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ABSTRACT 
The reconstruction of gene networks has become an important activity in Systems Biology. The potential 
for better methods of drug discovery and disease diagnosis hinges upon our understanding of the 
interaction networks between the genes. Evolutionary methods are proving to be successful in such 
problems and a number of such methods have been proposed. However, all these methods are based on 
processing of genotypic information. We present evolutionary algorithms for reconstructing gene 
networks from expression data using phenotypic interactions, thereby avoiding the need for an explicit 
objective function. Specifically, we implement the Phenomic algorithm and validate it for the 
reconstruction of gene networks. We also extend the basic phenomic algorithm to perform multiobjective 
optimization for gene network reconstruction. We apply both these algorithms to the yeast sporulation 
dataset and show that the algorithms can effectively identify gene networks. Both the algorithms are 
validated for stability and accuracy in the reconstruction of gene networks. 

KEYWORDS 
Evolutionary computing, Gene expression analysis, Gene networks, Microarray data analysis, 
Multiobjective optimization, Multiobjective evolutionary algorithms, Phenomic algorithms   

1. INTRODUCTION 
The advent of high throughput methods such as microarray technology has made it possible for 
biologists to study hundreds of genes at a time, and to elucidate the relationships between them. 
The datasets that result from such studies have high dimensionality. Hence several researchers 
have developed methods of analysis which can determine useful patterns from the datasets 
without compromising the dimensionality [1]. Gene networks represent relationships between 
genes, based on observations of how the expression level of each gene affects the expression 
levels of the others [2]. The determination of these relationships from gene expression 
measurements is a reverse engineering or reconstruction activity. 

Evolutionary methods have been used by others [3] to analyze and capture the relationships 
between hundreds of genes with varying degrees of success. There is ample scope for better 
methods and application of better techniques. The Phenomic Algorithm, introduced in [4], 
presents an approach based on population dynamics. It is based on phenotypic interactions 
rather than genotypic mechanisms which are used in traditional genetic algorithms. Here the aim 
is to model gene expression record of each gene as an individual and then to let these 
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individuals interact in an environment that simulates the survival of the fittest. Thus the need for 
an explicit objective function is avoided. In this paper, we apply the phenomic algorithm to a 
number of microarray datasets in order to evaluate its effectiveness when compared to other 
evolutionary methods. 

We also modify the basic phenomic algorithm to handle multiple objectives. It is possible to 
employ multiobjective optimization to elucidate gene networks which are more biologically 
plausible [5]. We have chosen to minimize the sparseness of links between genes while 
simultaneously maximizing the relevance of links in a particular network. We use non-
dominated sorting in order to determine the pareto optimal solutions that best represent the 
balance between the objectives that we have chosen to optimize. We apply the multiobjective 
phenomic algorithm to the yeast sporulation dataset [6] and results show a marked improvement 
in the quality of networks discovered.  

The rest of this paper is organized as follows: In section 2, we review the related work done by 
others. We devote section 3 to a discussion about the methodology adopted by the basic 
phenomic algorithm and its implementation. We discuss the modification of the basic phenomic 
algorithm and its implementation in section 4. Finally, section 5 presents the results and 
validation, followed by section 6 which concludes the paper. 

2. RELATED WORK 
For just about a decade now reconstruction of gene networks has acquired importance due to the 
dawn of systems biology. One of the first attempts is a simple method that was introduced by 
Somogyi et al. [7]. Liang et al. [8] developed a general algorithm using mutual information to 
identify a minimal set of inputs that uniquely define the output for each gene at the next time 
step. Akutsu et al. [9], [10] and D’haeseleer et al. [11] have also proposed several reverse 
engineering algorithms. 

The S-system proposed by Savageau [12] has been used by some researchers [5], [13] in order 
to formulate an objective function for the evolutionary algorithm that they use to reverse 
engineer gene networks. Lubovac and Olsson [14] have suggested bringing in additional 
information resources into the evolutionary algorithm, so that more relevant relationships 
between genes can be derived. It is possible to develop better evolutionary algorithms by 
finding better objective functions since the critical dependency between the genotype and 
phenotype is characterized by them [15], [16].  

The field of multiobjective optimization has developed considerably during the last decade and 
a number of multiobjective evolutionary algorithms (MOEAs) have been applied to the problem 
of reconstructing gene networks from expression data [17], [18]. Other notable evolutionary 
algorithms include the non-dominated sorting genetic algorithm (NSGA) and its variations 
which have been applied to the problem of classification of cancer based on gene expression 
data [19], [20], [21]. The application of MOEAs to the elucidation of gene networks is an area 
which is receiving a large amount of attention from researchers due to the perceived benefits in 
applications such as drug discovery and the diagnosis of chronic diseases. 

