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ABSTRACT 

The cuckoo search algorithm is a recently developed meta-heuristic optimization algorithm, which is 

suitable for solving optimization problems. To enhance the accuracy and convergence rate of this 

algorithm, an improved cuckoo search algorithm is proposed in this paper. Normally, the parameters of 

the cuckoo search are kept constant. This may lead to decreasing the efficiency of the algorithm. To cope 

with this issue, a proper strategy for tuning the cuckoo search parameters is presented. Then, it is 

employed for training feedforward neural networks for two benchmark classification problems. Finally, 

the performance of the proposed algorithm is compared with that of the standard cuckoo search. 

Simulation results demonstrate the effectiveness of the proposed algorithm. 
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1. INTRODUCTION 

A typical artificial neural network (ANN) has two types of basic components. They are neurons 

which are processing elements and links which are interconnections between neurons. Each link 

has a weighting parameter. Each neuron receives stimulus from other neurons, processes the 

information, and produces an output. Neurons are categorized to input, output and hidden 

neurons. The first and the last layers are called input and output layers, respectively, and the 

remaining layers are called hidden layers [1].  

Consider kN  as the number of neurons in the thk  layer. Let k
ijw  , represents the weight of the 

link between the thj  neuron of the ( )th
k 1−  layer and the thi  neuron of the thk  layer. Suppose 

k
iw 0  is an additional weighting parameter for each neuron, representing the bias for the thi  

neuron of the thk  layer. The weighting parameters are initialized before training the neural 

network. During training, they are updated iteratively in a systematic manner [2]. Once the 

neural network training is completed, the weighting parameters remain fixed throughout the 

usage of the neural network as a model.  

The process of training an ANN is to adjust weights and biases. The back-propagation (BP) 

learning has become the most popular method to train feedforward ANNs in many domains [3]. 

However, one limitation of this technique, which is a gradient-descent technique, is that it 

requires a differentiable neuron transfer function. Also, as neural networks generate complex 

error surfaces with multiple local minima, the BP tends to converging into local minima instead 

of a global minimum [4].  

In recent years, many improved learning algorithms have been proposed to overcome the 

handicaps of gradient-based techniques. These algorithms include a direct optimization method 

using a polytope algorithm [5], a global search technique such as evolutionary programming [6], 
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and genetic algorithm (GA) [7]. The standard gradient-descent BP is not trajectory-driven, but 

population driven. However, the improved learning algorithms have explorative search features. 

Consequently, these methods are expected to avoid local minima frequently by promoting 

exploration of the search space. 

Because of computational drawbacks of conventional numerical methods in solving complex 

optimization problems, researchers may have to rely on meta-heuristic algorithms. Over the last 

decades, many meta-heuristic algorithms have been successfully applied to various engineering 

optimization problems [8-14]. For most complicated real-world optimization problems, they 

have provided better solutions in comparison with conventional numerical methods. 

To imitate natural phenomena, most meta-heuristic algorithms combine rules and randomness. 

These phenomena include the biological evolutionary processes, such as genetic algorithm (GA) 

[15-16], evolutionary algorithm [17-19] and differential evolution (DE) [20]), animal behaviour, 

such as particle swarm optimization (PSO) [21], tabu search [22] and ant colony algorithm 

(ACA) [23]), as well as physical annealing processes, such as simulated annealing (SA) [24]. 

The Cuckoo Search (CS) developed in 2009 by Yang and Deb [25-26], is a new meta-heuristic 

algorithm imitating animal behaviour. The optimal solutions obtained by the CS are far better 

than the best solutions obtained by efficient particle swarm optimizers and genetic algorithms 

[25]. This paper develops an Improved Cuckoo Search (ICS) algorithm for unconstrained 

optimization problems. To enhance accuracy and convergence rate of the CS, the ICS employs 

an improved method for generating new solution vectors. 

The paper is organized as follows. In section 2, the cuckoo search algorithm is briefly reviewed. 

The improved cuckoo search algorithm is presented in section 3. In section 4, this algorithm is 

employed to train a feedforward neural network. We end this paper with some conclusions in 

section 5. 

2. CUCKOO SEARCH ALGORITHM 

To describe the CS more clearly, the breed behavior of certain cuckoo species is briefly 

reviewed. 

