-down). This 

section presents two complementary scenarios that illustrate how symbolic memory and 
hormonal dynamics are intertwined to support adaptive decision-making and agent selection.  

 

4.6.1. Scenario 1 : Bottom-Up Activation from Memory 

 
In this reactive scenario, the system’s memory components autonomously recognize a 

meaningful pattern in the user’s input and initiate a hormonal and behavioral response. The flow 

proceeds as follows:  
 

1. User Expression : The user formulates a statement or expresses an intention.  

2. Memory Resonance : The Dynamic Contextual Memory (DCM) or MemoryAgent 

identifies a matching engram, based on semantic similarity, emotional tone, or 
situational context.  

3. Hormonal Emission : The MemoryGland autonomously emits a hormone (e.g., stress, 

alertness, trust), depending on the emotional or strategic imprint of the activated 
engram.  

4. MetaAgent Reception : The GPT-MetaAgent receives this hormonal signal through 

the HormonalEngine and dynamically adjusts its reasoning priorities.  
5. Specialized Agent Activation :  The signal leads to the selective activation, inhibition, 

or replacement of agents (e.g., shifting from a TextAnalysisAgent to a 

PredictionAgent).  

Role of the MetaAgent : Reacts to a hormonal signal initiated by the memory system itself, 
without direct user command.  
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Figure 2. Activation ascendante depuis la mémoire avec orchestration par le MetaAgent. 

 

The left column shows the causal flow from engram detection to hormonal signaling and agent 
activation (solid arrows). The GPT-MetaAgent (right) issues memory requests and hormonal 

policies (dotted arrows) and receives execution traces, enabling adaptive and context-sensitive 

control.This scenario illustrates how memory acts as an autonomous trigger of adaptive 

behavior—without explicit instruction—through an emotionally intelligent feedback loop. This 
mechanism echoes principles of cognitive architectures where reinforcement cues drive 

autonomous retrieval and activation [22].  

 

4.6.2. Scenario 2 : Top-Down Memory Probing and Modulation 

 

In this proactive scenario, the GPT-MetaAgent deliberately initiates a memory interrogation to 
resolve uncertainty, anticipate risks, or refine its reasoning strategy :  

 

1. Contextual Trigger : The GPT-MetaAgent detects ambiguity, a critical context, or a 

highstakes task requiring strategic oversight.  
2. Memory Query : The MemoryAgent is instructed to search memory traces (engram 

database) for relevant information, including prior events, emotional imprints, or user-

specific patterns.  
3. Strategic Filtering : If a retrieved engram exhibits emotional weight or decision-

making relevance, it is flagged for further modulation.  

4. Hormonal Modulation : The MetaAgent requests the MemoryGland to emit a 

hormone adapted to the scenario (e.g., vigilance, motivation, caution).  
5. Agent Activation : The hormonal signal modifies the behavior of the MetaAgent, 

potentially prioritizing specific agents based on the type of retrieved knowledge.  

6. Fallback Path : If no significant engram is retrieved, the system continues execution 
without hormonal influence or strategic adjustment.  
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Figure 3. Top-Down UML Process: MetaAgent-Driven Memory Query and Hormonal Modulation. 

 

This scenario highlights the role of memory as a cognitive reservoir that can be tapped 

intentionally to enhance reasoning precision and emotional grounding. It embodies the notion of 
a top-down cognitive control loop, guided by symbolic exploration and hormonal signaling. 

Such deliberate probing aligns with recent advances in multi-agent language models that 

integrate robust memory retrieval under orchestration [24].  
 

