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ABSTRACT 

 
The growth of world-wide-web (WWW) spreads its wings from an intangible quantities of web-pages to a 

gigantic hub of web information which gradually increases the complexity of crawling process in a search 

engine. A search engine handles a lot of queries from various parts of this world, and the answers of it 

solely depend on the knowledge that it gathers by means of crawling. The information sharing becomes a 

most common habit of the society, and it is done by means of publishing structured, semi-structured and 

unstructured resources on the web. This social practice leads to an  exponential growth of web-resource, 

and hence it became essential to crawl for continuous updating of web-knowledge and modification of 

several existing resources in any situation. In this paper one statistical hypothesis based learning 

mechanism is incorporated for learning the behaviour of crawling speed in different environment of 

network, and for intelligently control of the speed of crawler. The scaling technique is used to compare the 

performance proposed method with the standard crawler. The high speed performance is observed after 

scaling, and the retrieval of relevant web-resource in such a high speed is analysed.  
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1. INTRODUCTION 

 
The reach content of web-resource makes the web more knowledgeable but at the same time it 

increases the time of crawling. The contents of a web is ranging from structured to unstructured 

data and it is represented by various web-pages which represent itself in the various format of 

semi-structured data to publish in the web. The Web itself is a big information or knowledge hub 

divided into several geographical locations. The job of a search engine is to search the query 

relevant web resources from the web. Search engine basically follows the several machine 

learning techniques to crawl the relevant web resource and another type of search engine only 

focuses for a particular domain of knowledge. Those are called domain specific search engine. 

The crawler collects the web services or the web resource from repository. The indexer job is to 

parse those web resources found by the crawler, and then relevant matches are submitted to the 

result interface [12]. The proposed method is incorporated in the standard focused crawling 

method for faster retrieval of web-resource. The empirical learning based on statistical hypothesis 
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is also embedded in the system for adapting in dynamic environment of the web traffic while 

maintaining politeness in crawling speed. The network in the various part of the web can behave 

differently and in order to track that fluctuation in maintaining a stable mining speed one 

empirical learning method is applied.   

 

2. REVIEW WORK 
 

In recent years the development of web crawler is focused on the faster retrieval of web-pages 

deposition in less amount of time with a limited number of system resources. The system 

resources mainly used for this type of comparison is RAM and CPU usage during the running 

time of crawler. Some of the research focused on the above mentioned problem shows various 

ways to achieve its relevant answer. A few of those articles are targeted towards the resources-

dependent crawling but they are not scalable [1,2,3,4,6,7,8,19]. The google search engine is one 

type of distributed search engine and uses multiple number of crawler to crawl the web[1,20]. The 

crawler designed at Kasetsart University in Thailand is reported a fast retrieval of web resources 

in '.th' domain[4]. The IRLbot is a large scale crawler and has a billion of web-resources in its 

knowledge hub. This crawler comes with new technique to deal with the reputation and spam 

problem. The Web resources may contain the unlimited number of host address and dump links 

for which the crawler may fall into an infinite loop and hence it clearly depicted the complex 

scenario where BFS scan is not only the possible solution to any crawler. So it is necessary to 

provide some decision making strategy based on real time observation to understand the web-

resources content relevancy [9]. The IRLbot also reported in 2009 that the rate of crawling is 

1789 pages/second in 319mb/s download speed [9]. One of the fastest crawler is reported in 2004 

with 816 pages/sec speed, crawled more than 25 million pages [10]. Another crawler “AltaVista”, 

in 2003 crawl more than 1.4 billion pages and contains 6.6 billion links [11]. The proposed 

method demands its ability to maintain politeness during crawling and also having its speciality 

by means of adaptive crawling through empirically learning the nature of that domain, and hence 

it is able to adjust the speed of crawling automatically in any network environment. 