2.1 Cuckoo Breeding Behaviour 

The CS was inspired by the obligate brood parasitism of some cuckoo species by laying their 

eggs in the nests of host birds. Some cuckoos have evolved in such a way that female parasitic 

cuckoos can imitate the colours and patterns of the eggs of a few chosen host species. This 

reduces the probability of the eggs being abandoned and, therefore, increases their re-

productivity [27]. It is worth mentioning that several host birds engage direct conflict with 

intruding cuckoos. In this case, if host birds discover the eggs are not their own, they will either 

throw them away or simply abandon their nests and build new ones, elsewhere. 

Parasitic cuckoos often choose a nest where the host bird just laid its own eggs. In general, the 

cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick is hatched, 

his first instinct action is to evict the host eggs by blindly propelling the eggs out of the nest. 

This action results in increasing the cuckoo chick’s share of food provided by its host bird [27]. 

Moreover, studies show that a cuckoo chick can imitate the call of host chicks to gain access to 

more feeding opportunity. 

The CS models such breeding behaviour and, thus, can be applied to various optimization 

problems. Yang and Deb [25-26], discovered that the performance of the CS can be improved 

by using Lévy Flights instead of simple random walk. 
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2.2 Lévy Flights 

In nature, animals search for food in a random or quasi-random manner. Generally, the foraging 

path of an animal is effectively a random walk because the next move is based on both the 

current location/state and the transition probability to the next location. The chosen direction 

implicitly depends on a probability, which can be modeled mathematically. Various studies 

have shown that the flight behavior of many animals and insects demonstrates the typical 

characteristics of Lévy flights [28]. A Lévy flight is a random walk in which the step-lengths are 

distributed according to a heavy-tailed probability distribution. After a large number of steps, 

the distance from the origin of the random walk tends to a stable distribution. 

2.3 Cuckoo Search Implementation 

Each egg in a nest represents a solution, and a cuckoo egg represents a new solution. The aim is 

to employ the new and potentially better solutions (cuckoos) to replace not-so-good solutions in 

the nests. In the simplest form, each nest has one egg. The algorithm can be extended to more 

complicated cases in which each nest has multiple eggs representing a set of solutions [25-26]. 

The CS is based on three idealized rules: 

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest; 

• The best nests with high quality of eggs (solutions) will carry over to the next generations; 

• The number of available host nests is fixed, and a host can discover an alien egg with 

probability ],[pa 10∈ . In this case, the host bird can either throw the egg away or abandon the 

nest to build a completely new nest in a new location [25]. 

For simplicity, the last assumption can be approximated by a fraction ap  of the n  nests being 

replaced by new nests, having new random solutions. For a maximization problem, the quality 

or fitness of a solution can simply be proportional to the objective function. Other forms of 

fitness can be defined in a similar way to the fitness function in genetic algorithms [25]. 

Based on the above-mentioned rules, the basic steps of the CS can be summarized as the pseudo 

code, as follows [25]:
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when generating new solutions )t(x i 1+  for the thi  cuckoo, the following Lévy flight is 

performed 

 

( ) ( ) ( )λ⊕α+=1+ Lévy  txtx ii  (1) 

 
where 0>α  is the step size, which should be related to the scale of the problem of interest. The 

product ⊕  means entry-wise multiplications [26]. In this research work, we consider a Lévy 

flight in which the step-lengths are distributed according to the following probability 

distribution 

 

3≤λ<1= λ ,tuLévy  -  (2) 

 
which has an infinite variance. Here, the consecutive jumps/steps of a cuckoo essentially form a 

random walk process which obeys a power-law step-length distribution with a heavy tail . 

It is worth pointing out that, in the real world, if a cuckoo’s egg is very similar to a host’s eggs, 

then this cuckoo’s egg is less likely to be discovered, thus the fitness should be related to the 

difference in solutions. Therefore, it is a good idea to do a random walk in a biased way with 

some random step sizes [25]. 

3. IMPROVED CUCKOO SEARCH 

The parameters ap , λ  and α  introduced in the CS help the algorithm to find globally and 

locally improved solutions, respectively. The parameters ap  and α  are very important 

parameters in fine-tuning of solution vectors, and can be potentially used in adjusting 

convergence rate of algorithm. The traditional CS algorithm uses fixed value for both ap  

and α . These values are set in the initialization step and cannot be changed during new 

generations. The main drawback of this method appears in the number of iterations to find an 

optimal solution. If the value of ap  is small and the value of α  is large, the performance of the 

algorithm will be poor and leads to considerable increase in number of iterations. If the value of 

ap  is large and the value of α  is small, the speed of convergence is high but it may be unable 

to find the best solutions.  

