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ABSTRACT 
 

In recent years, consumers and legislation have been pushing companies to optimize their activities in such 

a way as to reduce negative environmental and social impacts more and more. In the other side, companies 

must keep their total supply chain costs as low as possible to remain competitive. 

 

This work aims to develop a model to traveling salesman problem including environmental impacts and to 

identify, as far as possible, the contribution of genetic operator’s tuning and setting in the success and 

efficiency of genetic algorithms for solving this problem with consideration of CO2 emission due to 

transport. This efficiency is calculated in terms of CPU time consumption and convergence of the solution. 

The best transportation policy is determined by finding a balance between financial and environmental 

criteria.  

 

Empirically, we have demonstrated that the performance of the genetic algorithm undergo relevant 

improvements during some combinations of parameters and operators which we present in our results part. 
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Nomenclature 

 
(S)TSP = (Symmetric) Traveling salesman problem; 
GA = Genetic algorithm; 
MOP = multi-objective problems; 
LCA =  life cycle analysis; 
 

1. INTRODUCTION 

 
In the context of a global supply chain in which the objectives may differ and the constraints may 
cross, genetic algorithms come as a simple and effective approach, to find approached acceptable 
solutions in NP-hard problems, but it requires a wise choice of parameters and operators (the 
generation of the initial population, the selection, the crossovers, the mutation, etc). 
 
Solve NP-hard problems and more particularly the traveling salesman problem (TSP) thanks to 
genetic algorithms, was gradually used by the literature. However, the use of these methods 
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involves a preliminary definition of a number of parameters, what can entail deep effects on the 
results, and what leads effectively to the success of the algorithm or its failure. 
 
In the literature we find a vast range of methods: the use of the orthogonal crossover as method of 
resolution of the affectation problem [1], the combination of the genetic algorithms with a local 
search and production of hybrid and mimetic algorithms [2], the use of genetic algorithm (GA) to 
solve multi-objective problems in networks MPLS (Multiprotocol Label Switching) in  [3]. 
 
In this work, we are interested in the multi-objective optimization in combinatorial problems. 
Our work consists in applying GA as a method of resolution of NP-hard problems to identify the 
contribution of a good combination of genetic operators and parameters to end up with the best 
tuning in a multi-objective TSP context taking into account the green aspect by including the 
estimation of CO2 gas emissions in our calculations. 
 
The present document is organized as follows. In the section 1, the basic concepts related to 
genetic algorithms and to the traveling salesman problem are presented. The mathematical Model, 
as well as the methods of estimations of greenhouse gas emissions and the details of the 
implementation of the adopted approach are presented in the section 2 and 3. Section 4 and 5 
contains the results of the calculations and finally the conclusions are given in the section 6. 
 

2. LITERATURE REVIEW 

 
2.1. Multi-objective Problems  

 
Traditionally, the multi-objective problems (MOP) were very often approached as mono-
objective problems using the combination of all criteria on a simple scalar value. 
 
During the last years, there was a rising of a number of multi-objective meta heuristics 
approaches from which the purpose is to obtain a set of solutions for multi-objective problems at 
once and without needing to convert the initial problem into a mono-objective problem. Most of 
these techniques realized a big success in optimization of the real multi-objective problems  [4]. 
 A problem of combinatorial optimization is defined by a finished set of discreet solutions and 
one objective function or more, associating a single value (generally a real value) with each 
solution of the set. It consists on the optimization of the criteria under various constraints and 
determining all the realizable solutions. 
 
The combinatorial multi-objective optimization includes a wide class of problems having 
applications in numerous domains. The traveling salesman problem TSP [5] is one of the studied 
problems in this optimization category. 
 
Heuristic methods became necessary to solve large-sized multi-objective problems. 
 
Most of the heuristic approaches proposed in the literature are based on the transformation of a 
multi-objective problem into a mono-objective problem, generally with a weighting of the 
multiple criterias [6]. 
 
Among these methods are the methods based on aggregation, the e-constraints methods, and the 
methods of the goal programming. 
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The optimization of the mono-objective problem so reformulated guarantees the optimality of the 
found solution, but only finds the one and only solution. Generally, in the real situations, the 
decision-makers need several alternatives. 
 
