
������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

10.5121/ijaia.2010.1202 13

���������	
���	��	����� 	���������	��	

������	
����	��	�������	�����		

Amit Prakash Singh, Chandra Shekhar Rai1 and Pravin Chandra2

1University School of Information Technology, GGS Indraprastha University
 Kashmere Gate, Delhi – 110 403, India

aps.ipu@gmail.com, csrai_ipu@yahoo.com
2Iinstitute of Informatics & Communication, University of Delhi South Campus

 Delhi, India
pc_ipu@yahoo.com

ABSTRACT

Fault tolerance property of artificial neural networks has been investigated
with reference to the hardware model of artificial neural networks. Weight
fault is an important link, which causes breakup between two nodes. In this
paper three types of weight faults have been explained. Experiments have been
performed to demonstrate fault tolerance behavior of feedforward artificial
neural network for weight-stuck-MAX/MIN fault. Effect of weight-stuck-
MAX/MIN fault on trained network has been analyzed in this paper. The
obtained results suggest that networks are not fault tolerant to this type of
fault.

KEYWORDS
Artificial Neural Network, Fault Tolerance, Weight Fault

1. INTRODUCTION
An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by
the biological nervous system, i.e., the human brain [2]. The key element of this paradigm is the
novel structure of the information processing system. Artificial neural network have the
potential for parallel processing due to the implementation on Application Specific Integrated
Circuit (ASIC) [4] or Field Programmable Gate Array (FPGA) [5][6][7]. The input-output
function realized by neural network is determined by the value of its weights.
In the case of biological neural network, tolerance to loss of neurons has high priority, since a
graceful degradation of performance is very important for survival of the organism. Fault
tolerance measures the capacity of neural network to perform the desired task under given fault
condition. It also maintains their computing ability when a part of the network is damaged or
removed. In [8], the study of fault tolerant properties of the neurons has been reported for partial
fault tolerance by replication and training and the assertion is that Triple Modular Replication
(TMR) leads to a fault tolerant network. This is a one of the popular technique in digital system.
Fault tolerances of ANN have been studied in [1][15]. Fault tolerance of ANN may be
characterized/categorized on the following aspects:
 (i) Weight error: Weight stuck at zero/max/min

(ii) Neuron error: Node stuck at zero/max/min

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 14

(iii) Input pattern errors: injecting noise during the training phase.
The focus of this paper is to study effect of weight stuck at MAX/MIN fault in the FFANN..
Experiments have been performed to demonstrate behavior of network on weight stuck at
MAX/MIN faults. Detailed experimentation has been explained in section 6 to demonstrate
behavior of the network under weight stuck at MAX/MIN fault.
The analysis of fault tolerance of a network normally requires study of fault under weight, node
and external faults [24]. Stuck-at model is a popular technique to study effect of fault on a given
network [22], where a faulty gate delivers a constant logic one or logic zero at its output or acts
as if one of its inputs is stuck at a fixed logic value. Neural networks process analog function
values, and thus the range of possible faults may be even larger. Weight stuck at MAX/MIN fault
has been chosen for the experimentation purpose, in order to make fault analysis manageable.
The emphasis of the fault tolerance investigation of ANNs has been focused on the
demonstration of non-fault tolerant behavior of these networks and/or the design of paradigm
for making a network fault tolerant to specific faults. This paper aims to present an effect of
weight fault specifically stuck at MAX/MIN fault on a trained network. .
In this paper, Section II discusses related work; Section III explained architecture of FFANN,
Section IV discusses fault model and weight fault. Section V discusses the experiments and the
obtained results and fault measuring metrics for the weight-stuck-MAX/MIN fault while
conclusion is presented in Section VI.

2. RELATED WORKS
With the widespread usage of the chip-based device of the ANN as controller [9], it has become
imperative to study the behavior of these circuits under various faults, i.e., study of their fault
tolerance behavior must be undertaken. The available literature on the fault-tolerance behavior
of feedforward ANNs may be summarized as:

1. Demonstration of non-fault-tolerance to specific faults [8][11].
2. Regularization during training [12].
3. Enhancement of fault tolerance by design of algorithms for embedding fault-tolerance

into the network, during training [13][16].
4. Redesigning the network architecture (after training) by replication of nodes and their

associated weights and usage of majority voting [3][14].