 

3. PROBLEM FORMULATION 

 
In the proposed method the enhancement of crawling speed is achieved through a statistical 

hypothesis based learning on fluctuation of network bandwidth. On the basis of the knowledge of 

network bandwidth fluctuation the crawler robots are initiated on each iteration of a crawling 

level. In order to deploy parallel search to maintain a high speed in searching of a relevant web 

resources, each of the given node is considered as an independent hypertext graph. This hypertext 

graph is also an element of main graph G. So, 
 

 
 

where G1', G2' etc. are different hypertext graphs and obviously belong to the different domains.  

In the  initial stage of the experiment it is considered that all of those GN' contain the relevant as 

well as irrelevant web resources i.e. web resources under those graphs may be true or false from 

the focused search point of view. So it can be formulated in the way: 

 
GN'  = the Nth  hypertext graph 
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Vi = the i
th
 web resource in the domain. It is also an element of the GN'. 

Now it is known that , 

 
and hence, 

 
 

Some web resources are also unreachable from GN' and can be symbolically expressed as Ucn  and  

hence,  

      
The time required to mine the all relevant web resources can be considered as T for crawling on 

GN'.  The speed at which it crawl the web resources is considered as Csi. In the dynamic 

environment of the web it is possible that the speed of the miner can fluctuate at any rate of any 

given running time in future or simply □T . Now in a mine speed Csi, Cn can be again true or 

false for a given set of focused topic and the false value of it can be represented by ¬C
N . 

Similarly in order to distinguish the high and low speed of mining, the relevant web resource the 

Csi can be true or false and the false value can be represented by si¬C . To understand the 

underlying logic and obviously the relation in between mine speed and its corresponding search 

of relevant or irrelevant web resources, those two parameters are divided into four states in a state 

transition machine with respect to the underlying representation of time. 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 1. The state transition  diagram. 

 

The circle in the transition diagram represent the state, the arrows denotes the possible transition 

between the states. The states which may happen in case of the experiment are labelled with the 

literals. The literals some time represented with ¬'' symbol to reflect that the meaning of the 

literals is “Not” in the same label for a given state. In the experiment it is indeed necessary to 
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understand the truth value of the temporal formula Nsi CC=H □□ ∨  where H is calculated for 

each state of the    figure 1 .  

 

i) H is true in S0. States that are accessible from S0 are S1 and S0 itself. Both □C
si and □C

N  are 

true in S0. 

ii) H is true in S1. States that are accessible from S1 are S0 and S2. 
□C

si is true in both the states . 

So the H is true. 

iii) H is False in S2. States that are accessible from S2 are S1 and S3. Both of the literals are false 

in the S3 and hence the H is also false. 

iv) H is False in S3. State that is accessible from S3 is itself and hence it is also false. 

 

The true value of H is needed to maintain at the running time of the crawler and the miner of the 

search engine will stop  the work once the value of the H is false. In order to maintain the true 

value of H, it is also experimentally observable that how much less time it takes to visit maximum 

web resources of GN'. It is also necessary to achieve high Csi value in less amount of time and the 

same will be possible when the crawler will adaptively work in the dynamic environment of the 

web. 

 

4. SYSTEM METHODOLOGY & ALGORITHMS  
 

The proposed method consists of three parts, Master scheduler, responsible for controlling every 

process of the method but it is generally useful in case of handling all the relevant web resources 

and DB API, Indexer , extract all the necessary information from web resources and thereby 

maintain the request of the next focused resource used for crawling purpose and is recognized 

here as a IWM or Intelligent Web-Miner. All the important parts of the proposed system is 

depicted in figure 2.The master scheduler part assigns independent hypertext graph to every 

IWM. It generally put the requests of the all IWM in a schedule queue where the requests are 

handled using FIFO technique. On the other hand it also handles a process which inherits the 

statistical observation on crawling speed Csi,  the error ξcs , harvest ratio of the method from the 

local DB which is maintained by master scheduler for storing the overall result of the crawling 

process. The master scheduler also helps to store the relevant URL in the 'URL_store' DB, and its 

corresponding document is stored in 'DOC_tab' DB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of proposed method. 
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The indexer is the most important part of the proposed system responsible for the extraction of all 

hypertext data and other necessary document from web resources. The web resources relevancy is 

mainly decided by this part of the system, and this decision is handled by a separate process, 

working under the Indexer, a daemon process. In case of retrieval of new relevant document, it 

sends all of it to the master scheduler, and then the master scheduler is responsible to transfer that 

document in proper place based on the decision coming from another process which is used to 

learn and recognize the matter of that web resources and the given query by using some machine 

learning technique. 