The genetic algorithms were used to solve several MOP transformed into mono-objective 
problems: sequencing [7] , generation of chemical structures [8]  , conception of filters IIR [9] & 
[10] , transport [11, 12]. 
 
2.1.1. Aggregation Method  

 

It is one of the first methods used for the generation of Pareto optimal solutions. It consists in 
transforming the MOP into a mono-objective problem which means that we combine the various 
cost functions fi of the problem into a single objective function F generally in a linear way [13]  : 
 

 
 

The strategies of choice of the weights lambda can vary from a determinist choice of simple 
constants to a completely random choice [14]. 
 
2.2. GENETIC ALGORITHMS  

 
2.2.1. overview 

 
The genetic algorithm (GA) is a method of stochastic heuristic search in which the mechanisms 
are based on simplifications of the evolutionary processes observed in nature. 
 
These methods of combinatorial optimization are based on the natural selection described by 
Charles Robert Darwin. The natural selection indicates that the most adapted generation stays 
whereas the least adapted disappear as time goes by. The genetic algorithms are evolutionary 
algorithms, which consider at first an initial population and evolve through the genetic operators 
like selection, cross over and mutation. A GA can be seen as a kind of random oriented search, 
developed by Holland [15], it is able to obtain a global optimal solution in a complex 
multidimensional search space. Goldberg [16] gave a complete description of the basic principles 
of the genetic algorithms in its book known as a reference in this domain. 
 
2.2.2. Genetic algorithm Structure  

 

Most of the genetic algorithms work on a population of solutions rather than on a unique solution. 
The genetic search begins with the initialization of a population of individuals. Solutions, or 
genomes, are chosen among the populations (selection) according to one or several criteria 
(evaluation = fitness), and mate to form new solutions. The process of the mating operate by 
combining (crossover) the genetic material of two parents to form the genetic material for one or 
two new solutions (offspring).a random mutation is periodically applied to insure the diversity in 
the population. If the new solutions are better than those already found, the worst individuals of 
the population are replaced. 
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This process is illustrated by the algorithm below: 
 
    

BEGIN  

+ Initialize the time (t = 0).  

+ Generate and evaluate the individuals in the initial population 

(P0).  

+ WHILE (stop criteria)  

- Select among Pt 

- Apply the genetic operators to reproduce the offspring.  

- evaluate the offspring.  

- Select the offspring to be inserted into the next population 

(Pt+1) and replace the worst individuals in Pt.  

- Increment the current time (t = t + 1).  

The END 

 
Figure.1  GA STRUCTURE  

 

 
 

Figure.2 GA MACRO STRUCTURE  
 

When we apply GA to problems in which the search space is very large and the ratio between the 
number of feasible solutions and unfeasible solutions is low, it is necessary to take good care to 
define the representation, the operators, and the objective function. Factors such as the crossover 
and mutation rates, the size of the populations and the techniques of elitisms must be well chosen 
when a genetic algorithm is intended for a given problem. The genetic operators have to balance 
effectively the exploration and the exploitation so that the genetic algorithm will be able to avoid 
the local minima and find small improvements by the local search [17]. 
 
2.3. TRAVELING SALESMAN PROBLEM (TSP) 

 
2.3.1. Overview 

 
The mathematician of the 19th century William Hamilton approaches the question of the 
existence of a circuit which visits every vertex in a graph, only once. This problem is called the 
traveling salesman problem (TSP).TSP implies that a person or a vehicle moving along the 
shortest road of a vertex of departure, visits every vertex of the network one by one, and then 
returns to its point of departure.  
 
It is a part of a wide class of problems for which we know that it is not possible to develop 
guaranteed algorithms to find the absolute optimal solution in a reasonable delay. Instead, the 
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researchers work on the development of heuristic algorithms (as GA) that look for approximated 
solutions of the optimal solutions. These algorithms have generally two phases. The first phase 
aims at finding a good initial solution. The second phase consists on minor modifications in the 
best solution found to find better and better adapted one.  
 
