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ABSTRACT 

 
In this study, a control strategy is presented to control the position and the feed rate of a table of a milling 

machine powered by three-phase induction motor, when machining pieces constituted by different types of 

materials: steel, brass and nylon. For development of the control strategy, the vector control technique was 

applied to drive the three-phase induction machines. The estimation of the electromagnetic torque of the 

motor was used to determine the machining feed rate for each type of material. The speed control was 

developed using fuzzy logic Takagi-Sugeno (TS) model and the estimation of the electromagnetic torque 

using the artificial neural network (ANN) of the least mean square (LMS) algorithm type. The induction 

motor was fed by a three-phase voltage inverter hardware driven by a digital signal processor (DSP). 

Experimental results are presented. 
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1. INTRODUCTION 

 
Milling is a machining process which consists of removing material from a piece, in order to 
construct flat surfaces or with a certain form. The removal of material is performed intermittently 
by the combination of two movements performed simultaneously: the rotation of the cutter 
around its axis and the linear movement of the milling machine table where the piece to be 
machined is fixed [1]. 
 
In many of machining systems, constant values of feed rate and cutting speed are established 
throughout the tool path in the machining of surfaces, which can be very expensive for 
manufacturers [2]. 
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Cutting parameters for machining should be monitored and adjusted automatically by selecting 
them appropriately to the machining process, especially the parameters of feed rate and cutting 
speed [3, 4]. In the work [5], an algorithm to adjust the feed rate automatically was developed 
with the goal of achieving maximum productivity in machining of a manufacturing line. 
 
Difficulties as the geometric complexity of pieces, high hardness and roughness of materials are 
identified in the machining of free and complex formats of surfaces. In these cases, the best 
method to control the occurrence of impacts is to regulate and control the cutting parameters 
according to the shape and the surface structure. 
 
One of the effective ways to improve CNC machining efficiency is to use optimal cutting 
parameters. An optimization method of cutting parameters for machining free formats of surfaces 
was developed by applying the adaptive control of the feed rate in [6]. 
 
Due to the need of machining systems that would provide drives with variable speed, milling 
machines have increasingly been driven by three-phase induction motors. Such motors are widely 
used due to their low cost, ability to operate with a variety of loads in adverse conditions, 
simplicity of construction and maintenance. 
 
In three-phase induction motor, the implementation of vector control for direct field orientation 
allows that the position of the flux is determined by measuring the magnitudes of stator terminals: 
voltage and current [7]. 
 
Control strategies for milling can be developed through programming algorithms with application 
of intelligent controllers and estimators, using fuzzy logic and artificial neural network. The fuzzy 
and ANN techniques deal with nonlinearities easily, enable the control of complex multivariable 
systems and dispense mathematical modeling of the processes. 
 
A methodology using ANN associated to fuzzy logic was presented in thesis [8] for construction 
of a machining process controller, because of analytical complexity and non-linear responses of 
this machining system.  
 
Fuzzy logic enables the implementation of human experience in systems. The Takagi-Sugeno 
fuzzy model is able to represent, approximate or exact shape, any nonlinear dynamics as a 
combination of locally valid linear models, by interpolating smoothly [9]. The TS fuzzy technique 
combines a fuzzy rule-based method and a mathematical method, using conditional propositions, 
whose antecedents and consequents are linguistic variables and linear equations, respectively 
[10]. 
 
A fuzzy control strategy for end milling process was presented in [11]. In this work, the fuzzy 
controller was implemented adaptively aiming to maximize the feed rate for a slow machining of 
complex shapes surfaces. 
 
In the research [12], a fuzzy approach was developed to determining the optimum feed rate for 
the geometric features of a piece to be milled. 
 
The artificial neural network is a technique organized according to human neural structure, which 
acquires knowledge through a learning process, with parallel and adaptive processing [13]. 
 
The LMS learning algorithm is an ANN of error minimizing, based on instant estimations of error 
in the output [14]. In the first work of great relevance applying LMS algorithm [15], the 
interference cancellation using adaptive filters was an important reference in the field of signal 
digital processing. 
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The LMS algorithm technique was used to develop an adaptive filter for reducing and eliminating 
noise of interference signals in frequency radio at work [16], due to the simplicity of 
implementation and low computational complexity of this algorithm. 
 
In reference [17], estimation of the electromagnetic torque of a three-phase induction motor was 
obtained by applying the LMS algorithm. For this, neural adaptive filters were developed to 
eliminate offsets in the estimation of the stator flux. 
 