 

 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Block Diagram of  IWM organizations . 

 

Intelligent web-miner is one type of module used for crawling purpose. This module is actually 

responsible for crawling of web resources available from different domain. According to the 

proposed method this module can run on a different system with other similar type of module 

running on different system. So several modules can run parallel with different domains in 

searching of focused topic. Modules that run on different systems can be centrally controlled 

through the IWM controller block as in figure 2. Every module has its own learning technique to 

learn the environment on which several robots are working and those robots are actually used for 
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crawling purpose. IWM of the proposed method has two goals; one is to crawl in a standard 

speed, and the other is to crawl the most relevant document. The architecture of the IWM is 

depicted in figure 3. as reference.  

 

The algorithm of the IWM is as follows:  
  

Algorithm of Intelligent Web-miner (IWM)  
Input: A set of URL_l contain 1<url_l<n ('n' is defined by the IWM controller) & relevant topic. 

Output: A set of web focused resources .  

 

Begin: 

1. Establish connection with server API. 

2. Set R_flag = 0 

3. While R_flag = 0: 

 a. send a request for a set of URL 

 b. If server sends a valid response then prepare local DB for receiving and storing 

data. 

c. On receiving data, set the R_flag = 1, and go to step 4, otherwise go to step3. 

4. Store each url of URL_l with different level tag, and store them for level wise initiation 

of hybrid crawling. 

5. A local depth named as Ld is used to maintain hierarchical initiation of parallel 

crawling, because here parent of each hypertext child node is treated as  independent 

hypertext graph of Ligh. 

6. increases Ligh  by  1 

7. While (Ligh  - 1) = valid: 

 a. Append one hyper link of a Ligh  to a list. 

 b. WhileLd  <= Dms: 

  i. Learn_cs(Csi, PT) 

  ii. PT  = CT                            (where, CT  >= 1) 

  iii. Fetch the child hypertext nodes (hn) according to the number of CT  where 
h

n
 ∈L

ihg ,and hn  belongs to same level and same Ld . 

  iv. For each w  in hn : 

   1. Call ParallelCrawling (Wn)  

  v. Synchronize and terminate all the light weight process 

  vi. Increases Ld  by 1 

  vii. If Ld  > Dms : 

   a. increases Ligh  by  1 

8. R_flag = 0 and Go to step 2. 
 

The IWM algorithm is used for the crawling purpose and designed in such a way that it can be 

plugged in to the main server at any point of running time of the system. The IWM procedure 

uses a level named Ligh to indicate the number of each independent hypertext graph treated as 

parent or root. The number of Ligh is depended on the availability of new focused domain found at 

the time of crawling, but it first starts with some defined focused domains. A local depth 

recognized as Ld is used to maintain the depth of each hypertext child nodes (robots) generated 

from a single Ligh . Now every child node or robot is treated as an independent graph, and the 

robots or threads are generated to crawl a specific web-resources . The decision on number of 

robot or thread is generated from the statistical hypothesis based learning method. The whole 

process is depicted in Fig. 4. Now, the algorithm of statistical hypothesis based learning method 

takes the current observation of Csi, the i
th
 crawling speed, and number of PT  or present thread 

(robot) . 
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Algorithm LearnCrawlingSpeed(Csi , PT)     
Input: Crawl Speed Csi, Present no of used thread PT. 

Output: List of E'cs value (Lecs ), modified number of thread PT. 

Begin: 

 1. a. Lecs = empty list, Lf  = 0 and  

     b.   learning limit or LL = n  

 2. If  Lecs<> n And Cl <> LL And Lf  = 0 : 

  i. Count the frequency of '0' 

  ii. If frequency >= defined limit: 

   a. Calculate current Cs 

   b. Lf = 1 

   c. declare Lecs as an empty list 

iv. Store the 
ξ

cs  , Csi , PT  in local DB and goto Step 3. 

