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ABSTRACT 

The risk of diseases such as heart attack and high blood pressure could be reduced by adequate physical 

activity. However, even though majority of general population claims to perform some physical exercise, 

only a minority exercises enough to keep a healthy living style. Thus, physical inactivity has become one 

of the major concerns of public health in the past decade. Research shows that the highest decrease in 

physical activity is noticed from high school to college. Thus, it is of great importance to quickly identify 

college students at health risk due to physical inactivity. Research also shows that the level of physical 

activity of an individual is highly correlated to demographic features such as race and gender, as well as 

self motivation and support from family and friends. This information could be collected from each 

student via a 20 minute questionnaire, but the time needed to distribute and analyze each questionnaire is 

infeasible on a collegiate campus. Thus, we propose an automatic identifier of students at risk, so that 

these students could easier be targeted by collegiate campuses and physical activity promotion 

departments. We present in this paper preliminary results of a supervised backpropagation multilayer 

neural network for classifying students into at-risk or not at-risk group. 
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1. INTRODUCTION 

Physical inactivity is one of the main causes of diseases such as heart attack and high blood 

pressure, and therefore it has become one of the biggest concerns of public health in the past 

decade [1],[2]. Even though many people claim that they exercise, only a very small percent of 

population is physically active at the level high enough to reduce the risk of diseases [3]. 

According to the American Heart Association and the American College of Sports Medicine, to 

keep a healthy living style, a person should exercise at least five times a week for 30 minutes at 

a moderate rate (e.g., walk), or at least three times a week for 20 minutes at a vigorous rate (e.g., 

run), or a combination of vigorous and moderate activities that result in an equivalent effort [4]. 

However, studies show that even though 75% of American population states to be physically 

active, only 25% of Americans satisfy the minimum recommendations [5].  

Several studies have shown that there is a high correlation between the level of physical activity 

and demographic characteristics such as race and gender. Moreover, it has been shown that self-

motivation, self perception of one's current physical and psychological health, support from 

friends and family, and previous physical engagement have a great impact on a person's activity 

level [6],[7],[8],[9],[10]. This information could be collected via a 20 minutes questionnaire 

from any individual, and then used to predict which individuals are likely to be under health 

risks due to physical inactivity. Once identified, the individuals at risk could be easier targeted 

by physical activity promotion departments and in future research involving physical activity 

and health. However, time to distribute the questionnaire to a large population and to analyze 
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the results makes this process infeasible in reality. Currently, studies that attempt to find a 

general formulae for increasing physical activity of inactive or not sufficiently active individuals 

consist of attracting a small number of students to participate in surveys and providing tips to all 

participants how to improve health and physical activity. However, only a small number of 

inactive students is reached via these surveys since only limited amount of human power is 

available to distribute and analyze surveys, and there is no developed method to target 

individuals at risk, so all students (physically inactive as well as physically active) are targeted 

equally. 

Since only a small number of inactive individuals is usually reached by physical activity studies, 

it is important to first quickly identify individuals at risk and then target this group of 

individuals in further studies and promotion programs. In order to identify individuals at risk, it 

is necessary to examine each individual, which is impossible by current method of distributing 

and analyzing questionnaires. Thus, this process needs to be automated and widely available.  

Some aspects of health monitoring and providing tips for physical activities have been 

automated and available online. These tools include calculating body mass index [11], 

calculating real body age (regardless of biological age) based on the history of diseases and life 

style of an individual [12], and providing simple physical activity logs [13]. Moreover, a study 

was delivered to determine the impact of providing physical activity advice to elderly people via 

an automated computer system [14]. However, these tools only determine the current state of 

one’s body and do not detect the reasons for possibly unhealthy life style, and they do not 

predict future health risk of an individual. 

For this reason, we propose to develop a computerized questionnaire (for easy distribution) and 

the first automated identification of individuals at risk based on demographic and self-reported 

characteristics of in individual, which are provided via the questionnaire.  