Piuri [11] asserts that the network can not be considered to be intrinsically fault tolerant.
Edwards and Murray [12], use the regularization effect of weight noise to design a fault tolerant
network. Chin et. al. [16] demonstrate a training algorithm that uses weight value restriction
(and addition of additional nodes), fault injection during training and network pruning to
achieve a fault tolerant network, while [3] and [10] redesign the trained network to achieve a
fault tolerant network. Chu and Wah [20] has introduced the fault tolerant neural network with
hybrid redundancy that comprised spatial redundancy, temporal redundancy, and coding.
Phatak and Koren [14] devised measures to quantify the fault tolerance as a function of
redundancy. Bolt et. al. [17] indicated that the network trained by backpropagation algorithm
seldom distribute information to connection uniformly. Due to this information few connection
are key components, whose failure will cause great loss to the networks. A method to improve
the fault tolerance of backpropagation networks is presented in [21], which restrained the
magnitudes of the connections during training process. Hammadi and Ito [13] demonstrate a
training algorithm that reduces the relevance of weight. In [13], relevance of weight in each
training epoch was estimated, and then decreases the magnitude of weight

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 15

3. ARCHITECTURE OF FFANN

The architecture of the proposed fault diagnosis neural network is illustrated in Figure 1. A feed
forward artificial neural network (FFANN) has been chosen for the experiment purpose. Output
of the network is defined as:

 γα +=�
=

N

i
ii hy

1
 (1)

Where, �i is defined as connection strength between ith hidden layer node and the output node,
while � is the threshold/bias of the output node while hi is the output of the ith hidden layer
node, and it is defined as

)(
1

i

m

i
jiji xwh θσ += �

=
 (2)

In eq. (2), xj is an input vector applied to network; wij is defined as connection strength between
jth inputs to ith hidden layer node, while �i is the threshold/bias of the ith hidden layer node and
�(.) is the activation function used as a non linear transformation at the nodes of the hidden
layer.

Figure 1: Schematic Architecture of FFANN with one hidden layer of nonlinear nodes

In this paper, the network output function may be called a linear function as no transformation
of the net input to the output node is performed. A hyperbolic tangent sigmoid transfer function
[23] has been chosen as an activation function for hidden layer node and it is defined as

xx

xx

ee

ee
−

−

+
− where x is the net input to the node.

4. FAULT MODELS AND METRICS

Three types of fault model exist in neural networks system [10]. Fault models are categorized
weight fault, Input faults and Node faults. Missing link of interconnection between two nodes is
called weight fault. The weight and node faults are often modelled as stuck-at-0 and stuck-at-

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 16

MAX/MIN and most often occur during a memory disappearance or a link disconnection in
VLSI. Categorization of weight faults is explained in section 5.
Any incorrectness in the input to the adaptive machine is defined as an input fault/error. This
faults/error occurs due to external disturbance or noise. Mainly these types of fault affect input
vector of the machine.
Node fault is a similar type of fault as weight fault. Node faults are categorized in two types of
faults, namely hidden node faults and output node faults. Three types of node faults happen in
FFANN. Node fault categorized as follows:

1. Node stuck at zero
2. Node stuck at one
3. white noise in node

In this paper we consider only weight stuck at MAX/MIN fault. This fault corresponds to stuck-
MAX/MIN fault in the hardware, refers to interconnection between two nodes become
permanently on its maximum/minimum value.

4.1 Weight Fault

Weight fault/errors for the FFANN are defined:
(a) Weight stuck at zero (WSZ): This fault corresponds to an open fault or connection breakage
between two nodes.
(b) Weight stuck at maximum/minimum (WSMa/ WSMi): Weight stuck at a value of ±|W|max,
where |W|max is the maximum magnitude weight in the system. A -ve weight will pushed to
−|W|max , while a +ve weight will be pushed towards +|W|max, which is demonstrated as
WSMAXPOS in this paper. Weight stuck as a value of ±|W|min is defined as, |W|min is the
minimum magnitude weight in the system. A –ve weight will push to -|W|min., while a +ve
weight will be pushed towards +|W|min , which is demonstrated as WSMINPOS in this paper.
This allows us to model weight faults at substantially large values. Experiment demonstrates the
effect of WSMax/Min fault on the trained network in section 5.
(c) White noise in weights (WNW): The presence of white noise (zero mean gaussian with finite
variance) may be taken as a reflection of thermal noise or circuit degradation. This noise is
different from node output noise as it is not correlated in weights leading from the same node.

