International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

COMPARISON OF VARIOUS HEURISTIC
SEARCH TECHNIQUES FOR FINDING
SHORTEST PATH

Mr. Girish P Potdarl, Dr.R C Thool?.

! Associate Professor, Computer Engineering Department, P.I.C.T, Pune,
2Professor, Department of Information Technology, SGGS IE&T, Nanded,

ABSTRACT

Couple of decades back, there was a tremendous development in the field of algorithms, which were aimed
at finding efficient solutions for widespread applications. The benefits of these algorithms were observed in
their optimality and simplicity with speed. Many of the algorithms were readdressed to solve the problem of
finding shortest path. Heuristic search techniques make use of problem specific knowledge to find efficient
solutions. Most of these techniques determine the next best possible state leading towards the goal state by
using evaluation function. This paper shows the practical performance of the following algorithms, to find
the shortest path:Hill Climbing, Steepest-ascent, and Best-First and A*. While implementing these
algorithms, we used the data structures which were indicated in the original papers.In this paper we
present an alternative data structure multi-level link list and apply the heuristic technique to solve shortest
path problem. This was tested for class of heuristic search family-- A* and Best First Search approaches.
The results indicate that use of this type of data structure helps in improving the performance of algorithms
drastically.

Keywords:

Multilevel link list, Informed search techniques, Heuristic function, Shortest path algorithm.

1.INTRODUCTION

Heuristic search algorithms have exponential time and space complexities as they store complete
information of the path including the explored intermediate nodes. Hence many applications
involving heuristic search techniquesto find optimal solutions tend to be expensive. Despite of
these, the researchers have strived to find optimal solution in best possible time. In this paper we
have considered major algorithms which are applied to find the shortest path: hill — climbing,
steepest —ascent, best first and A* [1,2,4].

Hill climbing algorithms expand the most promising descendant of the most recently expanded
node until they encounter the solution. Steepest — ascent hill climbing differs from hill climbing
algorithm only the way in which the next node is selected. In this method it selects best successor
node for expansion, unlike the first successor node for expansion, as done in hill climbing.
Though this method tries to choose best possible path , but this method , like hill climbing
method may fail to find a solution by reaching to a node from were no improvements can be
done [5,8]. Best first search method selects the “best” node for further expansion by applying a

DOI : 10.5121/ijaia.2014.5405 63

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

heuristic function. It then generates the successor node in similar fashion till the goal node is
reached. This technique tries to explore the advantages of breadth first and depth first search
technique and provides better time bound solution. Best first algorithm involves OR graph, it
avoids the node duplication and also works on the assumption that each node has parent link to
give the best node from the node where it is derived and link to successors. A* algorithm is a
slight modified version of best search algorithm. The difference is that in A* the estimate to the
goal state is given by heuristic function and also it makes use of the cost of the path developed
[2,3,6].

We will now discuss each of these methods for finding the shortest path.

2. HILL CLIMBING METHOD FOR SHORTEST PATH FINDING

Hill climbing algorithm expands one node at a time beginning with the initial node. Each time it
expands only the best node reachable from current node. Thus this method does not involve
complex computation and due to this reason cannot ensure the completeness of the solution. Hill
climbing method does not give a solution as may terminate without reaching the goal state
[12].Now let us look at algorithm of hill climbing for finding shortest path:

Procedure for hill climbing algorithm to find the shortest path:

hill_climb_sp (s, g, Q)
{
// s& g are start and goal nodes respectively.
/I Q is queue which stores the successor
/I nodes.
/' let curr_node indicate current working
/I node.
// path _cost gives the cost of the path.

initialiseQ;

curr_node = s;

path_cost=0;

while (1)

{

if (curr_node is goal node) then
terminate the process with SUCCESS;
else

{

find successor node of curr_node;
addthis node in Q ;

}

if(Q is empty)then
terminate the process with FAILURE;
else

{

temp_node = first node of Q ;

64

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

path_cost = path_cost +
edge_cost [curr_node][temp_node];
curr_node = temp_node;
delete first node from Q ;
}
}

One may notice that there can be failure state when algorithm may fail to reach the goal node.
This will happen especially when the processing has reached to a node from where no new best
nodes are available for further expansion. This will happen especially when the processing has
reached to a node from where no new best nodes are available for further expansion.