3. THE BASIC PHENOMIC ALGORITHM 
The phenomic algorithm is an algorithm which utilizes phenotypic information to simulate an 
environment that allows the survival of the fittest individual. It was introduced in [4] and we 
present a brief description of the algorithm here so that our work, which is an extension of the 
basic algorithm, is better understood. Like most evolutionary algorithms, the phenomic 
algorithm begins with of a population of individuals.  
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Each individual has genetic information embedded within it. The genotype manifests as the 
phenotype in the environment and an objective function is generally used in evolutionary 
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Figure 1. Sequence of processing in the basic phenomic algorithm 
showing, for simplicity, processing of only two segments 
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algorithms to characterize this dependence. In the phenomic algorithm, the expression of a gene 
(taken from the microarray data) is embedded within the individual. Thus each individual has a 
ready reference for determining its own fitness and does not need an objective function. The 
presence of a strong correlation between expression patterns of two genes suggests co-
regulation of these genes. Co-expressed genes in the same cluster are very likely to be involved 
in the same cellular processes. This is the basis for elucidation of the regulatory networks. 

When constructing gene networks, we study the relationship between genes. If gi and gj are 
objects representing two such genes, their expression patterns across m samples may be written 
as { }mkwg iki ≤≤= 1  and { }mkwg jkj ≤≤= 1 . The similarity (or proximity) between 

gene expression patterns can be expressed in terms of a correlation coefficient, where wij is the 
expression level of the ith gene in the jth

 sample and �gi is the average of expression levels of the 
ith gene over all the samples. 

One such proximity measure, shown in Eqn. (1), is called Pearson correlation coefficient [22], 
[23]. This proximity measure would be useful only if we want to deduce steady-state 
relationships between genes. 
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When the microarray dataset contains records which represent the expression of each gene at m 
time-steps (instead of m samples) of an experiment, it is possible to verify whether the 
expression pattern of a gene gi at a time-step (t-1) has any correlation with the expression 
pattern of a gene gj at time t. For this, we define the Pearson correlation coefficient across time-
steps (from gene gi at time-step t = (k-1) to gene gj at time-step t = k), as given in Eqn. (2). With 
a small loss in accuracy, the expression record of each gene is assumed to wrap-around over the 
time-steps, for the purpose of this calculation. 
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Once the proximity measure for the genes is defined, the gene interactions such as “meet”, 
“know”, “like”, “dislike” can be defined as operations on genes gi and gj, as shown in Eqns. (3) 
to (6), where D represents a preset threshold distance. 

onceleastatpartnerswerejgandigiffTRUEreturnsjgigmeet ,),(    (3) 

.),( knownisgandgformeasureproximitytheiffTRUEreturnsggknow jiji   (4) 

DisgandgformeasureproximityiffTRUEreturnsgglike jiji ≤),(   (5) 

DisgandgformeasureproximityiffTRUEreturnsggdislike jiji >),(    (6) 

These operations determine the character of the phenotypic interactions that take place between 
gene objects. By storing links between genes that “like” each other it is possible to elucidate the 
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relationships that are required for reconstructing the gene network. We show the sequence of 
processing in the basic phenomic algorithm in Figure 1. We present the algorithm itself in 
Figure 2. The structure is very similar to a genetic algorithm since phenotypic processing is 
encountered in every generation, just like in a genetic algorithm.  

 

We give a brief description of the main functions of the basic phenomic algorithm here: 

1. Modelling genes as individuals: While modelling the genes as individuals, we embed the 
expression profile of the gene within the object itself. Also we store the relationships with other 
genes, which are discovered during the interaction phase, within the individual itself. We ensure 
sufficient density of individuals by replicating them as required. 

basic_phenomic_algorithm( ) 
{ 
divide gene expression data into segments; 
initialize population with first segment replicated; 
set segment count to 0; 
 
while population has not reduced to size of single segment and 
there are more segments to process 

{ 
 interact_population; 

consolidate_population; 
 

replicate and add next segment; 
increment segment count; 
} 

 
read gene-links stored in the final population; 
display gene networks constructed from links; 
} 
 
interact_population( )  
{ 
for a preset number of iterations 

{ 
randomly select two individuals from current population; 

 
apply interaction criteria in Eqns. (3) to (6); 
update gene-links of both individuals; 

 } 
} 
 
consolidate_population( ) 
{ 
for a preset number of iterations 
 { 

randomly select two individuals from current population; 
 

if the indices of both individuals are same 
eliminate one of them after copying its links; 

 } 
} 
 
Figure 2. The basic phenomic algorithm and its main functions 
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2. Simulating gene interaction: We set the stage for the survival-of-the-fittest by letting 
individuals to meet randomly. Eqns. (3) to (6) define the nature of these interactions between 
partners that meet. Partners would meet, know, like, or dislike each other depending upon the 
closeness of their expression profiles and whether they have met already. 