2.3.2. Mathematic Formulation  

 
The traveling salesman problem (TSP) is formulated [18] [19] as being a matrix of costs in n 

dimensions of the values dij, where the purpose is to obtain a permutation of these values, such as 
the sum of the costs dij, for every i and j, i being a vertex and j its following vertex in a 
sequence, is minimal. More formally, we have :   
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Xij is the decision matrix (connection). 
S is a vertex Set from the global set V. 
We consider dij = dji, ∀∀∀∀ i, j to work on the symmetric TSP (STSP); 
 
2.4. TRANSPORT  ENVIRONMENTAL IMPACT:  

 
2.4.1. Overview 

 
 The Transport has different impacts on the environment. These were mainly analyzed by means 
of the life cycle analysis (LCA). A deep inquiry of all kinds of repercussions on the environment 
was described in [20]. The following categories were determined :  
 
1. Resources Consumption 
2. Lands use 
3. Greenhouse effects 
4. The impoverishment of the ozone layer 
5. Acidification 
6. Eutrophization 
7. Ecotoxicity (toxic effects on the ecosystems) 
8. Toxicity for the man (toxic effects on the human beings)  
9. Summer Smog  
10. Noise pollution 

 
The intermodal transport influence all the categories aforementioned, however the difficulty 
encircling the study of all these impacts in the green supply chain forced us to try to filter these 
impacts according to the importance of the impact compared with the global impact, the 
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availability of the data, and the methodological relevance for a quantitative comparison of the 
intermodal transport.  
In this work we concentrate on the greenhouse gas and especially the CO2 which has most 
environmental effects. 
 
2.4.2. CO2 Estimation  

 
In the literature we find several methods for the estimation of greenhouse gases emissions. On 
what follows we cite some.  
 

a. The method of simulation of EcoTransIT [21] which allows the calculation of the data 
of energy consumption and gas emissions of a transport chain all over the world. 
b. The gas Emissions in broad terms (G) in transport depend on the level of activity (A) in 
passengers-kilometers (or tons-kilometers for the freight) in all modes; the modal structure(S); 
the intensity of the fuel for each mode (I), in liters by passenger-km; and the content of carbon 
in a fuel, what gives a emissions factor (F), in grams of carbon by liter of consumed fuel. The 
relation between these parameters is mathematically represented by the ASIF  equation[22]. 
c. Reports and documents of the intergovernmental experts Group on the evolution of the 
climate GIEC [23] which is an intergovernmental body, propose several data and methods for 
the estimations of greenhouse gases. 
d. The ADEME [24] also proposes a number of methods in the same purpose. One 
approach in transport context is presented more in detail in what follows for a later use in our 
simulation. 

 
Transport is a source of greenhouse gas. Indeed, some carbon dioxide results from the 
combustion of fuels (oil, gas, etc.), Leakages linked to the air conditioning engender emissions of 
halocarbons, diverse local pollutants, which can be directly greenhouse gases (nitrogen oxides), 
or be precursors of the ozone, which is itself a greenhouse gas (the ozone of the low layers, still 
called tropospheric ozone, is responsible of about 15% of the human disturbance of the climatic 
system), etc. 
 
The CO2 Emission relative to transport is thus a consequence of the use of fossil fuels. However 
the greenhouse gas emissions of transport equipment are strongly variable depending on its type. 
The estimation of the engendered emissions depends at the same time on the equipment 
characteristics (power of the engine and the used fuel, or filling ratio of a heavy vehicle as a truck 
or a bus), and others factors which are much more difficult to describe quantitatively (for example 
the type of driving for a road vehicle). 
 
ADEME states that the numbers which convert observable data into greenhouse gas emissions, 
expressed as carbon equivalent, are called emission factors. The CEV carbon equivalent value is 
the "official" measure of greenhouse gas emissions, one kilogram of carbon dioxide (CO2) 
contains 0.27 kg of carbon, and the emission of 1 kg of CO2 is therefore 0.27 kg carbon 
equivalent (Kgeq. C). 
 

