
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

DOI : 10.5121/ijaia.2012.3409 117

ANALYSIS OF A STATISTICAL HYPOTHESIS BASED

LEARNING MECHANISM FOR FASTER CRAWLING

Sudarshan Nandy

1
 , Partha Pratim Sarkar

2
and Achintya Das

3

1
Department of Computer Science & Engineering, JIS College of Engineering, Kalyani,

West Bengal, India.
sudarshannandy@gmail.com

2
Partha Pratim Sarkar, DETS, University of Kalyani, Kalyani, West Bengal, India.

parthabe91@yahoo.co.in

Achintya Das
3
, Kalyani Govt. Engineering College , Kalyani, West Bengal, India.

achintya.das123@gmail.com

ABSTRACT

The growth of world-wide-web (WWW) spreads its wings from an intangible quantities of web-pages to a

gigantic hub of web information which gradually increases the complexity of crawling process in a search

engine. A search engine handles a lot of queries from various parts of this world, and the answers of it

solely depend on the knowledge that it gathers by means of crawling. The information sharing becomes a

most common habit of the society, and it is done by means of publishing structured, semi-structured and

unstructured resources on the web. This social practice leads to an exponential growth of web-resource,

and hence it became essential to crawl for continuous updating of web-knowledge and modification of

several existing resources in any situation. In this paper one statistical hypothesis based learning

mechanism is incorporated for learning the behaviour of crawling speed in different environment of

network, and for intelligently control of the speed of crawler. The scaling technique is used to compare the

performance proposed method with the standard crawler. The high speed performance is observed after

scaling, and the retrieval of relevant web-resource in such a high speed is analysed.

KEYWORDS

Focused Crawling, Crawling speed enhancement technique, statistical hypothesis,

1. INTRODUCTION

The reach content of web-resource makes the web more knowledgeable but at the same time it

increases the time of crawling. The contents of a web is ranging from structured to unstructured

data and it is represented by various web-pages which represent itself in the various format of

semi-structured data to publish in the web. The Web itself is a big information or knowledge hub

divided into several geographical locations. The job of a search engine is to search the query

relevant web resources from the web. Search engine basically follows the several machine

learning techniques to crawl the relevant web resource and another type of search engine only

focuses for a particular domain of knowledge. Those are called domain specific search engine.

The crawler collects the web services or the web resource from repository. The indexer job is to

parse those web resources found by the crawler, and then relevant matches are submitted to the

result interface [12]. The proposed method is incorporated in the standard focused crawling

method for faster retrieval of web-resource. The empirical learning based on statistical hypothesis

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

118

is also embedded in the system for adapting in dynamic environment of the web traffic while

maintaining politeness in crawling speed. The network in the various part of the web can behave

differently and in order to track that fluctuation in maintaining a stable mining speed one

empirical learning method is applied.

2. REVIEW WORK

In recent years the development of web crawler is focused on the faster retrieval of web-pages

deposition in less amount of time with a limited number of system resources. The system

resources mainly used for this type of comparison is RAM and CPU usage during the running

time of crawler. Some of the research focused on the above mentioned problem shows various

ways to achieve its relevant answer. A few of those articles are targeted towards the resources-

dependent crawling but they are not scalable [1,2,3,4,6,7,8,19]. The google search engine is one

type of distributed search engine and uses multiple number of crawler to crawl the web[1,20]. The

crawler designed at Kasetsart University in Thailand is reported a fast retrieval of web resources

in '.th' domain[4]. The IRLbot is a large scale crawler and has a billion of web-resources in its

knowledge hub. This crawler comes with new technique to deal with the reputation and spam

problem. The Web resources may contain the unlimited number of host address and dump links

for which the crawler may fall into an infinite loop and hence it clearly depicted the complex

scenario where BFS scan is not only the possible solution to any crawler. So it is necessary to

provide some decision making strategy based on real time observation to understand the web-

resources content relevancy [9]. The IRLbot also reported in 2009 that the rate of crawling is

1789 pages/second in 319mb/s download speed [9]. One of the fastest crawler is reported in 2004

with 816 pages/sec speed, crawled more than 25 million pages [10]. Another crawler “AltaVista”,

in 2003 crawl more than 1.4 billion pages and contains 6.6 billion links [11]. The proposed

method demands its ability to maintain politeness during crawling and also having its speciality

by means of adaptive crawling through empirically learning the nature of that domain, and hence

it is able to adjust the speed of crawling automatically in any network environment.