 

3. Enforcing natural processes: From time to time we consolidate the population by eliminating 
individuals which are replicates and have not acquired any links with other individuals. 
Thereafter we bring in the remaining segments of the data, one by one, till all segments have 
been considered. At the end of the process, the links between the genes, which are stored in the 
individuals, are used to construct the gene networks. 

As seen from experimental results in Figure 3, the algorithm is able to discover links between 
genes when applied to gene expression data. The Pearson correlation coefficient, as given in 
Eqn. (2), is used to determine the distance between gene profiles across time-steps, in a time-
varying dataset. Only those gene relationships which are closer than a preset distance threshold 
D are considered significant. 

 

Figure 4. A typical gene network generated by the 
multiobjective algorithm, when D = 0.2 

 

Figure 3. A typical gene network generated by the 
basic phenomic algorithm, when D = 0.2 
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4. THE MULTIOBJECTIVE PHENOMIC ALGORITHM 
Gene networks discovered by the basic phenomic algorithm are based on correlation between 
expression profiles of the genes. When the correlation distance is set very low (< 0.05) only 
very few links are recovered. However when the correlation distance is set high (> 0.25) the 
links are too numerous and obviously implausible. The optimal setting lies in between these two 
extreme cases. It is well known that most biological networks display the small-world network 
property that predicates sparseness between key nodes and dense local connections around each 
key node [5].  

 

In a conventional multiobjective evolutionary algorithm, we could use the similarity of the 
target network to small-world networks as an objective in order to determine the network that 
has the optimal number of links. Also, since we intend to find as many links as possible, we 
could use the number of links discovered as the other objective. When creating the new 
population, as required in any evolutionary algorithm, we could select individuals after non-
dominated sorting [19] based upon the two objectives: number of links (NOL) and small-world 
similarity factor (SWSF) [5], which are shown in Eqn. (7) and Eqn. (8). 

�
=

=
N

i
ijlNOL

1

   (7) 

Table 1. Yeast Dataset Gene Legend. 

Index Gene Name  Index Gene Name 
1 CDC14  24 ZIP2 
2 CDC16  25 DMC1 
3 CDC20  26 HOP1 
4 CDC23  27 IME2 
5 CDC5  28 IME4 
6 ISC10  29 MEI4 
7 MEI5  30 MEK1 
8 MPS1  31 REC102 
9 MSH4  32 REC104 
10 MSH5  33 REC114 
11 MSI1  34 RED1 
12 NDT80  35 SPO11 
13 POL30  36 SPO13 
14 RAD51  37 SPO16 
15 RAD54  38 ZIP1 
16 RAP1  39 SPO12 
17 RFA1  40 SPS1 
18 SAE3  41 DIT1 
19 SPO20  42 DIT2 
20 SPR6  43 SGA1 
21 SPS18  44 SPR1 
22 SPS10  45 SPR3 
23 YPT1    
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��
= =

=
N

i

N

j
ijlSWSF

1 1

  (8) 

Where 1=l ij
 if gene gi is linked to gene gj, else 0=l ij

  and N is the total number of genes in 

the target network. We could maximize objective NOL, while we minimize objective SWSF.  

However, the phenomic algorithm does not need to explicitly evaluate these objectives. At the 
consolidation phase of the phenomic algorithm, when two individuals have the same gene ID, 
we copy a consensus network comprising of the unique links from both the individuals, to one 
of the individuals, and the other is discarded. Hence we create the new population without 
explicitly evaluating or ranking the individuals. The consensus mechanism ensures that all the 
links discovered are retained in the population. Thus the first objective of maximizing the 
number of links is always met. It should be noted here that this reduces competition, which is 
the essential feature of genetic algorithms and is required when large search spaces need to be 
explored.    