The machining system developed for the realization of this work has a vertical milling machine. 
The table of the milling machine is composed of two bases, one called X base and the other Y 
base, powered by three-phase induction motors. In this work, the drive and control of the X base 
was performed in the machining process of materials: steel, brass and nylon. 
 
The objectives of this work are: trigger the system with specific feed rates for cutting each 
material; control the position and the feed rate of the X base of the milling machine table, in the 
machining process of pieces constituted by different types of materials, called specimens. The 
rotation of the cutting tool is constant in this process. 
 
A speed controller using the TS fuzzy model is developed to control the feed rate of the X base. 
The estimation of the electromagnetic torque of the motor of this base is performed using ANN of 
the LMS algorithm type. A DSP is programmed to implement the control strategy of the 
machining system. 
 

2. DEVELOPMENT OF THE SYSTEM 

 
The vertical milling machine of machining system is shown in Figure 1 whose cutting tool is an 
end mill. The X base (upper base) of the milling machine table has a course of 200 mm. On this 
base, the specimens that were submitted to the frontal machining processes were fixed.  
 

 
 

Figure 1.  Vertical milling machine 
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Two types of specimens were prepared, i.e., a specimen constituted of steel and brass, and the 
other constituted of steel and nylon. 
 
The machining of a specimen generates the imposition of load to the induction motor of the X 
base. Therefore, the electromagnetic torque of this motor is estimated, in order that through this 
estimation be verified the type of material machined. Thus, the specific feed rates are applied to 
machining each type of material of a specimen from the signal of the estimated electromagnetic 
torque. 
 
As the pitch of the X base trapezoidal spindle is 4 mm and a complete revolution of the motor 
shaft corresponds to 2π rad, a numerical factor of 0.032 mm/rad was obtained. The position of X 
base is determined from multiplying the angular position of rotor of the motor by 0.032 mm/rad; 
as well as, the feed rate of this base is obtained by multiplying the rotational speed of the rotor by 
this numerical factor. 
 
In Figure 2, the system configuration for the drive and control of the X base of the milling 
machine table is schematized. In this diagram, are presented: the digital signal processor, used in 
the processing, transmission and data acquisition; the hardware constituted by three-phase voltage 
inverter, which feeds the three-phase induction motor of the X base; the encoder for measuring 
the angular position and rotational speed of rotor of the motor, thereby obtaining the position and 
feed rate of the X base; and Hall effect sensors, used to obtain the currents and voltages of the 
motor stator. 
 
Besides the electrical and electronic components, in Figure 2, are represented: the control system, 
developed for drive and control the X base of the milling machine, and the estimation system of 
the electromagnetic torque of the motor of this base.  
 

 
 

Figure 2.  Schematic diagram for control the X base of the milling machine 
 

2.1. Control System 

 
The control system of the milling machine was developed in closed loop, controlling the three-
phase induction motor of the X base. For this, a current controller using a proportional-integral 
(PI) controller, and a speed controller using a TS fuzzy model were developed. 
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Figure 3.  Speed fuzzy controller  
 

The input variables Error and Derror are defined in the fuzzification step. Error is the difference 
between the reference value and the value of the rotational speed of rotor ωr, and Derror is the 
derivative of this error. The universes of discourse of Error and Derror comprise a normalized 
range of -1 to 1. 
 
Each variable, Error and Derror, consists of seven pertinence functions with triangular and 
trapezoidal shapes, called: negative big (NB), negative medium (NM), negative small (NS), 
almost zero (AZ), positive small (PS), positive medium (PM) and positive big (PB). The 
arrangements of linguistic terms of the Error and Derror are presented in Figure 4 and Figure 5, 
respectively, in their universes of discourse.  
 

 
 

Figure 4.  Pertinence functions of the input variable Error 
 

 
 

Figure 5.  Pertinence functions of the input variable Derror  
 

In fuzzy inference step, the forty-nine control rules developed are inserted in Table 1. For the 
composition of each rule and the relationship between them, it was applied the max-min inference 
technique. So, to model each sentence was used min and the relationships between rules were 
modeled by applying max. 
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Table 1.  Table of fuzzy rules. 
 

 
 
In Figure 3, it can be observed that PD fuzzy generates the its output variable in the stage of 
defuzzification. At this stage, a linear and time-invariant model is determined using Takagi-
Sugeno fuzzy method [18]. 
 