5. EXPERIMENTS AND RESULTS

A small experiment was conducted to demonstrate the applicability of weight-stuck-MAX/MIN
(WSMax/Min) fault on a trained neural network. The mean squared error (MSE) is used to
measure the effect of WSMax/Min faults. The percentage of misclassification is suggested as a
measure of fault/error, for classification problem. 30 nos. of networks were trained for the
following function approximation tasks [18].

 Fn1 :)sin(21 xxy ∗= ; x1,x2 uniform in [-2,2]
 Fn1:)*sin(*exp(21 xxy π=) ; x1,x2 uniform in [-1,1]

The data set for ANN are generated by uniform sampling. The network consists of two inputs,
one hidden layer and one output node (Figure 1). The detail of the architecture used is
summarized in Table 1. The architecture was identified by exploratory experiments where the
size of the hidden layer was varied from 5 to 30 (that is, the number of nodes in the hidden layer
were varied from 5 to 30 in steps of 5) and the architecture that give the minimum error on
training was used. All the hidden nodes use tangent hyperbolic activation function while the
output nodes are linear.

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 17

Table 1: Architecture of network used

Sr. No. Function Inputs Hidden
nodes

Output
nodes

No. of
weight

1. Fn1 2 25 1 101
2. Fn2 2 15 1 61

The resilient propagation (RPROP) [19] algorithm as implemented in MATLAB 7.2 Neural
Network toolbox is used with the default learning rate and momentum constant. For training the
network 200 random samples were generated from the input domain of the functions for training
purposes. 5000 epochs of training was conducted for each problem. 30 nos. of networks has
been trained with the above procedure.

Table 2: Weight Stuck at MAX/MIN Summary Data
Fault Metric WSMAXPOS WSMINPOS
MINMAX Fn1(7) Fn2(5) Fn1(2) Fn2(18)
MIN_MSE 9.48E-06 0.0007 0 0
MAX_MSE 63.5805 43.8689 0.700451 0.475097
MEAN_MSE 11.0509 8.7114 0.129236 0.103277
MEDIAN_MSE 0.81206 0.685754 0.0667618 0.0484024
STD_MSE 18.4019 14.6401 0.147783 0.115438
MINMEAN Fn1(7) Fn2(14) Fn1(22) Fn2(11)
MIN_MSE 9.48E-06 0.0014205 0 0
MAX_MSE 63.5805 44.449 1.03956 0.573863
MEAN_MSE 11.0509 7.04836 0.100539 0.0936884
MEDIAN_MSE 0.81206 0.34773 0.028788 0.0191068
STD_MSE 18.4019 12.0506 0.183387 0.151413

Table 2 provides the summary statistics for the network chosen. From the value obtained we
may infer that these networks do not show very good fault tolerance behavior for the
WSMax/Min fault. Though, some of the weights do not affect the network computation, as
under these fault, zero value of MSE demonstrate error of network due to WSMax/Min fault is
zero. From this it infer that few weights are not utilized in computation and can easily be
pruned.
Figures 2 and 3 represents the behavior of all 30 networks for the average MSE and maximum
MSE for (any) single WSMAXPOS fault for Fn1 and Fn2 respectively. Based on the analysis,
we have chosen network no. 7 and 5 for function 1 and 2 respectively to study fault metric in
MINMAX and network no. 7 and 14 for function 1 and 2 respectively, has been chosen to study
fault metric in MINMEAN for WSMAXPOS fault.
In a similar way figures 4 and 5 represents the behavior of all 30 networks for the average MSE
and maximum MSE for (any) single WSMINPOS fault. . From the figures, we may infer that,
the network no. 2 and 18 for the function 1 and 2 respectively, the value of the error metric is
lowest out of 30 networks. So we have chosen network no. 2 and 18 for further analysis of fault
metric and summary data is presented in table 2. In a similar way, network no. 22 and 11 for
function 1 and 2 respectively gives the lowest error amongst the 30 networks.
We choose the network (out to 30), with the minimum maximum MSE (MINMAX) and
minimum mean MSE (MINMEAN), for further analysis for each of the two tasks; that is, to
demonstrate network with the best fault tolerance behavior is chosen for further analysis.