We developed a supervised multilayer backpropagation neural network to identify individuals at 

health risk based on demographic characteristics and self perception about physical activity. The 

neural network was trained on a set of data collected from 146 students at a predominantly 

Hispanic collegiate institution, and its accuracy was tested using the 5-fold cross-over validation 

technique. Using the available data, the developed neural network was able to classify correctly 

79.5% of individuals. Even though the current neural network will enable targeting a large 

number of physically inactive students, when data from more individuals are available, the 

neural network will be re-trained and enhanced, and is expected to produce even better results. 

2. COLLEGIATE SETTING FOR PHYSICAL ACTIVITY 

Research shows that the most drastic decrease in physical activity occurs from high school to 

college and beyond [15]. Thus, it is important for college students to develop good physical 

activity habits since these habits transfer to later years of their lives [16],[17]. Campus activity 

boards often promote physical activity through inexpensive classes where a high support from 

peers and instructors is available, free gym membership, different sports competitions, as well 

as other promotions (such as free personal trainer or gift certificate) for participation in physical 

activity studies. However, most of these promotions usually attract students that are already 

physically active; thus ineffectively selecting research subjects and wasting resources on 

students who do not really need these resources (e.g., personal trainer or motivation from peers). 

Thus, identifying students that are likely to be at risk of being not physically active enough is 

crucial. 

3. COLLECTED DATA 

Since collegiate setting is the right place to start targeting individuals at health risk due to 

physical inactivity, we collected data from 146 students at a collegiate institution. The students 
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were recruited from different classes representing diverse ethnic groups, gender, major area of 

study, and year in college. Each participant completed a 20-minute survey providing all 

information used in this study.  

 

Each individual self-reported his/her demographic factors including gender and race. More 

females (62%) participated in the survey than males (38%). Since the survey was done at a 

predominantly Hispanic institution, it is not surprising that majority of participants were of 

Hispanic origin (82%). Besides Hispanics, several other ethnic groups were present in the study 

including Caucasians, African Americans, Native Hawaiians, American Indians, and Asians. 

However, with only 18% of participants belonging to races other than Hispanic, there were not 

enough samples to consider each of non-Hispanic ethnicities individually; thus, all participants 

were classified either as Hispanic or non-Hispanic. The summary of demographic characteristics 

is presented in the Table 1. 

 

 Table 1.  Demographic characteristics of participants. 

 Male Female 

Hispanic 46 74 

Non-Hispanic 10 16 

 

Each participant also self-reported the major area of study at the college. It is expected that 

students majoring in health and sports related fields, such as kinesiology, pre-nursing, and 

physical therapy, are more aware of the impact of physical activity on health and are therefore 

more active than their peers majoring in areas not related to health and sport studies, such as 

education, science, and engineering. The hypothesis is supported by our sample of students with 

about two-thirds of sports and health related majors not being at risk of inactivity, and more 

than one-half of not sports and health related majors being under the risk of inactivity. Each 

participant was therefore classified by his/her major as either sports related student or not sports 

related student. The summary of participants’ answers is provided in the Table 2. 

 

 Table 2.  Major area of study and the risk of physical inactivity. 

 Sports related Not sports related 

At risk 33 24 

Not at risk 70 19 

 

Moreover, the participants self-reported perceptions of their current physical and psychological 

health by selecting one of five available options: excellent, good, fair, poor, and very poor. 

Most of the participants self-reported their physical health to be between good and fair, and 

psychological health to be good. Furthermore, the participants self-reported the perception of 

their diet quality with majority reporting their diet quality to be fair or good. The complete 

summary of the participants' answers is given in the Table 3. 

 

Table 3.  Physical and psychological health and diet quality of participants as recorded by 

participants’ subjective perception. 

