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ABSTRACT 

Fault tolerance property of artificial neural networks has been investigated 
with reference to the hardware model of artificial neural networks. Weight 
fault is an important link, which causes breakup between two nodes. In this 
paper three types of weight faults have been explained. Experiments have been 
performed to demonstrate fault tolerance behavior of feedforward artificial 
neural network for weight-stuck-MAX/MIN fault.  Effect of weight-stuck-
MAX/MIN fault on trained network has been analyzed in this paper. The 
obtained results suggest that networks are not fault tolerant to this type of 
fault.  
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1. INTRODUCTION 
An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by 
the biological nervous system, i.e., the human brain [2]. The key element of this paradigm is the 
novel structure of the information processing system. Artificial neural network have the 
potential for parallel processing due to the implementation on Application Specific Integrated 
Circuit (ASIC) [4] or Field Programmable Gate Array (FPGA) [5][6][7].  The input-output 
function realized by neural network is determined by the value of its weights.  
In the case of biological neural network, tolerance to loss of neurons has high priority, since a 
graceful degradation of performance is very important for survival of the organism. Fault 
tolerance measures the capacity of neural network to perform the desired task under given fault 
condition. It also maintains their computing ability when a part of the network is damaged or 
removed. In [8], the study of fault tolerant properties of the neurons has been reported for partial 
fault tolerance by replication and training and the assertion is that Triple Modular Replication 
(TMR) leads to a fault tolerant network. This is a one of the popular technique in digital system. 
Fault tolerances of ANN have been studied in [1][15]. Fault tolerance of ANN may be 
characterized/categorized on the following aspects: 
 (i) Weight error: Weight stuck at zero/max/min 

(ii) Neuron error: Node stuck at zero/max/min 
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(iii) Input pattern errors: injecting noise during the training phase. 
The focus of this paper is to study effect of weight stuck at MAX/MIN fault in the FFANN.. 
Experiments have been performed to demonstrate behavior of network on weight stuck at 
MAX/MIN faults. Detailed experimentation has been explained in section 6 to demonstrate 
behavior of the network under weight stuck at MAX/MIN fault.  
The analysis of fault tolerance of a network normally requires study of fault under weight, node 
and external faults [24]. Stuck-at model is a popular technique to study effect of fault on a given 
network [22], where a faulty gate delivers a constant logic one or logic zero at its output or acts 
as if one of its inputs is stuck at a fixed logic value. Neural networks process analog function 
values, and thus the range of possible faults may be even larger. Weight stuck at MAX/MIN fault 
has been chosen for the experimentation purpose, in order to make fault analysis manageable.  
The emphasis of the fault tolerance investigation of ANNs has been focused on the 
demonstration of non-fault tolerant behavior of these networks and/or the design of paradigm 
for making a network fault tolerant to specific faults. This paper aims to present an effect of 
weight fault specifically stuck at MAX/MIN fault on a trained network. . 
In this paper, Section II discusses related work; Section III explained architecture of FFANN, 
Section IV discusses fault model and weight fault. Section V discusses the experiments and the 
obtained results and fault measuring metrics for the weight-stuck-MAX/MIN fault while 
conclusion is presented in Section VI. 
 
2. RELATED WORKS 
With the widespread usage of the chip-based device of the ANN as controller [9], it has become 
imperative to study the behavior of these circuits under various faults, i.e., study of their fault 
tolerance behavior must be undertaken. The available literature on the fault-tolerance behavior 
of feedforward ANNs may be summarized as: 
 

1. Demonstration of non-fault-tolerance to specific faults [8][11]. 
2. Regularization during training [12]. 
3. Enhancement of fault tolerance by design of algorithms for embedding fault-tolerance 

into the network, during training [13][16]. 
4. Redesigning the network architecture (after training) by replication of nodes and their 

associated weights and usage of majority voting [3][14]. 
 
Piuri [11] asserts that the network can not be considered to be intrinsically fault tolerant. 
Edwards and Murray [12], use the regularization effect of weight noise to design a fault tolerant 
network. Chin et. al. [16] demonstrate a training algorithm that uses weight value restriction 
(and addition of additional nodes), fault injection during training and network pruning to 
achieve a fault tolerant network, while [3] and [10] redesign the trained network to achieve a 
fault tolerant network. Chu and Wah [20] has introduced the fault tolerant neural network with 
hybrid redundancy that comprised spatial redundancy, temporal redundancy, and coding.  
Phatak and Koren [14] devised measures to quantify the fault tolerance as a function of 
redundancy. Bolt et. al. [17] indicated that the network trained by backpropagation algorithm 
seldom distribute information to connection uniformly. Due to this information few connection 
are key components, whose failure will cause great loss to the networks. A method to improve 
the fault tolerance of backpropagation networks is presented in [21], which restrained the 
magnitudes of the connections during training process. Hammadi and Ito [13] demonstrate a 
training algorithm that reduces the relevance of weight. In [13], relevance of weight in each 
training epoch was estimated, and then decreases the magnitude of weight    
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3. ARCHITECTURE OF FFANN 

The architecture of the proposed fault diagnosis neural network is illustrated in Figure 1. A feed 
forward artificial neural network (FFANN) has been chosen for the experiment purpose. Output 
of the network is defined as:  

    γα +=�
=

N

i
ii hy

1
   (1) 

 
Where, �i is defined as connection strength between ith hidden layer node and the output node, 
while � is the threshold/bias of the output node while hi is the output of the ith hidden layer 
node, and it is defined as  
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In eq. (2), xj is an input vector applied to network; wij is defined as connection strength between 
jth inputs to ith hidden layer node, while �i is the threshold/bias of the ith hidden layer node and  
�(.) is the activation function used as a non linear transformation at the nodes of the hidden 
layer. 