3. STEEPEST ASCENT HILL CLIMBING METHOD FOR SHORTEST PATH
FINDING

This method is a result of variation in hill climbing. Here, instead of moving the immediate best
node, all the reachable nodes from current node are considered and among these the best one is
chosen. In case of simple hill climbing, the first successor node which is better, is selected, due to
this we may omit the best one. On the contrary steepest ascent hill climbing method not only
reaches to the better state but also climbs up the steepest slope.

The variation in algorithm will be only in finding the best successors node from all the possible
successor nodes from all possible successor, and not just the first best node [2,12,15].

The algorithm is given below:

steep_asc_hll(s, g,Q)
{ // s& g are stait and goal nodes respectively.
/I Q is queue which stores the successor
/I nodes.
/I let curr_node indicate current working /I node.
// path _cost gives the cost of the path.

initialise Q;
curr_node = s;
path_cost=0;

while (1)
{

if (curr_node is goal node) then
terminate the process with SUCCESS;
else

{
find all the reachable node from curr_node;
determine the cost of reaching to these nodes
fromcurr_node;
according their cost add them in Q.

}
if (Q is empty) then

65

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

terminated the process with FAILURE;
else
{ temp_node = first node of Q ;
path_cost = path_cost +
edge_cost [curr_node][temp_node];
curr_node = temp_node;
delete first node from Q ;

}
}

One can notice that hill climbing and steepest — hill climbing may fail to find a solution. Either
algorithm may not reach goal node as it may reach to a node where we may not find better nodes.
In such cases we may need to back-track as use more rules before choosing the next node.
However this process will be time consuming.

Both the methods discussed, may terminate not by finding a goal node but may reach node from
where no better nodes can be generated.

This will happen if the processing has reached to one of the following situations:

i) A node might have been selected which may be better that its neighbors, however
there may be few better nodesavailable which are step away. This situation is termed
as local maxima.

i) A node might have been selected, whose neighbors may have the same value and
hence choosing next best node is difficult. This is known as plateau.

iii) A ridge is a special kind of local maximum, though the path selected so far may be
the best, yet making further moves difficult.
The next algorithms described here try to overcome these problems.

4. BEST FIRST METHOD FOR SHORTEST PATH FINDING

Best first search is a type of graph search algorithm. Here the nodes are expanded one at time by
choosing lowest evaluation value. This evaluation value is a result of heuristic function giving a
measure of distance to the goal node. For typical applications such as shortest path problems, the
evaluation function will be accurate as it accounts for distance or an absolute value [14,19].

Best first search is a combination of breadth and depth first search. Depth first search has an
advantage of arriving at solution without computing all nodes, whereas breadth first arriving at
solution without search ensured that the process does not get trapped. Best-first search, being
combination of these two, permits switching between paths. At every stage the nodes among the
generated ones, the best suitable node is selected for further expansion, may be this node belong
to the same level or different, thus can toggle between depth-first and breadth-first. This method
involves OR graph, avoids node duplication, and also requires two separate lists for processing.
OPEN list keeps the nodes whose heuristic values are determined, but yet to be expanded.
CLOSE list have the nodes which have been already checked, further these nodes are kept in this
list to ensure no duplications. It implies that the OPEN list has the nodes which need to be

66

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

considered for further processing and the entries in CLOSE list indicate the nodes which may not
be re-required in further steps [6,7].

Let us look at the best first search algorithm for finding shortest path:

bfs_sp (s, g)
{
/l's is start node & g is goal node
// let OPEN and CLOSE be the two lists.
// let current_w indicates current working //node.
// path_cost indicates cost of reaching to a // node x.

path_cost=0;
OPEN=NULL;
CLOSE=NULL;

do
{
add_node (OPEN, s); //add S to
//OPEN list;
current_w= first element of OPEN;
determine f(n) for successor nodes of current_w;
add these new nodes to OPEN based on their f (n) values;
movecurrent_w to CLOSE;
current._w= first node of OPEN;
path_cost=path_cost + f(n) of current_w;

while (current_w is not g and OPEN is not empty);
If (current_w=g) then

printpath_cost;

else

print failure;

}

In this case f (n) a heuristic function is an actual edge cost function.