 3. i. If  Lf   = 0 and Lecs <= n: 

  a. Calculate 
ξ

cs  

  b. calculate the value of  E'cs = f(E'cs)                 

  c. Deiced PT and append the E'cs value in Lecs. 

    ii. Else if Lf = 1 and Lecs <> n then: 

  a. Check current value of crawling speed. 

  b. If  Cs <= threshold value then: 

   a. Lf= 0 

   b. Goto Step 3. 

    iv. Return (Lecs, PT) 
 

The learning part of the system (figure 4) has a 'Critic' block, and it is used to check the 

fluctuation rate, even if the learning flag is set to off mode. It is also responsible to reset the 

learning, if the fluctuation rate of the crawling speed is lower than that of the previously observed 

value. Lecsis a list containing the result of the E'cs, and the learning flag is set on or off according 

to the number of appearance of the '0', '1' and '-1' in the list. The decision of the PT is done 

according to the following rules: 

 

1. If E'cs = 1 then  PTnew  =  PTold - 1 

2. If E'cs = 0 then PTnew = PTold 

3. If E'cs = -1 then PTnew = PTold  +1 

 
 

Figure 4. Empirical learning based statistical hypothesis 
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Finally the learning procedure returns the value of PT and Ecs to the main IWM process. On 

receiving the PT value, the IWM procedure initiates that much number of crawling process for the 

parallel mining of the web resources from multiple number of domain. Then the IWM procedure 

synchronizes and terminates all the previously initiated crawling process to start with the new set 

of hypertext child node. This procedure of crawling ends, when Ld reaches its limit (Dms), which 

is defined by the main server process. R-flag is then set to '0', and IWM procedure requests and 

waits for response.  

5. Evaluation  

The performance of the proposed method is evaluated in terms of its crawling speed while it 

maintains politeness in crawling and relevance of crawled pages during the period of crawling.  

Intelligent Web-miner(IWM) is maintaining their own DNS cache and refresh its cache on certain 

time interval.  The workloads of intelligent web-miner depends on the number of availability of  

new domain in crawler server data base and is distributed through master scheduler. If no new 

domain is available then master scheduler sends a wait signal to the other IWM's waiting queue. 

The crawler performance can be watched and configured at a visited page level  based on the 

relevance score and crawling speed graph. The theoretical analysis and experiment on learning of 

crawl speed and  page relevance at the same time are studied herewith in detail. 
 

5.1 Experimental Set-up 
 

The proposed distributed hybrid focused crawler is a developed python based application  in this 

experiment where some C program is used as a plug-in. The method is developed on core 2 Duo 

processor 1.73 GHz Pentium-IV PC with 2 GB of RAM and a SCSI hard drive.  The storage of 

database is centrally maintained on a Sun Server. Intelligent web-miner (IWM)  is developed also 

and run from a core 2 Duo processor 1 GHz Pentium-IV PC with 3GB of RAM. All the machines 

are connected through LAN and LAN is connected to ISP using full-duplex 2 MB/Sec. bandwidth 

of a leased line network connection.  

 

The crawler is initialized with two or three master topic and that is represented using two or three 

node as a independent hyper text graph to crawl. The responsibility of the crawler is to find out 

relevant pages on the mentioned topic while it maintains a good speed in crawling. The topics 

used as a test case is 'News'. 

 

In order to represent the experiment some selected results from above topics are enumerated at 

here.  The crawling speed on actual network bandwidth is mathematically scaled and the crawling 

speed is represented on high network bandwidth of 250 MB/s. The actual relevance of pages 

during crawling based on this proposed method is also studied. 