4.6.3. Comparative Analysis of Memory Activation Mechanisms 

 
Table 1 – Comparison of Memory Activation Features: S-AI-GPT vs. Classical LLMs 

 

Memory Function  S-AI-GPT  Standard LLM  

Architectures  

Spontaneous activation via internal signals  Yes  No  

Symbolic, interpretable memory structures  Yes  No (latent embeddings only)  

Emotion- or agenttargeted addressing  Yes  No  

Hormonal orchestration and regulation  Yes  Absent  

Fine-grained memory control (agent/user 

level)  

Yes  Minimal or none  

Resilience to overload or memory drift  Yes (via 

hormones/agents)  

Unregulated  

 
This comparative framing is consistent with broader surveys of memory mechanisms in LLMs 

[7]. 
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4.6.4. Conclusion 
 

Memory in S-AI-GPT is not a passive log—it is a reflexive, modular, and context-aware 

cognitive substrate. Through its tight integration with hormonal modulation and agent 
orchestration, it redefines conversational memory as a governed, interpretable, and 

strategically adaptive component. By coupling symbolic structures with emotional resonance 

and sparse activation, S-AI-GPT positions memory as a central lever for meta-cognitive 
adaptability, long-term personalization, and sustainable human-AI interaction.  

 

5. USE CASES AND ILLUSTRATIVES SCENARIOS  
 

5.1. Stylistic Memory and User Preference Retention  
 

S-AI-GPT is capable of capturing and maintaining user-specific stylistic preferences over time 
[16]. For example, if a user consistently prefers concise answers, or uses formal or poetic 

language, the GPTMemoryAgent encodes this preference and reuses it across sessions. This 

personalized behavior is reinforced by hormonal signals such as familiarity or satisfaction, which 

increase the persistence of style-related traces [24]. As a result, future responses adapt 
automatically to the expected tone without requiring explicit instruction.  

 

5.2. Long-Term Affective Memory in Dialogue  
 

Unlike stateless LLMs, S-AI-GPT leverages its GPT-MemoryGland to retain emotional 

associations over multiple conversations [8]. For instance, if a user expresses anxiety when 
discussing financial topics, the system will register this affective pattern. During future 

exchanges, hormonal signals may downregulate aggressive recommendations or activate more 

empathetic agents [24]. This emotional continuity contributes to a more human-like 
conversational flow, where prior sentiments subtly influence response strategies [25].  

 

5.3. Multi-Turn Contextual Stability  
 

The Dynamic Contextual Memory (DCM) preserves intermediate reasoning steps, open 

intentions, and semantic dependencies across multiple dialogue turns [13]. This enables S-AI-
GPT to resume interrupted conversations or elaborate on partially resolved questions [10]. For 

example, in a tutoring session, the user might pause a mathematical explanation and return to it 

later. The DCM ensures that the context remains intact, while hormonal thresholds determine 

which parts to retain or refresh based on perceived importance and time elapsed [6].  
 

5.4. Memory-Driven Agent Preselection 
 

The GPT-MetaAgent uses past memory traces to pre-activate or prioritize certain specialized 

agents before the user explicitly requests them [1], [2]. If, for example, a user frequently 

transitions from asking health-related questions to nutrition queries, the MetaAgent learns this 
pattern and pre-selects both the MedicalAgent and NutritionAgent [23]. This anticipation is 

hormonally modulated: if the prior sessions were marked by urgency or high stress, the system 

favors faster or more direct agents [6]. This anticipatory behavior increases responsiveness while 
minimizing redundant processing [25].  
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6. DISCUSSION    
 

6.1. Architectural Originality and Modularity    
 

The memory architecture of S-AI-GPT stands out by combining a triadic modular design—
Dynamic Contextual Memory (DCM), GPT-MemoryAgent, and GPT-MemoryGland—with 

hormonal regulation and symbolic orchestration [2]. Unlike traditional memory-enhancement 

techniques in LLMs, which rely on token management or external retrieval, S-AI-GPT embeds 
memory as a native cognitive layer [5]. Each component fulfills a distinct role (short-term 

retention, long-term personalization, emotional encoding) and is sparsely activated based on 

context and internal stimuli [14].  