3. PROBLEM FORMULATION

In the proposed method the enhancement of crawling speed is achieved through a statistical

hypothesis based learning on fluctuation of network bandwidth. On the basis of the knowledge of

network bandwidth fluctuation the crawler robots are initiated on each iteration of a crawling

level. In order to deploy parallel search to maintain a high speed in searching of a relevant web

resources, each of the given node is considered as an independent hypertext graph. This hypertext

graph is also an element of main graph G. So,

where G1', G2' etc. are different hypertext graphs and obviously belong to the different domains.

In the initial stage of the experiment it is considered that all of those GN' contain the relevant as

well as irrelevant web resources i.e. web resources under those graphs may be true or false from

the focused search point of view. So it can be formulated in the way:

GN' = the Nth hypertext graph

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

119

Vi = the i
th
 web resource in the domain. It is also an element of the GN'.

Now it is known that ,

and hence,

Some web resources are also unreachable from GN' and can be symbolically expressed as Ucn and

hence,

The time required to mine the all relevant web resources can be considered as T for crawling on

GN'. The speed at which it crawl the web resources is considered as Csi. In the dynamic

environment of the web it is possible that the speed of the miner can fluctuate at any rate of any

given running time in future or simply □T . Now in a mine speed Csi, Cn can be again true or

false for a given set of focused topic and the false value of it can be represented by ¬C
N .

Similarly in order to distinguish the high and low speed of mining, the relevant web resource the

Csi can be true or false and the false value can be represented by si¬C . To understand the

underlying logic and obviously the relation in between mine speed and its corresponding search

of relevant or irrelevant web resources, those two parameters are divided into four states in a state

transition machine with respect to the underlying representation of time.

Figure 1. The state transition diagram.

The circle in the transition diagram represent the state, the arrows denotes the possible transition

between the states. The states which may happen in case of the experiment are labelled with the

literals. The literals some time represented with ¬'' symbol to reflect that the meaning of the

literals is “Not” in the same label for a given state. In the experiment it is indeed necessary to

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

120

understand the truth value of the temporal formula Nsi CC=H □□ ∨ where H is calculated for

each state of the figure 1 .

i) H is true in S0. States that are accessible from S0 are S1 and S0 itself. Both □C
si and □C

N are

true in S0.

ii) H is true in S1. States that are accessible from S1 are S0 and S2.
□C

si is true in both the states .

So the H is true.

iii) H is False in S2. States that are accessible from S2 are S1 and S3. Both of the literals are false

in the S3 and hence the H is also false.

iv) H is False in S3. State that is accessible from S3 is itself and hence it is also false.

The true value of H is needed to maintain at the running time of the crawler and the miner of the

search engine will stop the work once the value of the H is false. In order to maintain the true

value of H, it is also experimentally observable that how much less time it takes to visit maximum

web resources of GN'. It is also necessary to achieve high Csi value in less amount of time and the

same will be possible when the crawler will adaptively work in the dynamic environment of the

web.

4. SYSTEM METHODOLOGY & ALGORITHMS

The proposed method consists of three parts, Master scheduler, responsible for controlling every

process of the method but it is generally useful in case of handling all the relevant web resources

and DB API, Indexer , extract all the necessary information from web resources and thereby

maintain the request of the next focused resource used for crawling purpose and is recognized

here as a IWM or Intelligent Web-Miner. All the important parts of the proposed system is

depicted in figure 2.The master scheduler part assigns independent hypertext graph to every

IWM. It generally put the requests of the all IWM in a schedule queue where the requests are

handled using FIFO technique. On the other hand it also handles a process which inherits the

statistical observation on crawling speed Csi, the error ξcs , harvest ratio of the method from the

local DB which is maintained by master scheduler for storing the overall result of the crawling

process. The master scheduler also helps to store the relevant URL in the 'URL_store' DB, and its

corresponding document is stored in 'DOC_tab' DB.