The its variable is obtained by a weighted average in Eq. (1), in which the terms itsx, itsy and itsz are 
expressed by Eq. (2), Eq. (3) and Eq. (4), respectively. This equation consists of linear functions 
defined from the consequents of the control rules and of the numerical values of the input 
variables Error and Derror. 
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From the complex model of representation of a three-phase induction machine, the current 
controller was developed applying the control quadrature with referential in rotor flux (b). 
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2.2. Estimation System 

 
The complex model of representation of the three-phase induction machine was applied for the 
development of the estimation project of the electromagnetic torque of the three-phase induction 
motor, using control quadrature with fixed reference in the stator (a) and applying an ANN of the 
LMS algorithm type. 
 
Initially, for the estimation of the electromagnetic torque, it was estimated the stator flux of the 
three-phase induction motor. 
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Due to the occurrence of continuous current levels, called offset, in measuring voltages and 
currents of the motor, caused by the analog components and by the amplifier circuits constituting 
the voltage and current sensors, offset arose in sign of the counter-electromotive force. 
 
To the elimination of offset in this signal, it was developed a neural adaptive filter, by the 
technique of LMS algorithm. A neural structure was implemented for each component of the 
counter-electromotive force, d and q, similarly. 
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Figure 6.  LMS adaptive filtering of the counter-electromotive force 
 

 
 

Figure 7.  LMS adaptive filtering of the estimated stator flux 
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In Eq. (13), the learning rates µ of 0.0001, 0.0005 and 0.001 were used due to the specific feed 
rates applied for the machinings of steel, brass and nylon, respectively. 
 
After the estimation of the stator flux and the elimination of offsets, it was estimated the 
electromagnetic torque of the motor of the milling machine using Eq. (14). In this equation, the 
estimated electromagnetic torque ceest was determined using the estimated stator flux filtered, the 
stator current and the constant of the number of pole pairs P of the motor, which is equal to two. 
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3. EXPERIMENTAL RESULTS 

 
To perform the machining of specimens of steel/brass and steel/nylon, the X base was driven with 
reference signals of position step type of positive and negative amplitudes, resulting in 
displacements of this base in right and left directions, respectively, with referential in front of 
milling machine. 
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From the signal of estimation of the electromagnetic torque of the motor of the X base in the 
machining of materials of the specimens, this base was driven with references of specific feed 
rates. 
 
These references of speed were set for the operational conditions of machining of materials in the 
milling machine, with a rotation of the cutting tool of 1500 rpm, at a cutting depth of 2 mm in 
relation to the specimen surface, and work penetration of 6.35 mm, which corresponds to the 
diameter of the milling cutter. Therefore, for machinings of steel, brass and nylon, the feed rate 
references set were, in module, 1.6 mm/s, 5.6 mm/s and 8.0 mm/s, respectively. 
 
In Table 2, the average values of estimated electromagnetic torques ceest and the respective feed 
rate references v* of the X base are presented. 
 
In this table, in steel machining, the average values of torque ceest of 0.42 Nm and of -0.17 Nm 
were verified when driving the X base to the right and to the left, respectively. 
 

Table 2.  Estimated electromagnetic torques and reference speeds. 
 

Displacement direction Material ceest (Nm) v* (mm/s) 

right steel 0.42 1.6 
right brass 0.90 5.6 
left steel -0.17 -1.6 
left nylon -0.22 -8.0 
 
At the initial instant operating of the system, the specimens were positioned 4 mm to 6 mm away 
from the milling cutter. The system was driven on empty since the departure of the system until 
the specimen reaches the milling cutter. 
 
3.1. First Experiment 

 
Initially, the curves of response and of reference of the position variable of the X base are 
presented in Figure 8. In this test, the X base was driven with a reference signal of step type with 
amplitude of 77 mm, performing the machining of the steel/brass specimen. By analyzing the 
response curve obtained, there was a settling time of 32.36 s, a steady-state error of 0.12 % and 
non-occurrence of overshoot. 
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Figure 8.  Response and reference curves of the position of X base  
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Then, in Figure 9, the reference curve of feed rate of the X base and the response curve obtained 
are presented. As the system functioned initially empty, to drive the X base was applied a signal 
of the type speed ramp with amplitude of 1.28 mm/s, keeping constant speed until the instant of   
8.64 s. 
 