 Physical health Psychological health Diet quality 

Excellent 21 32 8 

Good 59 77 43 

Fair 50 30 67 

Poor 16 7 23 

Very poor 0 0 5 
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The participants completed the Self-Efficacy for Exercise Behavior Scale Assessment [18], 

which measures the individual's readiness to overcome obstacles (e.g., tiredness, large amount 

of work, not accomplishing set physical goals) in order to exercise. Moreover, the participants 

reported the importance of setting aside time for exercise in their schedule and following set 

goals. Participants also reported the expectations from the exercise and the importance of each 

of the expectations. For each of the offered expectations (e.g., be healthy, lose weight, have 

fun), a participant could choose whether it is a reason for his/her exercise and how important it 

is for him/her. Furthermore, the participants completed the Exercise Habits Scale Assessment 

[19], which measures the support and motivation participants receive form family and friends to 

exercise. The motivation and support include features such as exercising together with another 

individual, receiving reminders from an individual to exercise, or discussing exercises. For each 

of the questions, the participants were able to provide the extent to which an activity (e.g., 

exercise together with a friend) is satisfied by selecting one of five options that best describes 

the provided answer: really high, high, medium, low, or really low. Each assessment (e.g., self-

efficacy for exercise behavior assessment) was then represented by one value, which was 

obtained by averaging answers to all questions belonging to that assessment. The summary of 

the participants' answers is provided in the Table 4. 

 

Table 4. Self-efficacy to overcome obstacles in order to exercise, importance of physical 

activity, expectations from physical activity, and support and motivation received from family 

and friends as reported by participants. 

 Self-efficacy Importance Expectations Support 

Really high 49 5 40 25 

High 61 35 48 44 

Medium 29 58 36 50 

Low 6 47 17 22 

Really low 1 1 5 5 

 

Finally, the participants filled out a short version of the International Physical Activity 

Questionnaire [20], which is a self-reporting measurement of the level of physical activity the 

individual performed during the last seven days. The physical activities are divided into two 

main categories based on the intensity of the activity: vigorous and moderate. A moderate 

activity is considered to be a planned physical activity done continuously for 30 minutes or in 

intervals of at least 10 minutes. It mildly elevates the heart rate and breathing, and includes 

activities, such as low-impact exercise/strength classes, walking, cycling less than 3 miles, 

recreational sports, and hiking among others. A vigorous activity is a physical exercise done 

continuously for at least 20 minutes. It elevates heart rate and breathing to the level when the 

individual is not able to hold a conversation while exercising, and includes activities such as 

running or jogging, high-intensity aerobic classes, competitive sports, swimming laps, and 

cycling for more than 3 miles. The participants reported the number of days and minutes per day 

that they spent in the last seven days on vigorous and on moderate physical activities [21].  

4. NEURAL NETWORK APPROACH TO IDENTIFYING INDIVIDUALS AT 

HEALTH RISK 

Currently available data obtained in numerous studies about physical activities suggest high 

correlation between certain demographic and self-perception factors and the level of an 

individual's exercise. However, dependencies among different factors and the level to which 

each factor impacts an individual's readiness and commitment to exercise are not precisely 

known. Due to these uncertainties, we employed a machine learning approach (see e.g., 

[22],[23]) to capture important relationships among features present in the existing data. The 
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inferred relationships are then used to identify individuals at health risk using only a few 

demographic and self-reported characteristics of individuals. 

Using the information collected from 146 students (as described in the previous section), we 

trained a backpropagation neural network (NN) with eight input variables, one hidden layer with 

19 nodes, and the output layer with two nodes. The input variables include the following: 

• Gender: this variable could take two values: male and female.  

• Hispanic: this variable could take two values: yes and no, describing whether the individual 

is Hispanic or not, respectively. This distinction was made since studies have shown that 

Hispanic population exhibits different attitudes towards physical activities from those 

exhibited by, for example, Caucasian people [7]. Since not enough data were available to 

train the neural network on different ethnicities among non-Hispanics, further distinction 

among ethnicities was not included, but will be included in further improvements of the 

proposed NN method. 

• Major: this variable could take two values: sport related and not sport related. This 

distinction was made because students majoring in sport or health related studies are more 

likely to be aware of physical activity importance and therefore, on average, exercise more 

than their peers who major in other disciplines. 

• Physical health: this variable is a self-reported perception of the individual, and could take 

any of the five values: excellent, good, fair, poor, and very poor. 

• Psychological health: this variable is a self-reported perception of the individual, and could 

take any of the five values: excellent, good, fair, poor, and very poor. 