Figure 2. Architecture of proposed method.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

121

The indexer is the most important part of the proposed system responsible for the extraction of all

hypertext data and other necessary document from web resources. The web resources relevancy is

mainly decided by this part of the system, and this decision is handled by a separate process,

working under the Indexer, a daemon process. In case of retrieval of new relevant document, it

sends all of it to the master scheduler, and then the master scheduler is responsible to transfer that

document in proper place based on the decision coming from another process which is used to

learn and recognize the matter of that web resources and the given query by using some machine

learning technique.

Figure 3. Block Diagram of IWM organizations .

Intelligent web-miner is one type of module used for crawling purpose. This module is actually

responsible for crawling of web resources available from different domain. According to the

proposed method this module can run on a different system with other similar type of module

running on different system. So several modules can run parallel with different domains in

searching of focused topic. Modules that run on different systems can be centrally controlled

through the IWM controller block as in figure 2. Every module has its own learning technique to

learn the environment on which several robots are working and those robots are actually used for

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

122

crawling purpose. IWM of the proposed method has two goals; one is to crawl in a standard

speed, and the other is to crawl the most relevant document. The architecture of the IWM is

depicted in figure 3. as reference.

The algorithm of the IWM is as follows:

Algorithm of Intelligent Web-miner (IWM)
Input: A set of URL_l contain 1<url_l<n ('n' is defined by the IWM controller) & relevant topic.

Output: A set of web focused resources .

Begin:

1. Establish connection with server API.

2. Set R_flag = 0

3. While R_flag = 0:

 a. send a request for a set of URL

 b. If server sends a valid response then prepare local DB for receiving and storing

data.

c. On receiving data, set the R_flag = 1, and go to step 4, otherwise go to step3.

4. Store each url of URL_l with different level tag, and store them for level wise initiation

of hybrid crawling.

5. A local depth named as Ld is used to maintain hierarchical initiation of parallel

crawling, because here parent of each hypertext child node is treated as independent

hypertext graph of Ligh.

6. increases Ligh by 1

7. While (Ligh - 1) = valid:

 a. Append one hyper link of a Ligh to a list.

 b. WhileLd <= Dms:

 i. Learn_cs(Csi, PT)

 ii. PT = CT (where, CT >= 1)

 iii. Fetch the child hypertext nodes (hn) according to the number of CT where
h

n
 ∈L

ihg ,and hn belongs to same level and same Ld .

 iv. For each w in hn :

 1. Call ParallelCrawling (Wn)

 v. Synchronize and terminate all the light weight process

 vi. Increases Ld by 1

 vii. If Ld > Dms :

 a. increases Ligh by 1

8. R_flag = 0 and Go to step 2.

The IWM algorithm is used for the crawling purpose and designed in such a way that it can be

plugged in to the main server at any point of running time of the system. The IWM procedure

uses a level named Ligh to indicate the number of each independent hypertext graph treated as

parent or root. The number of Ligh is depended on the availability of new focused domain found at

the time of crawling, but it first starts with some defined focused domains. A local depth

recognized as Ld is used to maintain the depth of each hypertext child nodes (robots) generated

from a single Ligh . Now every child node or robot is treated as an independent graph, and the

robots or threads are generated to crawl a specific web-resources . The decision on number of

robot or thread is generated from the statistical hypothesis based learning method. The whole

process is depicted in Fig. 4. Now, the algorithm of statistical hypothesis based learning method

takes the current observation of Csi, the i
th
 crawling speed, and number of PT or present thread

(robot) .

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

123

Algorithm LearnCrawlingSpeed(Csi , PT)
Input: Crawl Speed Csi, Present no of used thread PT.

Output: List of E'cs value (Lecs), modified number of thread PT.

Begin:

 1. a. Lecs = empty list, Lf = 0 and

 b. learning limit or LL = n

 2. If Lecs<> n And Cl <> LL And Lf = 0 :

 i. Count the frequency of '0'

 ii. If frequency >= defined limit:

 a. Calculate current Cs

 b. Lf = 1

 c. declare Lecs as an empty list

iv. Store the
ξ

cs , Csi , PT in local DB and goto Step 3.