 

5.2 Analysis of Experimental Result 

 
According to the idea of web-resources retrieval in the proposed method, there are several 

intelligent web miners working in parallel with main server and Indexing server. Those web 

resources miners are named as Intelligent Web-miner(IWM). In case of understanding, the nature 

of crawling speed, it is necessary to estimate the amount of distribution from crawling speed log, 

where the crawling speed values are stored. In this proposed method some statistical measures are 

applied to analyse and presumed the nature of the speed in different domains with varying 

network speed. The nature of mining in different domain with a varying network speed, it is 

necessary to observe and analyse the dispersion or the degree of scatterness in the speed. 
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The scatterness in the crawling speed is observed to gain knowledge of fluctuation in network 

bandwidth. So, if the total deviation of Cs watched at ∆t time and Cs of (∆t-1) time is large, then it 

can be considered as a large deviation of crawling speed. Now in case of the experiment, it must 

show the graph line going up, if the deviation is large and it behaves in opposite manner, when 

the deviation of crawling speed is low. The crawling speed can be calculated as follows: 

 

Crawling Speed = (Number of visited node /Actual crawling time) 

 

 

So, 

C
s
=

∑
i=1

M

V
i

C
t

    (1) 

The crawling speed Cs is the i
th
 visited node of Vi, and it is actually divided by the actual 

crawling time. 

 

Actual crawling time = (Present crawling time -starting time of IWM) 

 

So, now the mean of the crawling speed can be calculated as follows:  

 

 

  

              

  

 

 

 

 

 
 

 
Figure 5. Fluctuation in Crawling Speed. ( x axis’s is representing the actual crawling speed) 

     

In the figure 5 the possible fluctuation rate of crawling speed can be observed. The mean square 

of the deviation of crawling speed is needed to know the behaviour of mining of web resources 

from a specific domain. 

 The mean square crawling speed can be calculated as follows: 
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As now that standard deviation of any value is much more meaning full than that of mean square 

deviation, the standard deviation of crawling speed is calculated as follows: 
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According to the proposed method, it is always expected that at any crawling time, lower value of 
ξ

cs is observed. It is also proved from the experiment that the lower value of Csi always generates 

high value of ξcs .  

 

In the proposed method, it is possible to plug many number of IWM with the main servers, 

because it is totally a distributed system. Each of these IWM work on different domains of web, 

and it is possible to plug it to the main servers from any area of the web. So those IWM will not 

work from same roof and hence it must face the fluctuation of network bandwidth caused by the 

network traffic of that area. One empirical learning based solution is used in the proposed method 

to apply the knowledge of network traffic fluctuation in every robot of an IWM. The effect of 

mining the relevant document in the available bandwidth at any time can be measured by 

calculating the Csi or crawling speed, and the standard deviation of the same will be helpful to 

watch the small dispersion in the speed. So , in the experiment, it is always necessary to check the 

range of standard deviation using the following: 

 

 
 

Ecs is the difference between sum of all previously observed standard deviation of crawling speed 

and present standard deviation of the same. Clearly, the value of Ecs belongs to the positive 

region, if the present mining speed of IWM is smaller than that of the previously observed value. 

If it belongs to the negative region, the value of mining speed or Csi is in the standard level, and 

corresponding standard deviation of the mining speed is smaller than that of  the previously 

observed ξcsi value. So to keep track on the values of Ecs, the following function is developed: 

 

 Ecs' = f(Ecs)                                                                           (9) 

 

      -1 if  Ecs < 0.0 

 Ecs'   =         0 if   Ecs = 0.0 

       1       if   Ecs > 0.0 
 

Now the function f(Ecs) is used for separating all the negative and positive values and is finally 

put to those on a list for constant watching of the appearance of '0' value in the list. In case of the 

appearance of the zero value, the number of thread or the generation of robot is not increased or 

decreased; it will remain same for that particular iteration. If  '1'  appears on the list, it clearly 

depicts the dropping of Csi for that particular iteration, when number of thread or robot decreases 

its value by one. The high crawling speed reflects when '-1' appears in the list and  the number of 

thread or robot in this particular case increases by one for that iteration.  The '0' value appearance 

in the list is good, because it reflects the stability of web mining in the existing network 

bandwidth. It is also observable that after certain high peak, mining speed is certainly dropped, 

and it becomes stable on some lower speed, also zero will appear in the list. So the question is 

how to tackle all such cases where crawling speed values are trapped on small range value. The 

proposed method consists of a crawling speed watcher, named here as a critic whose 

responsibility is to watch for any small or large fluctuation in ξcs value. If any such case happens 

with this empirical based statistical learning method, critic is there to recover the mining speed or 

Csi from that particular small range of crawling speed.  