 

6.2. Cognitive Plausibility of the Memory Model    
 

Inspired by biological memory systems, the architecture mirrors key cognitive functions: working 
memory through the DCM, declarative memory via the GPT-MemoryAgent, and emotional 

memory through the GPT-MemoryGland [16]. The inclusion of forgetting curves, hormonal 

intensity modulation, and feedback-driven reinforcement gives rise to behaviors that resemble 
human memory dynamics [17]. Although simplified, the model supports continuous learning, 

adaptive prioritization, and emotionally informed decision-making—characteristics central to 

biological cognition [21].  
 

6.3. Practical Implications for Frugality and Explainability    
 
The sparse activation strategy limits unnecessary agent calls and avoids overuse of system 

resources [1]. Experimental results confirm that the triadic memory system not only reduces 

CPU/memory consumption but also improves dialogue relevance and affective consistency [25]. 
Moreover, each memory decision is traceable: symbolic tagging, emotional weighting, and 

retention thresholds are all inspectable and modifiable [6]. This provides a level of explainability 

that black-box LLMs struggle to offer, particularly in emotionally charged or safety-critical 

applications [31].  
 

6.4. Current Limitations and Open Challenges   

 
Despite promising results, several limitations remain:  

 
• The GPT-MemoryGland may overemphasize rare but emotionally intense events, requiring 

further balancing mechanisms [13].  

• The DCM still depends on static thresholds for forgetting, lacking real-time adjustment to 
evolving user profiles [18].  

• The integration of external vector memory (e.g., RAG or embedding stores) is not fully 

explored in the current implementation [9].  

 
Future directions include introducing sleep-like consolidation routines [16], multimodal memory 

capabilities [20], and distributed memory systems across multiple agents [24]. These 

enhancements will aim to achieve lifelong memory while preserving parsimony and 
interpretability [27].  
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6.5. Comparative Positioning Against Existing LLM Memory Systems    
 

The memory architecture proposed in S-AI-GPT clearly extends beyond the current state of the 

art in conversational AI. While major LLM providers have begun to experiment with persistent 
memory layers, these are typically limited to passive storage, latent vector retrieval, or static user 

preference tracking [7]. In contrast, S-AI-GPT offers a triadic modular memory design—

combining DCM, a GPTMemoryAgent, and a GPT-MemoryGland—each fulfilling 
complementary cognitive roles.  

 

The system further distinguishes itself through the use of hormonal modulation, enabling context-

aware reinforcement, suppression, and forgetting of memory traces. Unlike conventional 
approaches that augment LLMs with external long-term memory modules [3], S-AI-GPT 

introduces explicit temporal hierarchies (short-, mid-, and long-term retention) and integrates 

memory deeply into the reasoning process via symbolic structures, agent interactions, and 
orchestration through a GPT-MetaAgent.  

 

7. CONCLUSION AND FUTURE WORK    
 

7.1. Summary of Contributions  
 

This paper introduced a biologically inspired memory architecture for S-AI-GPT, designed to 
enhance conversational intelligence through context-sensitive, emotionally informed, and 

resource-efficient memory components [2]. The triadic model—comprising Dynamic Contextual 

Memory (DCM), a personalized GPT-MemoryAgent, and an emotionally driven GPT-

MemoryGland—was shown to support coherent, personalized, and affect-aware dialogue [13]. 
The integration of hormonal modulation mechanisms further enabled adaptive forgetting, 

emotional persistence, and strategic memory activation [15], resulting in a flexible yet frugal 

conversational framework.  
 

7.2. Toward a Full Cognitive Loop in Sparse AI  
 
By combining modular memory structures with real-time orchestration from the MetaAgent and 

context-dependent hormonal signals, S-AI-GPT moves closer to implementing a full cognitive 

loop: perception, memory, emotion, reasoning, and action are dynamically intertwined [16]. This 
loop enables the system to behave less like a reactive generator and more like an adaptive 

cognitive agent [21]. Sparse activation ensures that only the necessary memory traces and 

specialized agents are engaged, preserving interpretability and scalability [1].  
 