From this instant, due to the estimation of the electromagnetic torque obtained in steel machining, 
a speed ramp with amplitude of 1.6 mm/s was observed at an interval of 0.1 s and remained 
constant until 25.29 s. At that instant, a speed ramp with amplitude of 5.6 mm/s was verified at an 
interval of 0.1 s, due to the estimated electromagnetic torque obtained in the brass machining, and 
the speed remained constant until a driving v* by null value, resulting thereby in the braking of 
the X base. Based on the analysis of Figure 9, there were null steady-state errors, in the time 
intervals in which speed references were constants, and non-occurrence of overshoots. 
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Figure 9.  Response and reference curves of the feed rate of X base  
 

For analysis of neural estimation of the electromagnetic torque of the three-phase induction motor 
of the X base, in Figure 10, a curve of the estimated electromagnetic torque ceest obtained in the 
machining of the steel/brass specimen was observed. In this graph, it was verified an average 
value of torque ceest of 0.42 Nm in steel machining, in the range of 8.64 s to 25.29 s, and an 
average value of ceest of 0.90 Nm in the brass machining, in the range of 25.29 s to 32.49 s. 
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Figure 10.  Curve of the estimated electromagnetic torque 
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3.2. Second Experiment 

 
For machining the steel/nylon specimen, the X base was driven with a reference signal of step 
type with amplitude of -46 mm, as shown in the response and reference curves of the position of 
X base in Figure 11. In this graph, there was a settling time of 24.76 s, a steady-state error of 0.20 
% and non-occurrence of overshoot. 
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Figure 11.  Response and reference curves of the position of X base  
 
In Figure 12, the reference curve of the feed rate of X base and the response curve obtained are 
presented. Initially, it was observed a signal of the type speed ramp with amplitude of  -1.28 
mm/s, keeping this speed constant. At the instant of 8.68 s, due to the torque ceest obtained in the 
steel machining, there was a speed ramp with amplitude of -1.6 mm/s, which remained constant 
until 23.17 s. From this instant, it was verified a speed ramp with amplitude of  -8.0 mm/s, due to 
the torque ceest obtained in the nylon machining, and this amplitude remained constant until 
reaching the desired position. By the analysis of Figure 12, there were null steady-state errors, in 
the time intervals in which speed references were constants, and non-occurrence of overshoots. 
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Figure 12.  Response and reference curves of the feed rate of X base  
 

In Figure 13, the curve of the estimated electromagnetic torque of the motor of X base is 
presented in the machining of the steel/nylon specimen. In this graph, it was observed an average 
value of ceest of -0.17 Nm in steel machining, in the range of 8.68 s to 23.17 s, and an average 
value of ceest of -0.22 Nm in the nylon machining, in the range of 23.17 s to 24.78 s. 
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Figure 13.  Curve of the estimated electromagnetic torque 
 

4. CONCLUSIONS 

 
In this work, the controls of position and of feed rate of a milling machine were presented 
applying, automatically, specific feed rates when machining the materials. 
 
Through the response curves of the two experiments, for position, it was verified a maximum 
steady-state error of 0.20 %, with no overshoots in any of the machining processes. By observing 
the feed rate curves, the fuzzy controller provided the obtaining of null steady-state errors in both 
experiments, in the intervals driving with constant speeds, not occurring overshoots. 
 
The modeling of the speed controller by Takagi-Sugeno fuzzy technique made possible the feed 
rate control not only in the machining of hard materials, such as steel and brass, but also in the 
machining of soft material, such as nylon, controlling this speed in permanent and transient 
regimes, when changing from one type of material to another. 
 
The applications of the neural technique of LMS algorithm in the estimations of the stator fluxes 
possibilited estimate the electromagnetic torques of the motor of the milling machine simply and 
effectively. In the estimations of torque, the convergence of the two ceest signals was observed. 
 
Through the performances of machining processes carried out, it was verified the functionality 
and effectiveness of the developed control strategy. Once, from the estimation of the 
electromagnetic torque of the milling machine motor in the machining of the specimen materials, 
it was possible to machine each material with specific feed rate for its cut. 
 
As the results obtained were coherent, presenting the expected performances, it is concluded that 
the control strategy developed for milling machine of this work was very effective in the 
machining of different types of materials in the same process. 
 
A perspective for future work is to develop a strategy for the controls of cutting speed and of feed 
rate of a machining system, allowing machining, continuously, a piece constituted by different 
types of materials. 
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