The key difference between the ICS and CS is in the way of adjusting ap  and α . To improve 

the performance of the CS algorithm and eliminate the drawbacks lies with fixed values of ap  

and α , the ICS algorithm uses variables ap  and α  .In the early generations, the values of ap  

and α  must be big enough to enforce the algorithm to increase the diversity of solution vectors. 

However, these values should be decreased in final generations to result in a better fine-tuning 

of solution vectors. The values of ap  and α  are dynamically changed with the number of 

generation and expressed in Equations 3-5, where NI  and gn are the number of total iterations 

and the current iteration, respectively. 

 

( )
minamaxamaxaa P -P 

NI

gn
P (gn)P −=  (3) 
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( )gn.cexp(gn) maxα=α  (4) 

 










α

α1
=

max

minLn
NI

c  (5) 

 

4. SIMULATION RESULTS, ANALYSIS AND DISCUSSION 

When ANN training is initiated, the iterative process of presenting the training patterns of the 

dataset to the network’s input continues until a given termination condition is satisfied. This 

usually happens based on a criterion indicating that the current achieved solution is presumably 

good enough to stop training. For instance, one common termination criterion in the BP is the 

difference between the current value of sum of squared errors (SSE) and that obtained in the 

previous iteration [29]. 

Figure 1 illustrates a small scale sample ANN. Each vector represents a complete set of ANN 

weights including biases. The objective function is to minimize SSE [30]. The squared 

difference between the target output and actual output determines the amount of error. This is 

represented by for each pattern and each output unit as shown in Figure 1. Since the values of 

ANN weights are usually within the same range we simplify the CS and ICS model by setting.  

 

Figure 1. A small scale sample ANN [31] 

In this study, two benchmark classification problems, which are classification of Iris, and breast 

cancer, are studied. According to four properties of one flower, the categories of Iris are 

identified in the Iris problem. This problem consists of 150 examples; all of them can be 

classified into three categories whilst each category accounts for one third of the examples. 105 

examples are used for training and the rest are used for testing. In the breast cancer problem, we 

correctly diagnose breast lumps as either benign or malignant based on data from examination 

of cells. This problem consists of 699 examples. Each example includes 9 inputs and 2 outputs. 

500 examples are used for training and the rest are used for testing. To evaluate the performance 

of the proposed algorithm, we compare its computational results with those provided by CS, and 

ICS. For the CS and ICS algorithms, the number of iterations is 750 for the first benchmark 

problem and 500 for the second one . 

For the CS algorithm, the number of populations is 10, whereas other algorithm parameters 

are 250=α . , 10= .pa and 51=λ . . The parameters of the ICS are 050= .(min)pa , 

50= .(max)pa , 010=α .(min)  , 50=α .(max)  and 51=λ . . 

For both benchmark problems, the number of hidden neurons for all algorithms is 8. After 20 

iterations, the results of classification are demonstrated in Table 1. In this table, the parameter 

‘Std’ represents the standard deviation. The results show that the CS performs better than the 
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ICS in terms of classification accuracy and computational expenses. Furthermore, Table 1 

shows that the ICS has a better overall performance in almost all criteria. 

Table1. Simulation results for benchmark problems 

Algorithm 

 Breast cancer dataset Iris dataset 

SSE 
Training 

accuracy 

Testing 

accuracy 
SSE 

Training 

accuracy 

Testing 

accuracy 

CS 

Min. 43.66 95.80 92.46 29.94 89.52 80.00 

Average 52.99 96.91 96.13 32.53 92.14 95.89 

Max. 65.79 98.40 97.99 35.48 97.14 100 

Std. 5.31 0.61 1.33 1.85 4.00 5.36 

ICS 

Min. 37.74 96.20 94.97 25.17 91.43 97.78 

Average 41.71 96.98 96.86 29.38 94.10 98.45 

Max. 47.23 97.60 98.49 32.29 97.14 100 

Std. 2.30 0.40 0.91 2.18 1.79 1.63 

 

5. CONCLUSIONS 

In this paper, an improved cuckoo search algorithm enhancing the accuracy and convergence 

rate of the standard cuckoo search algorithm was proposed. Unlike the standard cuckoo search 

in which the parameters are kept constant, the ICS parameters are tuned. This results in 

increasing the efficiency of the algorithm. To evaluate the performance of the proposed 

algorithm, it is employed for training feedforward neural networks for two benchmark 

classification problems. Comparing the results provided by the proposed algorithm with those 

given by the CS demonstrates the effectiveness of the improved cuckoo search. 
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