 3. i. If Lf = 0 and Lecs <= n:

 a. Calculate
ξ

cs

 b. calculate the value of E'cs = f(E'cs)

 c. Deiced PT and append the E'cs value in Lecs.

 ii. Else if Lf = 1 and Lecs <> n then:

 a. Check current value of crawling speed.

 b. If Cs <= threshold value then:

 a. Lf= 0

 b. Goto Step 3.

 iv. Return (Lecs, PT)

The learning part of the system (figure 4) has a 'Critic' block, and it is used to check the

fluctuation rate, even if the learning flag is set to off mode. It is also responsible to reset the

learning, if the fluctuation rate of the crawling speed is lower than that of the previously observed

value. Lecsis a list containing the result of the E'cs, and the learning flag is set on or off according

to the number of appearance of the '0', '1' and '-1' in the list. The decision of the PT is done

according to the following rules:

1. If E'cs = 1 then PTnew = PTold - 1

2. If E'cs = 0 then PTnew = PTold

3. If E'cs = -1 then PTnew = PTold +1

Figure 4. Empirical learning based statistical hypothesis

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

124

Finally the learning procedure returns the value of PT and Ecs to the main IWM process. On

receiving the PT value, the IWM procedure initiates that much number of crawling process for the

parallel mining of the web resources from multiple number of domain. Then the IWM procedure

synchronizes and terminates all the previously initiated crawling process to start with the new set

of hypertext child node. This procedure of crawling ends, when Ld reaches its limit (Dms), which

is defined by the main server process. R-flag is then set to '0', and IWM procedure requests and

waits for response.

5. Evaluation

The performance of the proposed method is evaluated in terms of its crawling speed while it

maintains politeness in crawling and relevance of crawled pages during the period of crawling.

Intelligent Web-miner(IWM) is maintaining their own DNS cache and refresh its cache on certain

time interval. The workloads of intelligent web-miner depends on the number of availability of

new domain in crawler server data base and is distributed through master scheduler. If no new

domain is available then master scheduler sends a wait signal to the other IWM's waiting queue.

The crawler performance can be watched and configured at a visited page level based on the

relevance score and crawling speed graph. The theoretical analysis and experiment on learning of

crawl speed and page relevance at the same time are studied herewith in detail.

5.1 Experimental Set-up

The proposed distributed hybrid focused crawler is a developed python based application in this

experiment where some C program is used as a plug-in. The method is developed on core 2 Duo

processor 1.73 GHz Pentium-IV PC with 2 GB of RAM and a SCSI hard drive. The storage of

database is centrally maintained on a Sun Server. Intelligent web-miner (IWM) is developed also

and run from a core 2 Duo processor 1 GHz Pentium-IV PC with 3GB of RAM. All the machines

are connected through LAN and LAN is connected to ISP using full-duplex 2 MB/Sec. bandwidth

of a leased line network connection.

The crawler is initialized with two or three master topic and that is represented using two or three

node as a independent hyper text graph to crawl. The responsibility of the crawler is to find out

relevant pages on the mentioned topic while it maintains a good speed in crawling. The topics

used as a test case is 'News'.

In order to represent the experiment some selected results from above topics are enumerated at

here. The crawling speed on actual network bandwidth is mathematically scaled and the crawling

speed is represented on high network bandwidth of 250 MB/s. The actual relevance of pages

during crawling based on this proposed method is also studied.