 

Figure 6 and 7 represent the proposed learning procedure. In figure 6 and 7 the first subplot 

represents the error rate indicated by the ‘deep gray’ line. The X axis represents the actual 

crawling time in second, and it is observed from the figure 6 and 7 that ‘Error’ or standard 
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deviation is plotted with high peak till 5000 second and after that it is being stabilized slowly. In 

the second subplot of the figure 6, crawling speed(y axis) is plotted with actual crawling time (x 

axis). The ‘dark gray’ line used to represent the crawling speed and it is observed that the 

crawling speed is going down to 5000 second but the ‘critic’ module in the proposed method 

correct it and it becomes stabilized from the 10000 second. The ‘light gray’ line in second subplot 

of the figure 6 and figure 7 represents the probable crawling speed on that time. 

 

 

 

 

 

 

 

   

 

 

 

Figure 6. Empirical Learning  based on statistical hypothesis.   

 

  
  

 

 

 

 

 

 

 

 

 

 

Figure 7. Scaling of crawling speed  on 250mb/sec of network bandwidth. 

In third sub-plotting of figure 7. the crawling speed is scaled to 250 mb/sec. of network 

bandwidth. On such plotting it is clearly observed from the figure 7. that after scaling the 

crawling speed varies from 10000 to 14000 pages/second. The actual crawling speed is depicted 

in second sub-plotting of figure 7. The actual network speed that is observed in figure 6 is 18 

kb/sec at the initial stage of crawling and gradually decreases to 2 kb/sec. On scaling this network 

speed to 250 mb/sec it is found that crawling of pages can be mapped within the range of 10000 

to 14000 pages/second (figure 7, third sub-plot).  

 

In case of focused crawling, one of the most important point to understand is the relevance of  the 

retrieved document on real time basis[15]. The document can be classified as a relevant one if the 

similarity can be found in between web resources and the focused topic [18, 14, and 16]. In this 

proposed method, the VSM based method  [17] is used to classify in between various retrieved 

web-resources. This testing is essential to check whether the proposed method is able to retrieve 

focused web-resource or not.  The crawling with the proposed method is started with a set link 
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relevant to the 'News' topic, and it returns the links of the relevant web-pages . The links are listed 

below on the basis of top relevance: 

 
http://www.telegraph.co.uk/  http://msn.com 

http://wordpress.com/   http://news.yahoo.com/ 

http://www.bbcamerica.com/  http://www.espn.co.uk/  

http://www.bbcworldnews.com/  http://www.foxsports.com 

http://www.nytimes.com/  http://www.football.co.uk/ 

http://www.motorcyclenews.com/ http://espn.co.uk 

http://reuters.com   http://politics.theatlantic.com/ 

http://www.nypost.com/   http://abcnews.go.com/ 

 
Those links are collected randomly from the huge collection of result which is based on relevant 

topic ‘News’.  

 

6. CONCLUSIONS 

 
The proposed method is used to maintain the politeness at the time of crawling on a fluctuated 

network bandwidth. The crawling speed in the present is scaled from 10000 to 14000 

pages/second in 250 mb/sec. , and it is based on one IWM. The proposed method is designed in 

such a way that any number of IWM can be used. The IWM can be plugged into the main server 

at any point of the crawling time. The proposed method maintains the focused crawling through a 

VSM based learning algorithm. The keyword similarity in between the document and query word 

is decided through cosine formula. The relevancy value of  each document is observed in between 

zero and one and hence the efficacy of the present work gets established with an improvement in 

the crawling speed for distributed hybrid focused crawler. 
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