• Diet: this variable is a self-reported perception of the individual, and could take any of the 

five values: excellent, good, fair, poor, and very poor. 

• Self-efficacy: this variable is a summary of an individual's answers on the self-efficacy 

questionnaire. Since each question allowed a participant to express the level of self-efficacy 

in the range 1-5 (1 meaning 'low' and 5 meaning 'high'), the values were averaged, and the 

average in the interval (4.00,5.00] was reported as “really high”, the average in the interval 

(3.00,4.00] as “high”, etc. The self-efficacy variable could take one of five values: really 

high, high, medium, low, and really low. 

• Importance of exercise: this variable represents how important it is for the individual to 

make time for exercise in his/her schedule and to accomplish the scheduled physical activity 

goals. The variable could take one of five values: really high, high, medium, low, and really 

low. 

• Expectations: this variable is a summary of the individual's answers to the proposed 

expectations from exercise, and the frequency at which the person exercises to accomplish 

that particular expectation (e.g., to lose weight). For each provided expectation, an 

individual could select the importance of that expectation in the range 1-5, and the value of 

exercise to accomplish that goal in the range 1-3. Corresponding values were multiplied, 

and the products averaged. The obtained value was divided by 3 to map the possible values 

to the interval [1,5], so that the expectations variable could be defined by the same labels 

and in the same manner as the self-efficacy variable.  

• Support: this variable is a summary of the individual's answers to the exercise habits scale 

assessment questionnaire. It was created similarly to the self-efficacy variable and could 

take one of the five values really high, high, medium, low, and really low.  

The output layer of the neural network consists of two nodes: risk and no risk. Only one of these 

two nodes is on as a result of applying the neural network to data collected from a new 

individual. Depending on which node is on, the person is classified to be or not to be at health 

risk based on the self-reported characteristics. 

A neural network was trained using free software package weka [24]. Since all collected data 

were represented as non-numeric data to weka, each variable that could take more than two 
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values was represented by multiple input nodes, one for each value the variable could take. For 

example, the variable importance of exercise could take one of five values (really high, high, 

medium, low, and really low), thus five input nodes were designed for this particular variable. 

However, even though some variables could take one of five values, not all five values have 

shown up in the collected data sample, and thus, less nodes were used to represent such a 

variable. For example, no one reported his/her physical health to be very poor, thus the physical 

health variable used only four nodes in the developed neural network. Variables with multiple 

nodes, such as physical health and importance of exercise, would have only one of their nodes 

set on in each training or testing sample. 

Furthermore, if a variable could take exactly two values, this variable was represented by only 

one node. This node was either on or off, representing two different values that the variable 

could take. With this representation, the input layer of the neural network developed for the 

collected data sample consisted of 25 nodes. 

The hidden layer was automatically generated by weka. By default, weka generates 

2

classesofnumberattributesofnumber +
 nodes in the hidden layer, which 

resulted in (36 input nodes + 2 output nodes)/2=19 nodes for our data sample. All nodes were 

designed as sigmoid nodes due to non-numeric nature of data, which is the weka's default 

construction. 

A fully connected neural network (i.e., a NN where each node from a previous layer is 

connected to each node of the next layer, see Figure 1) was trained using a backpropagation 

algorithm. Backpropagation allows a neural network to infer the error rate at each node in the 

hidden layer based on the error in classification, which is manifested in the output nodes. This 

approach is well-suited to adjust weights on edges coming out of hidden layer nodes as well as 

edges coming into the hidden layer nodes. Thus, the backpropagation algorithm enables 

reduction of the error at each node in the hidden layer, and therefore a better model with 

reduced final classification errors.  

 

 

  
Figure 1. An example of a fully-connected multi-layer neural network with one hidden layer of 

nodes. Note that this figure is much smaller than the NN used in our project. 
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The learning rate in the neural network was initially set at 0.2 and decreased throughout training 

cycles. Total of 500 cycles were performed to train this neural network, which took 3.35 

seconds for the given data set. 