 

 
 

 
Figure 1: Schematic Architecture of FFANN with one hidden layer of nonlinear nodes 

 
 
In this paper, the network output function may be called a linear function as no transformation 
of the net input to the output node is performed. A hyperbolic tangent sigmoid transfer function 
[23] has been chosen as an activation function for hidden layer node and it is defined as 
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−  where x  is the net input to the node.  

 

4.  FAULT MODELS AND METRICS 

Three types of fault model exist in neural networks system [10]. Fault models are categorized 
weight fault, Input faults and Node faults. Missing link of interconnection between two nodes is 
called weight fault. The weight and node faults are often modelled as stuck-at-0 and stuck-at-
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MAX/MIN and most often occur during a memory disappearance or a link disconnection in 
VLSI. Categorization of weight faults is explained in section 5. 
Any incorrectness in the input to the adaptive machine is defined as an input fault/error. This 
faults/error occurs due to external disturbance or noise. Mainly these types of fault affect input 
vector of the machine.  
Node fault is a similar type of fault as weight fault. Node faults are categorized in two types of 
faults, namely hidden node faults and output node faults. Three types of node faults happen in 
FFANN. Node fault categorized as follows: 

1. Node stuck at zero 
2. Node stuck at one 
3. white noise in node 

 
In this paper we consider only weight stuck at MAX/MIN fault. This fault corresponds to stuck-
MAX/MIN fault in the hardware, refers to interconnection between two nodes become 
permanently on its maximum/minimum value.  
 
4.1 Weight Fault 

Weight fault/errors for the FFANN are defined: 
(a) Weight stuck at zero (WSZ): This fault corresponds to an open fault or connection breakage 
between two nodes. 
(b) Weight stuck at maximum/minimum (WSMa/ WSMi): Weight stuck at a value of ±|W|max, 
where |W|max is the maximum magnitude weight in the system. A -ve weight will pushed to 
−|W|max , while a +ve weight will be pushed towards +|W|max, which is demonstrated as 
WSMAXPOS in this paper. Weight stuck as a value of ±|W|min is defined as, |W|min  is the 
minimum magnitude weight in the system. A –ve weight will push to -|W|min., while a +ve 
weight will be pushed towards +|W|min , which is demonstrated as WSMINPOS in this paper. 
This allows us to model weight faults at substantially large values. Experiment demonstrates the 
effect of WSMax/Min fault on the trained network in section 5. 
(c) White noise in weights (WNW): The presence of white noise (zero mean gaussian with finite 
variance) may be taken as a reflection of thermal noise or circuit degradation. This noise is 
different from node output noise as it is not correlated in weights leading from the same node. 
  

5.  EXPERIMENTS AND RESULTS 

A small experiment was conducted to demonstrate the applicability of weight-stuck-MAX/MIN 
(WSMax/Min) fault on a trained neural network. The mean squared error (MSE) is used to 
measure the effect of WSMax/Min faults. The percentage of misclassification is suggested as a 
measure of fault/error, for classification problem. 30 nos. of networks were trained for the 
following function approximation tasks [18]. 
  
 Fn1 : )sin( 21 xxy ∗=      ; x1,x2 uniform in [-2,2] 
 Fn1: )*sin(*exp( 21 xxy π= )       ; x1,x2 uniform in [-1,1] 
       
The data set for ANN are generated by uniform sampling. The network consists of two inputs, 
one hidden layer and one output node (Figure 1). The detail of the architecture used is 
summarized in Table 1. The architecture was identified by exploratory experiments where the 
size of the hidden layer was varied from 5 to 30 (that is, the number of nodes in the hidden layer 
were varied from 5 to 30 in steps of 5) and the architecture that give the minimum error on 
training was used. All the hidden nodes use tangent hyperbolic activation function while the 
output nodes are linear.   
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Table 1: Architecture of network used 

Sr. No. Function  Inputs Hidden 
nodes 

Output 
nodes 

No. of 
weight 

1. Fn1 2 25 1 101 
2. Fn2 2 15 1 61 

 
The resilient propagation (RPROP) [19] algorithm as implemented in MATLAB 7.2 Neural 
Network toolbox is used with the default learning rate and momentum constant. For training the 
network 200 random samples were generated from the input domain of the functions for training 
purposes. 5000 epochs of training was conducted for each problem. 30 nos. of networks has 
been trained with the above procedure.  
 