5. A* ALGORITHM FOR SHORTEST PATH FINDING

We know that the various search techniques are designed, tested and are being used for various
purposes whatever it is for system software or application software. But the base for this is
however mainly because of the problems in planning domain. Classical approaches to heuristic
search algorithm work on assumption of the existence of deterministic model of sequential
decision making leading to the solution. The research work focused on solving planning
problems under uncertainty [1]. Heuristic algorithms have given a new looked into the problems
belonging to this domain [6,10].

67

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

The shortest path problem can be solved by A* algorithm. The heuristic function needs to
evaluate two costs, g and h. Let g(n), in shortest path problem, represent cost of choosing the path
from starting node to node n; and h(n) represents optimal cost of node n to the goal node. Now
the cost of node n is given by: *(n) =g(n)+ h*(n). However the value of h*(n) will be unknown
in most of the situations, which results in unknown value of f*(n). A* algorithm, however makes
a best approximation for h*(n)[16,17].

The A* algorithm to solve the shortest path problem can be written as: [10]
Step 1: Start from the start node; place it in OPEN list. This will be current working node.
Step 2: Explore all the nodes adjacent to the one in OPEN list.

Step 3: Determine the cost function for all the nodes obtained in step 2; and place them in OPEN
list in increasing order of cost function values.

Step 4: Move current working node, from OPEN list to CLOSE list.

Step 5: Now the first node in OPEN List will be the current working node (which is having least
cost function due to insertion criteria in step 3).

Step 6: If this current working node is not the goal state (final node), then repeat step 2 to step 5.

Step 7: The CLOSE list gives the shortest path and the value of last cost function obtained gives
the optimal cost.

6. EXPERIMENTAL RESULTS

All the algorithms discussed in previous sections were implemented in C++ and run on 2.4 GHz
Intel C2D system with 2GB RAM. The random data sets were created for varying number of
input nodes and saved in separate files. While testing these algorithms stored data was given as
input data and processed. The algorithms were tested for the number nodes and edges
explored/visited were compared. The Number of nodes and edges considered during the process
for various algorithms are given in Table 1 and Table 2 respectively.

Note: HC —Hill Climbing, ST_AC --Steepest Ascent
Hill Climbing,BFS—Best First Search and A*.

68

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

Table 1: Number of nodes considered.

Nodes HC ST_AC BES A¥*
1000 1439 915 351 183
1100 2171 1006 782 426
1200 2391 1106 1806 1029
1300 2533 1214 762 401
1400 2787 1310 1871 1057
1500 2923 1394 2360 1346
1600 3023 1510 363 188
1700 3339 1598 2696 1536
1800 3373 1722 2876 1634
1900 3749 1820 219 111
2000 3875 1921 2767 1567
2100 4063 2015 1952 1065
2200 4277 2106 3683 2137
2300 3557 2198 3713 2132
2400 4751 2301 1850 1017
2500 4959 2388 2683 1479
2600 4995 2502 3641 2074
2700 5275 2608 1885 1039
2800 5257 2704 2163 1190
2900 5705 2805 1712 922
3000 5945 2900 1637 876

Table-1 shows that there is significant amount of improvement on number of nodes being
considered in A* algorithm compared to the rest of the methods.

Table 2: Number of edges considered

Nodes | HC ST_AC BFS A*

1000 919881 492103 318260 165347
1100 1207619 595531 698507 376975
1200 1437589 709383 1273917 702929
1300 1686345 835800 839059 439800
1400 1957171 970824 1663677 920304
1500 2245595 1112690 2003375 1112315
1600 2549145 1267835 545470 281622
1700 2885731 1432627 2585858 1430620
1800 3223745 1611151 2905999 1605239
1900 3605601 1795683 402089 202895
2000 3992219 1990342 3443484 1905039
2100 4401245 2193714 3072621 1667820
2200 4831941 2408930 4339274 2416884
2300 5014481 2633403 4721867 2629654
2400 5754649 2867561 3522853 1921764
2500 6244621 3112370 4758366 2602019
2600 6744499 3368084 5818135 3240099
2700 7280819 3631545 4146417 2263359
2800 7805331 3907490 4805723 2621745
2900 8402039 4191736 4195443 2246319
3000 8993299 4487278 4208595 2241750