Since supervised learning was applied to train the neural network, the expected class for each 

individual was manually predicted. A person was classified to be not at risk if, in the last seven 

days, he/she reached at least one of two requirements suggested by the American Heart 

Association and the American College of Sports Medicine (i.e., exercise at least three times per 

week for at least 20 minutes at a vigorous rate, or at least five days per week for at least 30 

minutes at a moderate rate). Moreover, some individuals did not reach any of these two 

recommendations directly, but performed an equivalent amount of exercise when combining the 

amount of vigorous and moderate activities during the week (e.g., two days of 30 minutes of 

vigorous activity and two days of 50 minutes of moderate activity). To decide which 

combinations of moderate and vigorous activities are equivalent or higher than the minimum 

exercise requirements, we calculated the metabolic equivalent of task (MET), which is the 

amount of energy used for each physical activity. The weekly MET of an individual was 

calculated as 

,84 mdmd vvmmMET ⋅⋅+⋅⋅=  

where 
dm and 

mm are the number of days in the last seven days and average minutes per day 

that moderate activities were performed, respectively, and 
dv and 

mv are similarly days per 

week and average minutes per day, respectively, spent on vigorous activities. If the MET 

resulted above 600, the person was classified to be not at risk. The individuals that did not 

satisfy either of two recommended minimum levels of activity and did not spend energy 

equivalent to or higher than 600 METs were classified as being at risk. 

5. RESULTS  

We tested the developed neural network by using 5-fold cross-validation technique on the 

collected data. Combining results from all five runs, the neural network classified correctly 

79.5% of test data. 

  

Since the goal of the software is to identify individuals at risk, we consider true positive results 

to be the correct predictions of the students at risk and true negative results to be correct 

classification of students not at risk. Accordingly, the false negative results are students at risk 

incorrectly classified as not being at risk, and false positive are the students that are not at risk 

but were classified incorrectly as being at risk. The true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) rates are summarized in the Table 5. 

 

Table 5. Accuracy of the prediction results. 

TP TN FP FN 

0.83 0.74 0.26 0.17 

 

There are several reasons for misclassification of the neural network. One of the reasons is that 

even though there is a high correlation between the level of physical activity and each of the 

features considered in this study, the correlation is not perfect, so there are some extreme cases 

(i.e., individuals) that do not follow common trends. Unfortunately, it is practically impossible 

to train a neural network to classify these individuals into the correct class within the current 

design of the neural network. However, designing another class for possible extreme cases 

might be an option to avoid misclassification of these individuals by marking them as 
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individuals that should be evaluated further in order to be classified correctly. To train NN to 

recognize this additional class, we need to collect more data that contain information about 

individuals that clearly do not follow common trends.  

Another reason for misclassification is that collected data is somewhat biased for certain 

variables, for instance, race. Since majority of participants were Hispanics, all the other races 

were considered as non-Hispanics, but there are cultural differences among non-Hispanic 

population, which might have impact on physical activity. However, the current sample does 

not contain enough training samples to train the neural network taking into consideration 

different non-Hispanic races. Moreover, there are none or only a few individuals in the sample 

that self-reported very poor diet, physical or psychological health. Thus, not enough training is 

possible in these “extreme” cases.  

Finally, with the exception of demographic characteristics and students’ major, the information 

used in this study is mostly a subjective perception of participants. Some variables (e.g., self-

efficacy, support from family and friends) are constructed from multiple questions, and are 

therefore relatively objective values. However, other variables might be more subjective and not 

consistent throughout the sample. For example, an individual might weight 220lbs last year and 

200lbs this year, so this individual might report his/her physical health to be good (compared to 

the last year); however, this person might still be overweight and thus objectively is not in the 

good physical health.  

 

6. FUTURE WORK  

The current neural network predictions will allow college campuses and physical activity 

promotion programs to target a large number of students at health risk due to physical inactivity. 

However, further improvements in the predictions are possible. We are currently collecting 

more data from students at different collegiate institutions. Having more data will allow better 

training of neural network. Moreover, we expect to collect data from students with wider variety 

of demographic characteristics, which would aid predictions in the non-Hispanic subgroups that 

are not adequately represented in our current data sample. Furthermore, larger number of 

samples would most likely contain more individuals reporting very poor health conditions, and 

aid neural network training for these extreme samples.  