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 18

Fig. 2: Behavior of 30 network for Fn1 under
WSMAXPOS

Fig. 3: Behavior of 30 network for Fn2
WSMAXPOS

Fig. 4: Behavior of 30 network for Fn1 under
WSMINPOS

Fig. 5: Behavior of 30 network for Fn2
WSMINPOS

Fig. 6: Weight distribution (MINMAX) for
network 7 under Fn1 for WSMAXPOS

Fig. 7: Weight distribution (MINMAX) for
network 5 under Fn2 for WSMAXPOS

Fig. 8: Weight distribution (MINMAX) for
network 2 under Fn1 for WSMINPOS

Fig. 9: Weight distribution (MINMAX) for
network 18 under Fn2 for WSMINPOS

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 19

Fig. 10: Weight distribution (MINMEAN) for
network 7 under Fn1 for WSMAXPOS

Fig. 11: Weight distribution (MINMEAN) for
network 14 under Fn2 for WSMAXPOS

Fig. 12: Weight distribution (MINMEAN) for
network 22 under Fn1 for WSMINPOS

Fig. 13: Weight distribution (MINMEAN) for
network 11 under Fn2 for WSMINPOS

From figure 6-9, it is demonstrated that faults in some weights is tolerated (that is, the induced
error under fault is small), but the figures also shows that fault in some weights are critical (that
is, the faults in these weights lead to large computational error in the network output), for the
MINMAX metric, a similar behavior is seen in figure 10-13 for the MINMEAN metric. Figure
6-13 also provides the information of weight distribution across the error in a particular network
under specific task.
From the results obtained in Table 2, it is apparent that these networks trained using the
RPROP[19] algorithm can not be called fault tolerant to the WSMax/Min fault.

6. CONCLUSION

This paper has presented empirical results on weight stuck-at-Max/Min faults for sigmoidal
FFANNs. From the obtained results we may conclude:

1. Some weight does not affect the output of the network, which can be pruned.
2. Some weights lead to small change in output, so it may be infered that partial fault

tolerance can exist in the network.
3. Some weights are critical for max/min value computation and faults in these are not

well tolerated.
In our opinion, the next step in the analysis of these networks is to device a mechanism that
distributes the computational importance of the critical weights through realignment of weight
or by addition of new nodes (hidden) and corresponding weights. Moreover, the effect of initial
weights on the fault tolerance behavior of FFANN to weight stuck at Max/Min faults needs to
be further investigated.

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 20

REFERENCES

[1]. F. M. Dias and A. Antunes, “Fault Tolerance of Artificial Neural Networks: an Open Discussion
for a Global Model,” International Journal of Circuits, Systems and Signal Processing, Naun,
July, 2008.

[2]. R. P. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine, pp.
4-22, April 1987.

[3]. F. M. Dias and A. Antunes, “Fault Tolerance Improvement through architecture change in
Artificial Neural Networks,” Engineering Applications of Artificial Intelligence, 2007.

[4]. S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A Reconfigurable VLSI Neural Network,”
IEEE Journal of Solid State Circuits, vol. 27, no. 1, January 1992.

[5]. M. A. Cavuslu, C. Karakuzu, and S. Sahin, “Neural Network Hardware Implementation using
FPGA,” Neural Information Processing, Lecture Notes in Computer Science, Berlin Germany:
Springer, 2006, vol. 4234.

[6]. R. Raeisi and A. Kabir, “Implementation of Artificial Neural Network on FPGA,” American
Society for Engineering Education, Illinois-Indiana and North Central Joint Section Conference ,
April, 2006

[7]. S. Sahin, Y. Becerikli, and S. Yazici, “Neural Network Implementation in Hardware Using
FPGAs,” Neural Information Processing, Lecture notes in Computer Science, Berlin Germany:
Springer, 2006, vol. 4234.

[8]. E.B. Tchernev, R. G. Mulvaney, and D.S. Phatak, “Investigating the Fault Tolerance of Neural
Networks,” Neural Computation, vol. 17, no. 7, pp. 1646-1664, July 2005.

[9]. F. M. Dias, A. Antunes, and A. Mota, “Artificial Neural Networks: a Review of Commercial
Hardware,” Engineering Applications of Artificial Intelligence, IFAC, vol. 17(8), pp. 945-952,
2004.