The unit of measurement of gas emissions is the gram Carbon equivalent, to convert grams 
Carbon equivalent into grams CO2 equivalent, the multiplier is 3.67. In practice, a road vehicle 
realizes some of its trips in charge, with some variable load, and another part empty weight. 
Greenhouse gas emissions associated with fuel combustion of a vehicle (EV) can then be 
expressed in functions of the following five components:  
 

1. The emission per km empty weight: Evv. 
2. The emission per km fully loaded Evpc. 
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3. The tonnage for gross vehicle weight (that is to say the maximum payload CU). 
4. The distance ratio as empty Tdv (ie, the fraction of the journey that is made empty). 
5. The average load Trm on part of the journey that is made in charge. 
 

The first three elements are characteristics of the vehicle, the last 2 are characteristic of the use of 
the vehicle. So we can say that there are only two variables for a given vehicle. 

 
These informations therefore lead to know the emission factors applicable to the path considered 
when known:  
 

- The distance ratio as empty, Tdv 
- The average load ratio Trm. 

  
 If the company knows these two parameters, it can then use with the formula: 

Ev = Evv + (Evpc - Evv) * (1 - Tdv) * Trm    (7) 
 

At this point we can use national European averages as shown in Table 1: 
 

TABLE 1 
EMISSION FACTORS IN EMPTY WEIGHT AND FULLY LOADED OF GOODS TRANSPORTATION IN METROPOLIS 

 
total permitted 

weight(PTCA) 

combustion Emissions 

(g.equ/veh.km) 

maximum 

payload (tonnes) 

empty 

weight 

Fully loaded 

Road trucks 225 323 25.00 
 

The functioning mode of road carriers and trucks used are very similar from one country to 
another, so that emissions for trips in empty weight and full load can be used in a Moroccan 
context. 
 
On the other hand and because of lack of data, the ratio of distance in empty weight and the 
average load will be estimated, otherwise the emissions vehicle-km may be incorrect from 10% 
to 20%. 
 
 Or use the table: 

TABLE 2 
CHARACTERISTICS OF GOODS TRANSPORTATION BY PTCA(TOTAL PERMITTED WEIGHT) CLASS 

 
total permitted 

weight (PTCA) 

Empty weigt 

distance 

rate Tdv
1
 

maximum 

payload 

(tonnes) 

average 

Tonnage 

per vehicle 

Tm
2
 

Mean 

occupancy 

rate Trm
3
 

Road trucks 21.1% 25.00 14.31 57% 
 

1 Ministry of Transport, DAEI-SES; TRM Vehicle use, 2001 (transport for hire) Empty weigt distance rate 

are based on europeene data of 2001 *  

2 using data from  file “SITRAM-TRM 2000 “  

3 This corresponds to the average tonnage per vehicle (Tm) divided by the maximum payload (CU). 
 

 

 

We will consider a variability of 10% in our simulations. 
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3. ADOPTED APPROACH  

 
3.1. Representation and Coding 

 
3.1.1. Genetic  Representation 

 
For TSP, a solution is typically represented by a chromosome whose length is equal to the 
number of nodes in the problem. Each gene on a chromosome has a label such that no node will 
appear twice in the same chromosome. We consider a representation which simply lists nodes 
label known as path representation [25]. a tour like  {1 → 2 → 8 → 4 → 9 → 6 → 5 → 3 → 7}  
can be represented as shown in figure 3. 
 

 
 

Figure.3  TSP- REPRESENTATION   (7 CITES) 
 

3.2. Operators (Initialization, selection, Cross over and mutation) 

 
3.2.1. Initialization  

 
Initializing a random initial population is adopted in the GA. 
 

3.2.2. Cross Over  

 
The crossover operator consists on recombining selected individuals for generating two new 
individuals. New Crossover points are randomly selected for each call to the operator as 
intermediate values of selected individuals I and J. 
 
Several ways of making crossover are described in the literature: like the one-point crossover, the 
two-point crossover, the uniform crossover, the orthogonal crossover, Cut and splice crossover. 
 