69

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

Table-2, as a consequence of nodes expanded or considered results in varying number of edges.
In BEFS and A* the edge count reduces, as we make proper heuristic estimation. Where as in Hill
climbing or in Steepest Ascent, we try to choose the immediate best node, which will ultimately
result in exploring more number of edges.

The resulting graphs of the two algorithms are given in Fig 1 and Fig 2.

AT
6500 — —e—BFS
—&—S§THC
6000 7 vke
5500
v
5800 - v-v

Number of Nodes Explored

T T T T
1000 1500 2000 2500 3000

Number of Modes in Graph

Figure 1: Comparison of number nodes considered against total nodes in graph.

—m—A*
9500000] ® BFS
9000000 v STHC
8500000 vy | v HC
8000000 ¥
7500000 /
Y 7000000] l
g 6500000 v/'
2 6000000] AN
S 5500000 /
O 5000000 -y
9 4500000 ol o
2 4000000 ¥ ¢ o
W 3500000 .
‘S 3000000 Iy
5 2500000 LA N
-g 2000000 - s
S 1500000
Z 1000000 §
500000
04
T T T T T
1000 1500 2000 2500 3000

Number of Nodes in Graph

Figure 2: Comparison of number edges considered against total nodes in graph
One may also observe here that certain unexpected variations in the values. This is mainly due to

the fact that these algorithms were executed till they find the solution and were not run for fixed
number of iterations.

7.BEST FIRST SEARCH USING MLL AS DATA STRUCTURE

Now let us look at the variations to the algorithms presented in section 4 and 5. Here let us make
use of multi-level linked list as data structure for implementation [8,18,20].

70

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

In section 4, we discussed the conventional approach of Best first search for finding shortest path.
In this section we present slightly modified approach for solving the problem of shortest path
finding. We store the current working node in parent list of MLL and all the adjacent nodes in its
successor list. The best node as determined by f(n), will be chosen for further expansion.

f(n) = min(cost(n,i)), Vi, where i is an adjacent node of n.

The skeleton of the algorithm is given below:

Best First method with multi-level linked list:

bfs_mll_sp (s, g)
{
/I s is start node & g is goal node
// begin the process from s; this will be the
/ffirst node in MLL, let it be current /working node call it current_w
/Ipath_cost indicates cost of reaching to a
// node x.
path_cost=0;
do
{
determine f(n) for successor nodes of current_w; add these new nodes to
successor link S based on their f (n) values for the current parent node;
current_w= first node of S;
path_cost=path_cost + f(n) of current_w;
}while (current_w is not g and S
of current parent node is not empty);
If (current_w=g) then
printpath_cost;
else
print failure;

}

In this case f (n) a heuristic function is an actual edge cost function.

8. A* ALGORITHM USING MLL AS DATA STRUCTURE

As stated earlier, shortest path problem aims at finding minimum cost path between pair of nodes
cumulatively and then find the final path between start and goal nodes[9,21]. A* algorithm with
MLL, resultin pruningthe search space [8,17]. The approach which has been followed in our work
makes use of an exact accurate function. The evolution function f(n) is given as:

f(n)=g(n) +h(n); where g(n) is the cost of an edge between the currently explored node or current
working node and the node n being examined, h(n) is the best edge cost value from the set of
edge costs going out from the node n to the all possible adjacent nodes.

Let us look at the algorithm.

Step 1: Start from start state; this will become the first node in MLL, call it as current working
node. Since this is the first node this will be the first node of parent list.

71

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

Step 2: Explore all the nodes adjacent to the one in the current parent node list.

Step 3: Determine g value of the current working node.

Step 4: Obtain the h values for all the nodes obtained in step 2.