5.2 Analysis of Experimental Result

According to the idea of web-resources retrieval in the proposed method, there are several

intelligent web miners working in parallel with main server and Indexing server. Those web

resources miners are named as Intelligent Web-miner(IWM). In case of understanding, the nature

of crawling speed, it is necessary to estimate the amount of distribution from crawling speed log,

where the crawling speed values are stored. In this proposed method some statistical measures are

applied to analyse and presumed the nature of the speed in different domains with varying

network speed. The nature of mining in different domain with a varying network speed, it is

necessary to observe and analyse the dispersion or the degree of scatterness in the speed.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

125

The scatterness in the crawling speed is observed to gain knowledge of fluctuation in network

bandwidth. So, if the total deviation of Cs watched at ∆t time and Cs of (∆t-1) time is large, then it

can be considered as a large deviation of crawling speed. Now in case of the experiment, it must

show the graph line going up, if the deviation is large and it behaves in opposite manner, when

the deviation of crawling speed is low. The crawling speed can be calculated as follows:

Crawling Speed = (Number of visited node /Actual crawling time)

So,

C
s
=

∑
i=1

M

V
i

C
t

 (1)

The crawling speed Cs is the i
th
 visited node of Vi, and it is actually divided by the actual

crawling time.

Actual crawling time = (Present crawling time -starting time of IWM)

So, now the mean of the crawling speed can be calculated as follows:

Figure 5. Fluctuation in Crawling Speed. (x axis’s is representing the actual crawling speed)

In the figure 5 the possible fluctuation rate of crawling speed can be observed. The mean square

of the deviation of crawling speed is needed to know the behaviour of mining of web resources

from a specific domain.

 The mean square crawling speed can be calculated as follows:

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

126

As now that standard deviation of any value is much more meaning full than that of mean square

deviation, the standard deviation of crawling speed is calculated as follows:

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

127

According to the proposed method, it is always expected that at any crawling time, lower value of
ξ

cs is observed. It is also proved from the experiment that the lower value of Csi always generates

high value of ξcs .

In the proposed method, it is possible to plug many number of IWM with the main servers,

because it is totally a distributed system. Each of these IWM work on different domains of web,

and it is possible to plug it to the main servers from any area of the web. So those IWM will not

work from same roof and hence it must face the fluctuation of network bandwidth caused by the

network traffic of that area. One empirical learning based solution is used in the proposed method

to apply the knowledge of network traffic fluctuation in every robot of an IWM. The effect of

mining the relevant document in the available bandwidth at any time can be measured by

calculating the Csi or crawling speed, and the standard deviation of the same will be helpful to

watch the small dispersion in the speed. So , in the experiment, it is always necessary to check the

range of standard deviation using the following:

Ecs is the difference between sum of all previously observed standard deviation of crawling speed

and present standard deviation of the same. Clearly, the value of Ecs belongs to the positive

region, if the present mining speed of IWM is smaller than that of the previously observed value.

If it belongs to the negative region, the value of mining speed or Csi is in the standard level, and

corresponding standard deviation of the mining speed is smaller than that of the previously

observed ξcsi value. So to keep track on the values of Ecs, the following function is developed:

 Ecs' = f(Ecs) (9)

 -1 if Ecs < 0.0

 Ecs' = 0 if Ecs = 0.0

 1 if Ecs > 0.0

Now the function f(Ecs) is used for separating all the negative and positive values and is finally

put to those on a list for constant watching of the appearance of '0' value in the list. In case of the

appearance of the zero value, the number of thread or the generation of robot is not increased or

decreased; it will remain same for that particular iteration. If '1' appears on the list, it clearly

depicts the dropping of Csi for that particular iteration, when number of thread or robot decreases

its value by one. The high crawling speed reflects when '-1' appears in the list and the number of

thread or robot in this particular case increases by one for that iteration. The '0' value appearance

in the list is good, because it reflects the stability of web mining in the existing network

bandwidth. It is also observable that after certain high peak, mining speed is certainly dropped,

and it becomes stable on some lower speed, also zero will appear in the list. So the question is

how to tackle all such cases where crawling speed values are trapped on small range value. The

proposed method consists of a crawling speed watcher, named here as a critic whose

responsibility is to watch for any small or large fluctuation in ξcs value. If any such case happens

with this empirical based statistical learning method, critic is there to recover the mining speed or

Csi from that particular small range of crawling speed.