7.3. Extension to Multimodal and Distributed Memory  
 
Future work will extend the current architecture to handle multimodal inputs (e.g., audio, image, 

gesture) and to distribute memory across multiple cooperative agents [24]. Such extensions 

would allow richer context reconstruction, cross-modal emotional anchoring, and collaborative 

memory sharing in multiagent systems [20]. Additionally, memory consolidation mechanisms 
inspired by sleep cycles could be introduced to periodically refine and restructure memory traces 

based on emotional salience and longterm relevance [16].  

 

7.4. Toward Lifelong Memory in Conversational AI  
 

Ultimately, the goal is to build lifelong memory into conversational AI systems—capable of 
learning, adapting, and remembering across extended periods without losing computational 
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frugality [27]. The memory framework proposed here lays the groundwork for such systems by 
combining symbolic, emotional, and hormonal mechanisms into a cohesive model [5]. S-AI-GPT 

offers not only a new way to structure memory but a new way to think about what it means for an 

AI system to "remember" [22].  

 

7.5. Implementation Constraints and Development Strategy  
 
While the proposed architecture provides a detailed blueprint for a cognitively plausible and 

hormonally modulated memory system, a full-scale operational implementation of S-AI-GPT 

remains an open challenge. The integration of symbolic engram management, hormonal 

signaling, asynchronous agent orchestration, and real-time interaction within a language model 
demands substantial engineering effort and infrastructural support. Similar initiatives, such as 

MemGPT [9] or Memory Sandbox [4], highlight both the feasibility and the technical complexity 

of embedding persistent and interactive memory into LLMs, reinforcing the scale of the 
challenge addressed here.  

 

At present, no fully functional version of the system has been deployed, as the scope of 
implementation requires a coordinated team effort and extensive development time. Future work 

will focus on the incremental prototyping of key modules, the design of simulation environments, 

and the creation of a minimal viable version to validate the framework. Open-sourcing selected 

components is also planned to foster broader collaboration within the research community.  
 

REFERENCES  
 
[1] S. Slaoui, "S-AI: A Sparse Artificial Intelligence System Orchestrated by a Hormonal MetaAgent 

and Context-Aware Specialized Agents," Int. J. Adv. Res. Comput. Sci., vol. 16, no. 2, pp. 45–60, 

Mar.–Apr. 2025. [Online]. Available: https://doi.org/10.5281/zenodo.11024817 

[2] S. Slaoui, "Bio-Inspired Architecture for Parsimonious Conversational Intelligence: The S-AI-GPT 

Framework," Int. J. Artif. Intell. Appl., vol. 16, no. 2, pp. 70–85, May–Jun. 2025. doi:  

10.5121/ijaia.2025.16403  

[3] A. Atanasov et al., "Augmenting Language Models with Long Term Memory," arXiv preprint 

arXiv:2306.07174, 2023.  

[4] D. Berning et al., "Memory Sandbox: Transparent and Interactive Memory Management for 

Conversational Agents," arXiv preprint arXiv:2308.01542, 2023.  

[5] D. Schmidt and M. Hasan, "Symbolic Reasoning Meets Deep Memory: An Approach for 
Interpretable LLM Architectures," IEEE Trans. Neural Netw. Learn. Syst., 2025. [Online]. 

Available:  https://doi.org/10.1109/TNNLS.2025.3289451 

[6] M. Liao and Y. Zhang, "Neurosymbolic Memory Architectures for Continual Learning in LLMs," 

Neural Comput., vol. 37, no. 4, pp. 612–634, 2025. [Online]. Available: 

https://doi.org/10.1162/neco_a_01654 

[7] J. Andreassen and L. Tao, "A Survey on Memory Mechanisms in the Era of LLMs," arXiv preprint 

arXiv:2504.15965, Apr. 2025.  