Step 5: Find the f values for the expanded nodes; keep them according to their values in successor
list for the current parent node (this will result in the list maintained in increasing order of the f
values, which will be the cost function).

Step 6: Pick up the first node from the successor list obtained in step 5 which will be the next
working node.

Step 7: If this current working node is not the goal state, then attach this node to parent list and
repeat step 2 and step 6.

Step 8: The set of nodes belonging to parent list gives the shortest path and the cost function
determined in the last step will be the optimal cost.

9. EXPERIMENTAL RESULTS OF BFS AND A* WITH MLL:

The BFS and A* algorithms discussed in previous sections were implemented in C++ and run on
2.4 GHz Intel C2D system with 2GB RAM. The random data sets were created for varying
number of input nodes and saved in separate files. While testing these algorithms stored data was
given as input data and processed.

The algorithms were tested for the number nodes and edges explored/visited were compared. The
Number of nodes and edges considered during the process for various algorithms are given in
Table 3 and Table 4 respectively.

Table 3: Number of nodes considered.
[Existing approach indicates the conventional approach that is being implemented and in MLL we used
new method]

BFS A
MNodes
Considered Existing Using Existing Using
Approach MIL Approach ML
1000 351 20 183 17
1100 782 21 426 22
1200 1806 30 1029 20
1300 7oz 28 401 27
1400 1871 53 1057 21
1500 2360 37 1346 23
1600 363 47 188 22
1700 2696 64 1536 25
1800 2876 32 1634 25
1900 219 33 111 28
2000 27a7 56 1567 30
2100 1952 82 1065 27
2200 I683 27 2137 31
2300 3713 52 2132 30
2400 1850 33 1017 32
2500 2683 51 1479 32
2600 3641 77 2074 30
2700 1885 33 1039 33
2800 2163 56 1190 32
2900 1712 40 922 37
3000 1637 40 876 34

72

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

Table 4: Number of edges considered.
[Existing approach indicates the conventional approach that is being implemented and in MLL we used
new method]

BFS AF

Nodes
Consid

ered

Existing Using Exsting Using
method MLL MLL

1000 318260 8795 165347 7543
1100 698507 10394 376975 9248

1200 1273917 12667 702929 [11022

1300 839059 14001 439800 [13123

1400 1663677 17652 920304 [15005

1500 2003375 18267 1113315 | 17141

1600 345470 22183 281622 [19209

1700 2585838 17306 1430620 | 21460

1800 2905999 24276 1605239 | 23694

1900 402089 26541 202895 [26087

2000 34434354 30619 1905039 | 28535

2100 3072621 37144 1667820 | 31004

2200 4339274 33394 2416884 | 33731
2300 4721867 37251 2629634 | 36516

2400 35228353 38437 1921764 | 39132

2500 4758366 42381 2602019 | 41959

2600 5818135 48610 3240099 | 44801

2700 4146417 46383 2263359 | 47632

2800 4805723 50453 2621745 | 30368

2800 4195443 32588 2246319 | 53422

3000 4208595 35831 2241750 | 56672

10.CONCLUSION

We have presented major class of heuristic algorithms. The comparison shows that though all
these algorithms can be applied to find the shortest path, but should not be used unless there is a
real- time, event driven actions are anticipated. The comparison gives us clear idea that best-first
search and A* algorithms are very well suitable when goal node cannot be reached from all
nodes. However there may be interesting scenarios that may come out when these algorithms are
applied with different data structures.

The results clearly indicate that hill climbing or steepest ascent hill climbing algorithms are not
suitable for problems such as shortest path finding. This is due to the fact that there is no
assurance of getting final optimal solution for all the cases. Best first and A* algorithms on the
other hand ensure optimal solution for limited graph size. For larger number of nodes these
algorithms not only tend to take more time but the optimality factor may be of concern.

73

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014

There are number of factors for using different data structure approach, in heuristic algorithm — as
special case study we implemented Best First Search and A* algorithm with multilevel linked
list as data structure is the main reason of the increased speed in determining the shortest path.
One can easily figure out the fact that both these algorithms with multilevel lined list results in
reduced area that is to be searched, which eventually gives us the better way of handling the
nodes at runtime. Since the number of nodes or edges considered in the process is less, the time
taken to find the optimal solution will also be less which are shown in the results section.