Figure 6 and 7 represent the proposed learning procedure. In figure 6 and 7 the first subplot

represents the error rate indicated by the ‘deep gray’ line. The X axis represents the actual

crawling time in second, and it is observed from the figure 6 and 7 that ‘Error’ or standard

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

128

deviation is plotted with high peak till 5000 second and after that it is being stabilized slowly. In

the second subplot of the figure 6, crawling speed(y axis) is plotted with actual crawling time (x

axis). The ‘dark gray’ line used to represent the crawling speed and it is observed that the

crawling speed is going down to 5000 second but the ‘critic’ module in the proposed method

correct it and it becomes stabilized from the 10000 second. The ‘light gray’ line in second subplot

of the figure 6 and figure 7 represents the probable crawling speed on that time.

Figure 6. Empirical Learning based on statistical hypothesis.

Figure 7. Scaling of crawling speed on 250mb/sec of network bandwidth.

In third sub-plotting of figure 7. the crawling speed is scaled to 250 mb/sec. of network

bandwidth. On such plotting it is clearly observed from the figure 7. that after scaling the

crawling speed varies from 10000 to 14000 pages/second. The actual crawling speed is depicted

in second sub-plotting of figure 7. The actual network speed that is observed in figure 6 is 18

kb/sec at the initial stage of crawling and gradually decreases to 2 kb/sec. On scaling this network

speed to 250 mb/sec it is found that crawling of pages can be mapped within the range of 10000

to 14000 pages/second (figure 7, third sub-plot).

In case of focused crawling, one of the most important point to understand is the relevance of the

retrieved document on real time basis[15]. The document can be classified as a relevant one if the

similarity can be found in between web resources and the focused topic [18, 14, and 16]. In this

proposed method, the VSM based method [17] is used to classify in between various retrieved

web-resources. This testing is essential to check whether the proposed method is able to retrieve

focused web-resource or not. The crawling with the proposed method is started with a set link

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

129

relevant to the 'News' topic, and it returns the links of the relevant web-pages . The links are listed

below on the basis of top relevance:

http://www.telegraph.co.uk/ http://msn.com

http://wordpress.com/ http://news.yahoo.com/

http://www.bbcamerica.com/ http://www.espn.co.uk/

http://www.bbcworldnews.com/ http://www.foxsports.com

http://www.nytimes.com/ http://www.football.co.uk/

http://www.motorcyclenews.com/ http://espn.co.uk

http://reuters.com http://politics.theatlantic.com/

http://www.nypost.com/ http://abcnews.go.com/

Those links are collected randomly from the huge collection of result which is based on relevant

topic ‘News’.

6. CONCLUSIONS

The proposed method is used to maintain the politeness at the time of crawling on a fluctuated

network bandwidth. The crawling speed in the present is scaled from 10000 to 14000

pages/second in 250 mb/sec. , and it is based on one IWM. The proposed method is designed in

such a way that any number of IWM can be used. The IWM can be plugged into the main server

at any point of the crawling time. The proposed method maintains the focused crawling through a

VSM based learning algorithm. The keyword similarity in between the document and query word

is decided through cosine formula. The relevancy value of each document is observed in between

zero and one and hence the efficacy of the present work gets established with an improvement in

the crawling speed for distributed hybrid focused crawler.

REFERENCES

[1] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextualWeb search engine. In

Proceedings of the Seventh InternationalWorld Wide Web Conference , pages 107–117, April 1998.

[2] Robert C. Miller and Krishna Bharat. SPHINX: A framework for creating personal, site-specific

Web crawlers. In Proceedings of the Seventh International World Wide Web Conference , pages 119–

130, April 1998.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scalable fully

 distributed web crawler. In Proc. AusWeb02. The Eighth Australian World Wide Web Conference

, 2002.

[4] Kasom Koht-arsa and Surasak Sanguanpong, High performance cluster based web spider architecture,

Ph. D. Thesis, Kasetsart University, 2003.

[5] Vladislav Shkapenyuk and Torsten Suel, Design and implementation of a high performance

distributed web crawler. In ICDE, 2002.

[6] Pinkerton, B., Web Crawler: Finding What people want, Ph. D. Thesis, University of Washington,

2000.

[7] Heydon, A and Najrok, M., Mercator: A Scalable, extensible Web Crawler, World Wide Web 2, 4,

219-229.

[8] Eichmann, D., The rbse spider- Balancing effective search against web load, World Wide Web

conference.