[10]. P. Chandra and Y. Singh, “Fault Tolerance of Feedforward Artificial Neural Networks - A
Framework of Study,” Proceedings of the International Joint Conference on Neural Networks,
vol. 1, pp. 489-494, July 2003.

[11]. V. Piuri, “Analysis of Fault Tolerance in Artificial Neural Networks,” Journal of Parallel and
Distributed Computing, pp. 18-48, 2001.

[12]. P. J. Edwards and A. F. Murray, “Fault Tolerance via Weight Noise in Analog VLSI
Implementations of MLP’s – A Case study with EPSILON,” IEEE Transaction on Circuits and
Systems-II: Analog and Digital Signal Processing, vol. 45, no. 9, September 1998.

[13]. N. C. Hammadi and H. Ito, “A Learning Algorithm for Fault Tolerant Feedforward Neural
Networks,” IEICE Trans. Information and Systems, vol. E80-D, no.1, pp.21-27, 1997.

[14]. D.S. Phatak and I. Koren, “Complete and Partial Fault Tolerance of Feedforward Neural Nets,”
IEEE Transaction on Neural Networks, vol. 6, no. 2, pp. 446-456, March, 1995.

[15]. C. Alippi, V. Piuri, and M. Sami, “Sensitivity to Errors in Artificial Neural Networks: A
Behavioral Approach,” IEEE Transaction on Circuits and Systems-I: Fundamental Theory and
Applications, vol. 42, no. 6, June 1995.

[16]. C. T. Chiu, K. Mehrotra, C.K. Mohan, and S. Ranka,, “Training Techniques to obtain fault-
tolerant neural network,” 24th International Symposium on Fault-Tolerant Computing, pp360-
369, June 1994.

[17]. G. Bolt, “Investigating Fault Tolerance in Artificial Neural Networks,” University of York,
Department of Computer Science, Technical Report YCS 154, Heslington, York, England, 1991.

[18]. V. Cherkassky, “Comparison of Adaptive methods for function estimation from samples,” IEEE
Transaction on Neural Networks, vol. 7, no. 4, July 1996.

[19]. M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning: The
RPROP algorithm,” Proceedings of the IEEE International Conference on Neural Networks
(ICNN), pp. 586-591, San Francisco, 1993

[20]. L.C. Chu and B.W. Wah, “Fault tolerant neural networks with hybrid redundancy”, IEEE Int.
Joint Conference on Neural Networks, San Diego, CA. vol. 2, pp. 639-649,1990

[21]. S. S. Yeung and X. Sun, “Using Function Approximation to analyze the sensitivity of MLP with
antisymmetric squashing activation function”, IEEE Transaction on neural networks, vol.13,
no.1, January 2002.

[22]. A. D. Friedman and P. R. Memon, “Fault Detection in Digital Circuits”, Prentice-Hall,
Englewood Cliffs, NJ 1971.

������������	
������	
�
��������	
����		������
�
���	��������
��������
��	���
�����
����	
����

 21

[23]. T. P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, "Accelerating the
convergence of the backpropagation method," Biological Cybernetics, Vol. 59, 1988, pp. 257-
263

[24]. A. P. Singh, P. Chandra, and C. S. Rai, “Fault Models for Neural Hardware”, IEEE First
International Conference on Advances in System Testing and Validation Lifecycle (VALID
2009), held during September 20-25, 2009 in Porto, Portugal.

Authors

Amit Prakash Singh is an Assistant Professor in University School of
Information Technology, Guru Gobind Singh Indraprastha University, Delhi.
He is pursuing Ph.D. from GGS Indraprastha University, Delhi. His area of
research is Neural Hardware and Embedded System.

Dr. Chandra Shekhar Rai is an Associate Professor in University School
of Information Technology, GGS Indraprastha University, Delhi. He has 10
years of teaching and research experience. He has published many research
papers in the journal of international repute. His area of research is artificial
neural network and signal processing.

Dr. Pravin Chandra is an Associate Professor in Institute of Informatics &
Communication, University of Delhi South Campus, Delhi. He has earlier
worked in GGS Indraprastha University, Delhi. He has published many
research papers in the area of Artificial Neural Network in journal of
international repute.