One may even work on eliminating the already explored nodes in subsequent levels, which may
further reduce the space requirement.

REFERENCES

(1]
(2]
(3]

(4]
(5]

(6]
(7]
(8]

(9]

[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

(21]

BlaiBonet and Eric A. Hansen, (2010)“Heuristic Search for Planning under Uncertainty”, Chapter in
Heuristics, Probability and Causality: A Tribute to Judea Pearl College Publications. pp 3-22

Eric A Hansen, Rong Zhou, (2007) “Anytime Heuristic Search”, Journal of Artificial Intelligence
Research 28, pp 267-297

G.Cornuejols and G L Nemauser, (1978) “Tight bounds for christofides” travelling salesman
heuristic* Short Communication Mathematical Programming, Vol. 14, Issue 1, pp 116-121

Anne L. Gardner, (Sept 1980) “Search: An Overview”, Al magazine, Vol. 2, Number 1

R. Korf, (1990) “Real time heuristic search”, Artificial Intelligence ACM Digital Library, Vol. 42,
pp189-211

RinaDechter and Judia Pearl, (July 1985) “Generalized Best-First Search Strategies and the
Optimality of A*.”, Journal of the Association for Computing Machinery, Vol. 32, No. 3, pp 505-536
L. Fu, D. Sun and L. R. Rilett, (2006) “Heuristic shortest path algorithms for transportation
applications: State of the art”, Elsevier Computer and Operations research 33, pp 3324-3343

Girish P. Potdar andDr.R.C.Thool, (2013) “An Alternate way of implementing Heuristic Searching
Technique” International Journal of Research in Computer andCommunication Technology, Vol. 2,
No 9, pp-793-795

Hen-Yong Pang, Alicia Tang Y.C., (2006) “A Route Advisory System (RAS) For Travelling
Salesman Problem”, Journal of Applied Sciences Research 2(1), pp 34-38

C.H. Peng, J.S. Wangand R.C.T. Lee, (1994)“Recognizing Shortest Path Trees in Linear Time”,
Information Processing Letters, Vol. 57, pp 77-85

R.C.T. Lee, S.S. Tseng, R.C. Chang, Y.T. Tsai., (2012) “Introduction to Design and analysis of
algorithms —A strategic approach”, Tata McGraw Hill edition 2012

P.P.Chakrabarti,S. Ghose, A. Acharya and S.C. de Sarkar, (1989) “Heuristic search in restricted
memory”, Artificial Intelligence, 41(2), pp 197-221,

Herman Keindl, Angelika Leeb and Harald Smetana,(1994) “Improvements on linear space search
algorithms”, in proceedings ECAI-94, pp 155-159,

Richard E. Koff, (1993) “Linear space best-first search”, Artificial Intelligence, 62, pp 41-78
A.Martelli, (1977) “On the search complexity of admissible search algorithms”, Al, Vol. 8, pp 1-13
D. Dreyfus, (1967) “An appraisal of some shortest path algorithms”, Journal of the Operations
Research Society of America,Vol. 17 Issue 3, pp 395-412

A.V. Goldberg, (2001) "A simple shortest path algorithm with linear average time", In proceeding 9th
ESA, Lecture notes in computer science LNSC 2161, pp 230-261

B.V.Charkassy,A.V. Goldberg, T.Radzik, (1996) “Shortest Path Algorithms: theory and experimental
evaluation”, Mathematical Programming, 73(2) pp 129-74.

J.W.Lark, C.C.White III, K. Syverson., (1995) “A best first search algorithm guided by a set- valued
heuristic”,IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, pp 1097-1101

R.K.Ahuja, K. Mehlhorn, J.B.Orlin and R.E.Tarjan, (April 1990,) “Faster algorithms for shortest path
algorithms”, Journal of the Association for Computing Machinery,Vol. 37, No. 2, pp 213-223
D.P.Bertekas, (1991) “The auction algorithms for shortest paths”, SIAM J. Opt, Vol. 1, pp 425-447

74