[9] H. Lee, D. Leonard, X. Wang, D. Loguinov, IRLbot: Scaling to 6 billion Pages and Beyond, ACM

Transaction on The Web, Vol. 3, 3, 2009.

[10] Y. Hafri, and C. Dejeraba; High Performance Crawling System, ACM International Conference

on.Multimedia information Retrieval(MIR’ 04); pp. 299 – 306.

[11] D. Gleich and L. Zhkov; Scalable Computing for power law Graphs: Experience with Parallel Page

Rank, Proceding of Supercomputing, 2005.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

130

[12] V. Gopal, N.S.G. Ganesh, Ontology Based Search Engine Enhancer, International journal of

Computer Science, 35(3), 413-420, 2008.

[13] S. Chakrabarti, M. H. Berg, B. E. Dom, Distributed Hypertext Resource Discovery Through

Examples, 25th VLDB Conference, Edinburg, Scotland, 1999.

[14] A. Pal, D. S. Tomar, S.C. Shrivastava, Effective Focused Crawling based on Content and Link

Structure Analysis, International Journal of Computer Science and Information Security (IJCSIS),

Vol. 2, 1, 2009.

[15] S. K. Pal, V. Talwar, P. Mitra, Web mining in soft Computing framework: Relevance, state of the Art

and Future Directions, IEEE Transaction On Neural Networks, Vol. 13, 5, 1163-1177, 2002.

[16] M. Diligenti, F.M. Coetzee, S. Lawrence, C. L. Giles, M. Gori, Focused CrawlingUsing Context

Graphs, 26th VLDB Conference, Cairo Egypt, 2000.

[17] Q. Cheng, W. Beizhan, W. Pianpian, Efficient Focused Crawling Strategy Using Combination of Link

Structure and Content Similarity, IEEE international Symposium on IT in Medicine and Education,

2008

[18] Ken-Tsoi T.E., D. Hiemstra, Learning to Merge Search Result for efficient Distributed Information

Retrieval, 10th Dutch-Belgian Information Retrieval Workshop, 2010.

[19] Y. Sun, P. Jin, L. Yue, A framework for Hybrid Focused Web Crawler, Second International

Conference on Future Generation Communication and Networking Symposia, 2008.

[20] Google! Search Engine. http://google.stanford.edu/

Authors

Sudarshan Nandy was born on 6thday of March 1983. He completed B.Tech in Computer

Science and Engineering from Utkal University,and M.Tech in Computer Science and

Engineering from West Bengal University of Technology in the years 2004 and 2007

respectively. He has been serving as Assistant Professor in JIS College of Engineering, since

2009. He is pursuing his Ph.D work under the guidance of Prof. Partha Pratim Sarkar and

Prof. Achintya Das. His area of interest is Computational Intelligence, Web Intelligence,

Meta-heuristics algorithm and Neural Network.

Dr. Partha Pratim Sarkar obtained his Ph.D in engineering from Jadavpur University in

the year 2002. He has obtained his M.E from Jadavpur University in the year 1994. He

earned his B.E degree in Electronics and Telecommunication Engineering from Bengal

Engineering College (Presently known as Bengal Engineering and Science University,

Shibpur) in the year 1991. He is presently working as Senior Scientific Officer (Professor

Rank) at the Dept. of Engineering & Technological Studies, University of Kalyani. His area

of research includes, Microstrip Antenna, Microstrip Filter, Frequency Selective Surfaces,

and Artificial Neural Network. He has contributed to numerous research articles in various journals and

conferences of repute. He is also a life Fellow of IETE.

Dr. Achintya Das was born on 8th February 1957.He completed B.Tech., M.Tech and Ph.D

(Tech) in the subject of Radio Physics Electronics from Calcutta University in the years of

1978, 1982 and 1996 respectively. He served as Executive Engineer in Philips from 1982 to

1996. He is Professor and Head of the department of Electronics and Communication

Engineering of Kalyani Govt. Engineering College, Kalyani, West Bengal. He also worked

for twelve years as Visiting Professor at Calcutta University. He has more than forty research

publications so far. He is fellow members (life) of IE and IETE professional bodies.