The second objective of ensuring that networks discovered are similar to small-world networks 
is also always met because we do not have random recombination as in genetic algorithms. 
Random recombination (crossover) brings in the possibility of invalid combinations which 
might deviate from the natural small-world networks. We explore only valid links and hence the 
networks discovered are always biologically relevant.  

Thus we perform multiobjective optimization within the phenomic algorithm. The experimental 
results of this multiobjective algorithm are shown in Figure 4. For comparison, we have also 
implemented the multiobjective algorithm wherein we explicitly evaluate the two objectives as 
in Eqns. (7) and (8). Thereafter we assign ranks through non-dominated sorting and proceed as 
in any typical multiobjective evolutionary algorithm. The performance of this implementation is 
compared with that of our multiobjective phenomic algorithm in the next section. 

5. RESULTS AND DISCUSSION 
In this study, we used expression data from a study by Chu et al. [6]. Saccharomyces cerevisiae 
(common yeast) was synchronized by transferring to a sporulation medium at time t=0 to 
maximize the synchrony of sporulation. RNA was harvested at time t = 0, 0.5, 2, 5, 7, 9 and 
11.5 hours after transfer to sporulation medium. Each gene’s mRNA expression level just before 
transfer was used as control.  

Expression profiles of about 6100 genes are included in this dataset. Using them, we followed 
the same method as Chu et al. [6] to extract the genes that showed significant increase of mRNA 
levels during sporulation. Among them, we finally selected 45 genes, whose functions are 
biologically characterized by Kupiec et al. [24].  

Typical gene networks obtained from this yeast dataset are shown in Figure 3, when applying 
the basic phenomic algorithm and in Figure 4, when applying the multiobjective variant of the 
same algorithm. Table 1 gives the legend of the gene names for the indices used in the figures. 
A visual inspection of the networks shows a marked increase in the connectivity between genes 
when using the multiobjective phenomic algorithm. 

We validated these results by performing 10-fold leave-one-out-crossover validation (LOOCV). 
We made ten runs of each algorithm and compared the gene networks from of each run taken 
separately against the consensus gene networks of the other nine runs. 
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The average number of correctly-identified edges resulting from all the ten comparisons 
indicates the stability of the algorithm. The complement of the average number of incorrectly-
identified edges resulting from all the ten comparisons indicates the accuracy of the algorithm. 
Note that, for any given consensus network, the sum of the correctly-identified and incorrectly-
identified edges is not necessarily equal to the total number of edges in the network. This is 
because, in some cases, there might be existing edges that are not discovered at all. We formally 
define these metrics in Eqn. (9) and Eqn. (10). 

Stability Factor,  �
=

=
n

i i

i

E
CE

n
SF

1

1    (9) 

Accuracy Factor, �
=

−=
n

i i

i

E
IE

n
AF

1

1
1   (10) 

Where CEi is the number of correctly identified edges in the ith comparison, IEi is the number of 
incorrectly identified edges in the ith comparison, n is the total number of comparisons, which is 
ten in our case, and Ei is the total number of edges in the ith consensus network. 

The results of the validation tests are given in Table 2. As seen, the algorithms perform 
well in terms of stability, as well as accuracy. Due to the stochastic nature of the 
algorithms, the results obtained vary from run to run. However, we have statistically 
validated the results and found that the gene networks are elucidated both stably and 
accurately. Hence these algorithms could be viable alternative methods for 
determination of gene networks in general. 

6. CONCLUSION 
We have presented the reconstruction of gene networks using the basic phenomic algorithm and 
also validated it for stability and accuracy. The phenomic nature of the algorithm is manifested 
in its focus on the phenotypic, rather than genetic, information of an individual. Due to the 
implicit survival-of-the-fittest mechanisms the need for an explicit objective function was 
avoided. The algorithm was applied to yeast sporulation data and the resulting gene networks 
are found to be biologically relevant, when compared to the networks found at the 
Saccharomyces genome database [25]. 

The multiobjective variant of the phenomic algorithm performs better on the validation metrics, 
but this comes at a higher computational cost. Currently we are working on applying these 
algorithms to other datasets in order to study their effectiveness as optimization tools. 

Validation 
metric 

Basic phenomic 
algorithm 

Multiobjective 
evolutionary 

algorithm (NSGA) 

Multiobjective 
phenomic algorithm 

Stability 
Factor, SF 0.68 0.76 0.82 

Accuracy 
Factor, AF 0.74 0.95 0.97 

 

Table 2. Validation results using 10-fold LOOCV with yeast sporulation dataset. 
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