More specific ordered crossovers : edge recombination crossover (ERX) [26], Partially mapped 
crossover (PMX) [27] was among the first attempts in the application of GA to the TSP, cycle 
crossover (CX), order based crossover operator (OX), position-based crossover operator (POS), 
voting recombination crossover operator (VR), alternating-position crossover operator (AP) 
sequential constructive crossover operator (SCX). 
 
Two cross were implemented in our work: partial match PMX crossover and edge recombination 
crossover ERX. But only the ERX is used in the simulation. PMX is quite poor in the ordered 
problems and especially the STSP [28]. 
 
3.2.3. Selection  

 
We use the "Roulette Wheel" selection with elitism. 
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3.2.4. Mutation  

 
The mutation operator randomly selects a position in the chromosome and change the 
corresponding allele, thus chromosome information is modified. For TSP, the classical mutation 
operator does not operate directly. For this work, we considered the 2-exchange mutation which 
randomly selects two nodes and exchange their locations Figure 4. 
 

 

Figure.4 MUTATION 2-EXCHANGE 
 

3.3. Fitness Function  

 
3.3.1. Objective Function  

 
For problems maximizing, the fitness function is generally the same as the objective function.  
Fitness(x) = objective function(x). For minimization problems, another way to define a fitness 
function is:  Fitness(x) = 1/objective function(x). 

 
In our case, we use the aggregation described above to specify two criterias : 
 

1. Euclidean Distance (F1) 

2. CO2 emissions (F2) 

 

Such as: 

Fitness(x) =  F1(x)+(1- )F2(x)      (8) 

 
 

For the simulation part and As described in the previous sections we will use the formula (7) for 
the estimation of CO2 emissions that come with a Tdv ratio not exceeding 30%, a Mean 
occupancy rate equal 60%, the emission per km at empty and emission per km at fully loaded 
corresponding to road transport by road tractors which gives us: 
 

Ev = 225 + (323 - 225) * (1 – 30%) * 60% 

= 266.16 (g equ. C/vehicle.km) 
 

Equivalent to 976 (g equ. CO2/vehicle.km) 
 

 

3.4. Parameters setting 

 
• The population size: It determines the number of chromosomes and therefore the amount of 
genetic material available for use in research.  
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• Crossover Probability or rate: It specifies the probability of crossover occurring between two 
chromosomes.  
• Mutation Probability or rate: It specifies the probability of a mutation. 
• Stop criteria: It specifies when to end genetic research. 
 
For Preliminary simulations, we chose to work with a pop size not very large as 10, 50 and 300 
individuals, the ratio of crossover and mutation which vary from 0% to 100%, and a simple 
elitism. The tests were run for each possible combination in the algorithm; topologies in TSPLIB 
[29] were used. The results presented were obtained by testing 20 simulations for each 
combination. 
 

4. RESULTS 

 
The system was developed using the C + + language and the tests were performed on a personal 
computer Core2 Duo with a speed of 4 GHz and 4GB RAM running MS Windows 7.  
 
The different operators of the genetic algorithm was written in C + + based on the Galib library. 
The initial population is generated randomly. The following common parameters are selected for 
the algorithm: 
 

TABLE 3 
SPECIFICATIONS ADOPTED FOR THE SIMULATED GA 

 
population_size  10, 50,300 

mutation_probability  0,0.3,0.6,0.9,1 

crossover_probability 0,0.2,0.4,0.6,0.8,1 

Crossover type Edge recombination 

cross over ERX 

Mutation type  2-change 

 

Figure 5 and 6 describe the distributions (objectives, execution time) of each setting from a total 
of 90 data sets using a Box & Whiskers diagram and a colored graphic.  
 
This diagram clearly shows that large populations achieve better goals but at the expense of 
execution times that increase significantly with large PopSizes (ie. From 0.3 second to 80 
seconds). 
 
It also shows that the gain is not as important as the resulting loss in execution performance.  If 
the Pop size is too little, research has no chance of adequately cover the search space. If there is 
too much, GA is wasting too much time to evaluate the chromosomes. Thus, a moderate choice of 
Popsize (50 individuals in our case) is more convenient.  
 