Table 2: Weight Stuck at MAX/MIN Summary Data 
Fault Metric WSMAXPOS WSMINPOS 
MINMAX Fn1(7) Fn2(5) Fn1(2) Fn2(18) 
MIN_MSE 9.48E-06 0.0007 0 0 
MAX_MSE 63.5805 43.8689 0.700451 0.475097 
MEAN_MSE 11.0509 8.7114 0.129236 0.103277 
MEDIAN_MSE 0.81206 0.685754 0.0667618 0.0484024 
STD_MSE 18.4019 14.6401 0.147783 0.115438 
MINMEAN Fn1(7) Fn2(14) Fn1(22) Fn2(11) 
MIN_MSE 9.48E-06 0.0014205 0 0 
MAX_MSE 63.5805 44.449 1.03956 0.573863 
MEAN_MSE 11.0509 7.04836 0.100539 0.0936884 
MEDIAN_MSE 0.81206 0.34773 0.028788 0.0191068 
STD_MSE 18.4019 12.0506 0.183387 0.151413 

 
Table 2 provides the summary statistics for the network chosen. From the value obtained we 
may infer that these networks do not show very good fault tolerance behavior for the 
WSMax/Min fault. Though, some of the weights do not affect the network computation, as 
under these fault, zero value of MSE demonstrate error of network due to WSMax/Min fault is 
zero. From this it infer that few weights are not utilized in computation and can easily be 
pruned.  
Figures 2 and 3 represents the behavior of all 30 networks for the average MSE and maximum 
MSE for (any) single WSMAXPOS fault for Fn1 and Fn2 respectively. Based on the analysis, 
we have chosen network no. 7 and 5 for function 1 and 2 respectively to study fault metric in 
MINMAX and network no. 7 and 14 for function 1 and 2 respectively, has been chosen to study 
fault metric in MINMEAN for WSMAXPOS fault.  
In a similar way figures 4 and 5 represents the behavior of all 30 networks for the average MSE 
and maximum MSE for (any) single WSMINPOS fault. . From the figures, we may infer that, 
the network no. 2 and 18 for the function 1 and 2 respectively, the value of the error metric is 
lowest out of 30 networks. So we have chosen network no. 2 and 18 for further analysis of fault 
metric and summary data is presented in table 2. In a similar way, network no. 22 and 11 for 
function 1 and 2 respectively gives the lowest error amongst the 30 networks.  
We choose the network (out to 30), with the minimum maximum MSE (MINMAX) and 
minimum mean MSE (MINMEAN), for further analysis for each of the two tasks; that is, to 
demonstrate network with the best fault tolerance behavior is chosen for further analysis. 
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Fig. 2: Behavior of 30 network for Fn1 under 
WSMAXPOS 

Fig. 3: Behavior of 30 network for Fn2 
WSMAXPOS 

  

Fig. 4: Behavior of 30 network for Fn1 under 
WSMINPOS 

Fig. 5: Behavior of 30 network for Fn2 
WSMINPOS 

  

Fig. 6: Weight distribution (MINMAX) for 
network 7 under Fn1 for WSMAXPOS 

Fig. 7: Weight distribution (MINMAX) for 
network 5 under Fn2 for WSMAXPOS 

  
Fig. 8: Weight distribution (MINMAX) for 
network 2 under Fn1 for WSMINPOS 

Fig. 9: Weight distribution (MINMAX) for 
network 18 under Fn2 for WSMINPOS 
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Fig. 10: Weight distribution (MINMEAN) for 
network 7 under Fn1 for WSMAXPOS 

Fig. 11: Weight distribution (MINMEAN) for 
network 14 under Fn2 for WSMAXPOS 

  
Fig. 12: Weight distribution (MINMEAN) for 
network 22 under Fn1 for WSMINPOS 

Fig. 13: Weight distribution (MINMEAN) for 
network 11 under Fn2 for WSMINPOS 

 

From figure 6-9, it is demonstrated that faults in some weights is tolerated (that is, the induced 
error under fault is small), but the figures also shows that fault in some weights are critical (that 
is, the faults in these weights lead to large computational error in the network output), for the 
MINMAX metric, a similar behavior is seen in figure 10-13 for the MINMEAN metric. Figure 
6-13 also provides the information of weight distribution across the error in a particular network 
under specific task.  
From the results obtained in Table 2, it is apparent that these networks trained using the 
RPROP[19] algorithm can not be called fault tolerant to the WSMax/Min fault.  
 
6.  CONCLUSION  

This paper has presented empirical results on weight stuck-at-Max/Min faults for sigmoidal 
FFANNs. From the obtained results we may conclude:  

1. Some weight does not affect the output of the network, which can be pruned. 
2. Some weights lead to small change in output, so it may be infered that partial fault 

tolerance can exist in the network.  
3. Some weights are critical for max/min value computation and faults in these are not 

well tolerated.  
In our opinion, the next step in the analysis of these networks is to device a mechanism that 
distributes the computational importance of the critical weights through realignment of weight 
or by addition of new nodes (hidden) and corresponding weights. Moreover, the effect of initial 
weights on the fault tolerance behavior of FFANN to weight stuck at Max/Min faults needs to 
be further investigated. 
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