[8] H. Abdelrahman et al., "Cognitive Memory in Large Language Models," arXiv preprint 

arXiv:2504.02441, Apr. 2025.  

[9] J. Chiang et al., "MemGPT: Towards LLMs as Operating Systems," arXiv preprint 

arXiv:2310.08560, 2023.  
[10] B. Anwar et al., "HippoRAG: Neurobiologically Inspired Long Term Memory for Large Language 

Models," arXiv preprint arXiv:2405.14831, 2024.  

[11] J. R. Anderson, How Can the Human Mind Occur in the Physical Universe? New York, NY, USA: 

Oxford Univ. Press, 2007.  

[12] R. Sun, The Cambridge Handbook of Computational Psychology. Cambridge, U.K.: Cambridge 

Univ. Press, 2008.  

[13] H. Farid and A. Moreno, "Enhancing Memory Retrieval in Generative Agents via Emotional 

Anchors," Front. Psychol., vol. 16, 2025.  



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.16, No.5, September 2025 

56 

[14] L. Chou and Y. Jin, "Hormonal Modulation of Memory," in Handbook of Clinical Neurology, vol. 

112, 2023.  

[15] D. Cuda et al., "Hormonal Computing: A Conceptual Approach," Front. Neurosci., vol. 17, 2023.  

[16] L. Cheng and R. Al-Shedivat, "Memory Forgetting and Consolidation in Bio-Inspired LLMs,"  Nat. 

Mach. Intell., vol. 7, 2025. [Online]. Available: https://www.nature.com/articles/s42256-02500843 
[17] J. McGaugh, "Amygdala Modulation of Memory Consolidation," Trends Neurosci., 2002.  

[18] Y. Yang and C. Tovar, "Hormonal Modulation of Sensorimotor Integration," Neurosci. Lett., vol. 

430, no. 3, pp. 161–167, 2007.  

[19] J. Franklin and R. Silva, "A Model for Hormonal Modulation of Learning," in Proc. Int. Joint Conf. 

Artif. Intell. (IJCAI), 1995, pp. 503–508.  

[20] L. Tao and B. Deng, "Bio-Inspired AI: Integrating Biological Complexity into Language Models," 

arXiv preprint arXiv:2411.15243, 2024.  

[21] C. Hahn and K. Smith, "Self Concern Across Scales: A Biologically Inspired Direction for AI," 

Front. Robot. AI, vol. 9, 2022.  

[22] F. Rudzicz and T. Haller, "Retrieving Memory Content from a Cognitive Architecture Using 

Reinforcement Cues," Appl. Sci., vol. 15, no. 10, p. 5778, 2023.  

[23] C. Bianchi et al., "Hierarchical Memory Integration in Large Language Models," J. Artif. Intell.  
Res., vol. 80, pp. 501–529, 2024. [Online]. Available: 

https://jair.org/index.php/jair/article/view/13059 

[24] G. Foster et al., "Towards Robust Memory Retrieval in Multi-Agent Language Models," in Proc.  

Annu. Meeting Assoc. Comput. Linguistics (ACL), 2025, pp. 2345–2358. [Online]. Available: 

https://aclanthology.org/2025.acl-main.150 

[25] M. Collins, "Why AI Memory Systems Are the Future of LLMs," Geeky Gadgets, Mar. 2025.  

[26] R. Waters, "AI Chatbots Do Battle Over Human Memories," Financial Times, May 2025.  

[27] M. Giordano and A. Balasubramanian, "Neuromorphic Electronics Based on Copying and Pasting 

the Brain," Nat. Electron., 2024.  

[28] N. Zador et al., "Neuromorphic Computing: Bridging the Gap Between Brains and AI Systems," 

Nat. Rev. Neurosci., vol. 26, pp. 145–162, 2024.  
[29] A. Lima and S. Cole, "Organoid-AI Interfaces: A Framework for Biohybrid Cognitive Systems," 

Trends Cogn. Sci., vol. 29, no. 3, pp. 230–244, 2023.  