The diagram also shows that the mutation and crossover rates are very important for achieving the 
goals and exploration of the search space. Thus we will consider high crossover and mutation 
rates for the next experimental simulations. 

 
Cross rates=80% and mutation rate=70% seems to be more convenient according to the results 

in figure 5. 

 
We tested the algorithm with the chosen parameters set on 10 instances of STSP TSPLIB, 
classical TSP library described in[29], then on an example of 46 Moroccan cities (metropolises). 
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For the Moroccan context simulation, and because of lack of data, we use Latitude / Longitude 
coordinates as plan x/y coordinates and calculates the Euclidian distance as the crow flies to 
simplify the results. 
 
In further work we will convert them to effective x/y coordinates and apply our GA on real 
Moroccan road map which is currently being finalized. 
 
The experiments were carried out 30 times for each instance. The quality of the solution is 
measured by the percentage of the error above the optimum value of the solution in TSPLIB 
reported, as given by the formula: 

 
 

 
 
 

 
The results are shown in table 4. 
 
We can see in figure 6 an example of GA evolving during 2000 iterations that shows the 
efficiency of the algorithm that combine the quickness and effectiveness. 
 
In figure 9 we show a simulation of our algorithm with the settings chosen during our tuning on a 
real instance with real road datasets from Open Street maps which is a Volunteered Geographic 
Information. The concept of VGI has recently emerged from the new Web 2.0 technologies. The 
OpenStreetMap project is currently the most significant example of a system based on VGI [30] . 
It aims at producing free vector geographic databases using contributions from Internet users.  

 
We cleaned up the data and arrange it for our use and transformed it into a road graph in QGIS 
[31]. 
 
We choose as a first step in a set of 128 cities among the most important and largest in terms of 
population and therefore the most requesting in term of commodity. 
 
Then we run the dijkstra algorithm in order to find the shortest path between each of the selected 
cities, then we launched the GA with these input data to optimize the TSP. 
 

5. TABLES AND FIGURES 

 

 

 
Figure.5. DISTRIBUTIONS (OBJECTIVES) OF 90 DATA SETS. 

Error %= Solution – Optimal solution *100 

Optimal Solution 
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Figure.6. DISTRIBUTIONS (EXECUTION TIME) OF 90 DATA SETS. 

 
 

 

 
Figure.7. GA EVOLVING DURING 2000 ITERATIONS FOR EIL76 INSTANCE - FITNESS. 

 

 
Figure.8. GA evolving during 2000 iterations for EIL76 instance – DIST and CO2 Emission. 
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TABLE 4 
SIMULATION OF 10 INSTANCES OF STSP  

 

 

TABLE 5 
SIMULATION IN A MOROCCAN CONTEXT  

 
TSP NAME best value 

objective 
function 

CPU time 
sec 

 Dist CO2  
gequCO2 

per dist unit 
MAROC 23169,1 4,627 56,9832 57837,3 

 

 
 

Figure. 9 SIMULATION ON 128 MOROCCAN CITIES (WITH THE SUCCESSFUL PARAMS SET). 
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6. CONCLUSION 

 
We have presented and used a nature-inspired metaheuristic algorithm for the Traveling Salesman 
Problem TSP optimization. We considered the environmental impacts of transport by including 
gas emissions (CO2) into our objectives functions. We presented a comparative study for some 
benchmark TSPLIB instances. We have demonstrated that the performance of the genetic 
algorithm undergo relevant improvements during relatively high rates of mutation and cross over 
combinations and evolve correctly using moderate population size (50 in our case). 
 
In  the  future  we  plan  on  conducting  additional  experiments aimed at improving overall 
performance of the GA algorithm.  In  particular  we  are  going  to  investigate  how  GA  could  
be  combined  with   swarm-based  approaches  such  as  ACO[32],  ABC [33] and BCO[34,35]. 
Special attention will be given to discovering better aggregation rules and specifying and classing 
criterions (using ELECTRE) and optimal ways of achieving diversity in the populations. 
 
Finally we are very interested in developing others more efficient Genetic operators and applying 
them in green supply chain context and to other NP-Hard problems. 
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