 

A more objective assessment of the physical and psychological states of each individual is 

preferable. For example, a more objective measure of physical health could be obtained by 

combining facts such as weight, height, and body mass index with the individual's subjective 

perception. A more objective measure of psychological health could be obtained by asking 

multiple questions describing possible stressful situations (e.g., whether the student have had 

enough sleep over nights) rather than just one question asking students to self-rate their 

psychological health.  

 

It is also desirable to more objectively evaluate physical activities performed by individuals to 

determine whether a particular activity is of moderate or vigorous intensity. For example, while 

one person might consider running at 12mph to be a vigorous activity, it would not be 

considered a high intensity exercise by a person that is highly physically active. Since this 

information is used in supervised learning to determine the expected outputs (i.e., the class), it is 

important to have a consistent and correct interpretation of each physical activity. Furthermore, 

individuals do not tend to perform the same amount of exercise each week. Twenty-five 

individuals in this study reported their weekly physical activities for seven consecutive weeks. 

These reports show that 11 of these 25 participants (44%) would be considered at-risk one week 

and not at-risk in another week. However, seven of these 11 individuals showed a consistent 

behavior for six weeks (i.e., either being adequately active for six weeks and not adequately 

active in one week, or not being adequately active for six weeks and adequately active in one 
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week). Thus, these individuals could be mislabeled if we consider only one week, but likely 

correctly classified if considered all seven weeks. Therefore, to more correctly classify these 

individuals in one of two groups, weekly activity logs should be collected over a few weeks and 

the average could be used for the final classification.  

 

Since there are individuals that are on the borderline between two groups, a neural network with 

three classes will be developed: a class of individuals that are active above the minimum 

requirements, a class of individuals that are active but do not meet the minimum requirements 

(this group will include the individuals that are sufficiently active one week but not sufficiently 

active the next week), and the class of individuals that are not active at all. 

 

Finally, once more data are collected and more diverse sample of population is reached, we will 

train a final neural network and develop a web-based tool to administer the questionnaire and 

immediately identify individuals at risk of being physically not active enough. We will make 

this program easily accessible to individuals that are not tech savy in order to improve well 

being of general population. 

 

7. CONCLUSION  

Majority of general population does not engage in enough physical activity to keep healthy life 

style. Physically inactive or very little active individuals are at high risk of health diseases such 

as heart attack and high blood pressure. A healthy living style is developed throughout life 

starting at childhood and especially through the entire collegiate years. Research shows that the 

highest decrease in the level of physical activity is denoted in the transition from high school to 

college. Thus, it is important to quickly identify college students at health risk in order to target 

these students in health research studies and physical activity programs.  

 

Since intensive research shows that there is a high correlation between the level of physical 

activity and features such as race, gender, self-motivation, and support from family and friends, 

these features could be used to detect individuals at risk by collecting this information via a 20-

minute questionnaire and analyzing the results. Currently, the surveys are written by individuals 

who are doing a particular study and are not uniform throughout the similar studies. Moreover, 

the results are often analyzed using descriptive statistical methods, and only summary results 

are reported at the end of the study without identifying and helping individuals at risk. Thus, 

even students that participate in surveys are often not aware at the end of the study that they 

might be at health risk or that they are not active enough. The main reason for not analyzing in 

detail each individual’s survey answers is that it is time consuming and therefore infeasible to 

do manually. 

 

To reduce time needed to collect and analyze the information, we propose to develop a web-

based automated data collector and analyzer. In this paper, we presented a preliminary 

supervised backpropagation multilayer neural network to identify students at risk based on only 

a few demographic and self-reported characteristics, which classified correctly 79.5% of 

individuals. By collecting more data from students with diverse cultural backgrounds, and using 

these data to train the neural network, the correctness of the developed neural network will 

increase, and a freely available web application will be developed to allow quick and easy 

impact on health improvement in general population.  
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