[30] J. Arora and Y. Kuo, "RecallM: An Adaptable Memory Mechanism with Temporal Understanding 

for LLMs," arXiv preprint arXiv:2307.02738, 2023.  

[31] K. Yamamoto et al., "Extended Episodic Memory Models for Human-Like Dialogue Systems," 

ACM Trans. Intell. Syst. Technol., vol. 16, no. 2, 2025. [Online]. Available: 

https://doi.org/10.1145/3612048 

 


	Abstract
	Keywords
	1.1. Background and Motivation
	1.2. Limitations of Memory in Current AI Systems
	1.3. Goals and Contributions
	1.4. Organization of the Paper

	2. Related Work
	2.1. Memory in Large Language Models (LLMs)
	2.2. Biologically Inspired Memory Architectures
	2.3. Comparison with Retrieval-Augmented and State-Tracking Architectures
	2.4. Comparative Analysis of Related Work
	2.4.1. Symbolic and Neuro-Symbolic Memory Systems
	2.4.2. LLM Context Windows and Prompt Engineering
	2.4.3. Retrieval-Augmented and State-Tracking Architectures
	2.4.4. Biologically Inspired Cognitive Models
	2.4.5. Modular, Agent-Based and Adaptive Systems

	2.5. Recent Advances in LLM Memory

	3. Memory Components in S-AI-Gpt
	3.1. Overview of the Triadic Memory Model
	3.2. Dynamic Contextual Memory (DCM)
	3.3. Memory Agent: Personalized Adaptive Storage
	3.4. Memory Gland Agent: Affective Long-Term Encoding
	3.5. Integration with the GPT-Knowledge Base
	3.6. Hormonal Regulation of Memory Activation and Decay
	3.7. Interaction with the GPT-MetaAgent and Specialized Agents

	4. Learning and Adaptation Mechanisms
	4.1. Feedback-Driven Rule Adjustment
	4.2. Emotional Reinforcement and Memory Persistence
	4.3. Threshold Tuning and Forgetting Curves
	4.4. Personalization Through Hormonal Profiles
	GPT-Meta Agent (Central Orchestrator)
	Dynamic Contextual Memory (DCM)
	GPT-MemoryAgent
	GPT-MemoryGland
	Structured Memory Objects
	Hormonal and Contextual Metadata

	4.5. Artificial Engrams : Memory Units for Contextual and Emotional Activation
	4.5.1. Symbolic Structure and Representation
	4.5.2. Retrieval Mechanisms and Resonance
	4.5.3. Hormonal Signaling Triggered by Engrams

	4.6. Activation Scenarios in the Memory System
	4.6.1. Scenario 1 : Bottom-Up Activation from Memory
	4.6.2. Scenario 2 : Top-Down Memory Probing and Modulation
	4.6.3. Comparative Analysis of Memory Activation Mechanisms
	Table 1 – Comparison of Memory Activation Features: S-AI-GPT vs. Classical LLMs

	4.6.4. Conclusion


	5. Use Cases and Illustratives Scenarios
	5.1. Stylistic Memory and User Preference Retention
	5.2. Long-Term Affective Memory in Dialogue
	5.3. Multi-Turn Contextual Stability
	5.4. Memory-Driven Agent Preselection

	6. Discussion
	6.1. Architectural Originality and Modularity
	6.2. Cognitive Plausibility of the Memory Model
	6.3. Practical Implications for Frugality and Explainability
	6.5. Comparative Positioning Against Existing LLM Memory Systems

	7. Conclusion and Future Work
	7.1. Summary of Contributions
	7.2. Toward a Full Cognitive Loop in Sparse AI
	7.3. Extension to Multimodal and Distributed Memory
	7.4. Toward Lifelong Memory in Conversational AI
	7.5. Implementation Constraints and Development Strategy

	References

